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Abstract. Certain properties proved in S-matrix theory on the basis of macroscopic
causality are verified for renormalized Feynman integrals. The technique uses the analytic
renormalization of Speer and a specific distortion of the contour of integration. It is proved
for an arbitrary Feynman graph G that the corresponding renormalized Feynman integral
is holomorphic in the (mass shell) physical region except on the positive-a Landau surface
£+ {G}. Under a certain assumption about the geometry of fi+ {G} an "ic-prescription" is
constructed for continuing (in the mass shell) around £^{G}. The difficulties involved in
removing this assumption are discussed.

I. Introduction

Feynman integrals have been an important source of understanding of
analytic properties of scattering functions in S-matrix theories [1,2].
Unfortunately, previous study of the mass shell properties of these inte-
grals has lacked generality because no method was known that dealt
efficiently enough with the problems of renormalization. This deficiency
can now be repaired with the recently developed techniques of analytic
renormalization [3—6].

The object of this work is the verification for renormalized integrals
of mass shell properties analogous to those derived for S-matrix elements
on the basis of macroscopic causality [7, 8]. The first of these S-matrix
properties is that the scattering functions are holomorphic at points of
the physical region that are not on some positive-a Landau surface. The
second property concerns points on such surfaces. At these points a
scattering function can be written as a sum of terms, each of which is the
boundary value of a holomorphic function. Usually, only one boundary
value term is necessary, but there do exist exceptional points at which
two or more are needed [9]. In such situations there is a question of how
the singularities are distributed among the various boundary value terms.
This is essentially resolved by assumption, the assumption being called
the "independence property" [10]. The derivation of this property in the
context of Feynman integrals is a second, but presently unrealized, goal
of this work.
13 Commun math. Phys., Vol. 19
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In Section II the analytic renormalization of Speer [3-5] is sketched
and a definition of renormalized Feynman integrals given. Section III
contains preliminary results related to the technique of contour deforma-
tion used in later sections. Section IV is devoted to a proof that a renor-
malized Feynman integral is holomorphic at all points of the physical
region that are not on the appropriate positive-a Landau surfaces. An
"ie-prescription" for holomorphic continuation (in the mass shell) around
the positive-a Landau surface is derived in Section V. The comments on
the independence property are found there, as is a correction to the proof
of Theorem 13 of [7].

II. Analytic Renormalization

A. Feynman Graphs

A connected Feynman graph is a set of vertices connected by
directed line segments. The vertices are represented by an index set
i^ = (0,1, . . . , V}. One of these vertices, say the zeroth, is specified as a
reference vertex, and the remaining vertices are labelled by the reduced set
i^Q — if — {0}. The lines are represented by an index set 3? — {1, 2 , . . . , L],
and their orientation by an incidence matrix [e],

e(r, /) = +1 if line / e <£ is directed into vertex r e ^\

= — 1 if line / is directed out of r , (2.1)

= 0 otherwise.

The assumption that G is connected means that rank [_e] = V.
Each line / of G is associated with a "particle" of (possibly complex)

momentum p/, (real) mass jj,h and spin <T/.
There are also external particles associated with the vertices of the

graph G. They are indexed by the set ̂ o = {1,2,..., n}, and their distribu-
tion among the vertices is described by a matrix [/],

f ( r j ) = -f 1 if particle j e J^0 is incident on vertex rei^,

= 0 otherwise.

It is assumed that at least one external particle is incident on the reference
vertex. Each particle has a (possibly complex) momentum kj and (real)
non-zero mass m7-. The spin is of no interest here. The total external
momentum at each vertex is

qr(K)=^f(rJ)kp ( r e fO , (2-3)

Momentum always means four-momentum. The metric is always

#00 = ~#11 = ~#22 = -#33 = * '
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and it is assumed that momentum is conserved at each vertex,

%e(r9l)pl + qr(K) = Q, ( re iT) . (2.4)
&

(Other conservation laws are unimportant for this paper.) Eq. (2.4) leads
to the requirement that K = (k1, ..., kn) belong to the complex manifold

(2.5)

The real section of (£ is denoted by (£r. The complex mass shell of the
external particles is 2

SR = {K e (£ I k] = mjj e ^0} , (2.6)

and the set of manifold points of 9ft is denoted by 5B. A physical region
^ is a real section of 2B, less those points where two (or more) negative-
energy momenta or two (or more) positive-energy momenta are parallel.
The negative-energy particles are called the final particles, and the others
initial particles.

It is useful to introduce the notion of a stable particle graph on the
physical region ^3. At each vertex there should be at least two incoming
particles and two outgoing particles. For internal particles the incidence
matrix \_e] specifies which are incoming (e(r, /) positive) and which are
outgoing (e(r, /) negative). For the external particles this is done by the
incidence matrix e0(rj) = (k<j/\k°\)f(rj). A graph G is then a stable
particle graph on ^ if the total incidence matrix \_e, e0] has in each row
at least two positive and two negative entries.

Finally, a contraction G' of G, written G' Q G is a Feynman graph
with the following properties. The set g" is nonempty. There are a sur-
jection n : i^-^i^', an injection f : =$?'->• J£f, and a bijection /0 : J^Q— > J2f0.
The incidence matrices are related by e'(n(r\l') = e(r,i(l'))9 f'(n(r)Je)
— /(r» *o (/'))• The particles associated with the lines of G' are the same as
those associated with the corresponding lines of G. The graph G' is a
proper contraction of G, G' C G, if i(&") =t= ̂  The set of all graphs that
are contractions either of G, or of a graph formed from G by changing
the directions of some of the lines, is denoted by {G}.

B. Feynman Integrals

The analytic renormalization described here is that of Speer [3—5].
The first step in this scheme is to write the Feynman integral for the

connected graph G in the usual way:

Z e(r, l}p^\ , (2.7)
<e

Units h — c = I arc adopted.
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where all momenta are understood to be real. Then the Feynman
propagators are replaced by

^/(4 Pi) = AI,F(PI) [(- 0 (Pi ~ rf + ifi)]1 ~\ (le&), (2.8)

where the A, are complex. The resultant integral, when expressed as an
integral over the Feynman parameters a — (al9 ...,aL), has the form

FE(^K)=lim HmFErR(^K)9 (2.9)
r->0 + #->oo ' '

R

FEtftR(^ K) = J daZ(a, K) W(a, X] exp [i Y(a, K) - e^Ta,] •
r

The function Z(a, K) is related to the spins of the particles and is a poly-
nomial in the variables a/, / e =£?, and gr(^)> r E ^o- The function FF(a? A)
is defined by

-2 [] Dtf1'1/^,)-1] , (2.10)

where <j = 2^cr/ and where

C(a)=/n a/Vet [E(a)], (2.11)
\<e

Ers(a] = £ e(r, I) ^Ie(s9 /), (r, s e TT0) - (2-12)

The function 7(a, X) is defined by

<e

The second step in renormalization is meromorphic continuation of
Fe(/l, K) in A. For complex /I in the set

A = (i P rrL i P P ;.->;. 1 < / < A \
(2.15)

and for real K the limit (2.9) can be taken, convergence of the integral
being absolute. The integral F£(l, K) is holomorphic on A and C°° on
(£r. The limit £-^0+ yields an object F(/l, K) that is holomorphic on /I
and a Schwartz distribution on (£r. Finally, the distribution

where the product is over all subsets M of <g, can be continued holo-
morphically from A to all of (CL.
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This enlarged domain of holomorphy of F(l, K) permits the following
contour integration

F(K) = (L\rl(2nirL^ 1 dAF^JOn^-ir1 . (2.17)
P y(P) se

The summation in (2.17) is over all permutations P of <g,

The contour y(P) is given by the counterclockwise contours I/I, — 1 | = yP( / ),

where yL is sufficiently small and yt> ]T ym for all /. The remarkable

feature of (2.17) is that it defines a standard Bogoliubov-Parasuik-Hepp
additive renormalization [3-5,11]. Hence, it is taken as the definition
of the renormalized Feynman integral corresponding to the graph G.

III. Contour Deformation

The principal tool of this paper is the standard one of deformation of
the contour of a-integration. Perhaps the most elegant way to go about
this is with general homological theorems [12,13]. This approach is,
however, not adopted here because of the detailed information about the
contour deformation that is needed in Section V. Instead, a more
pedestrian constructive approach is used.

It is convenient to begin by proving three lemmata. The first is a slight
generalization of a result of Speer (Lemma 1 of [3], Lemma 3.7 of [4]).

Lemma 1. Let G be a Feynman graph, and let P be a permutation of ££.
Let Gp L be the subgraph of G formed by the internal lines P(l) through
P(l) and their vertices. Let NPJ be the number of independent loops of GP L.
Finally, let z = (z]5 ..., ZL) have the form

Zp (/) = *L*L-i • • • f /W ( /eJS?) . (3.1)

Then the following equations, where t = ( tL_1 ? . . . , t^ and z = (ZL, . . . ,z\),
are true:

(3.2)

e^0). (3.3)

The functions CP and Dfr are polynomials, and the polynomial CP cannot
vanish on any compact subset of

{(t, z) e 1R1--1 ®<CL| t{ ^ 0,1 ̂  / ̂  L - 1; Rezw > 0,1 ̂  m ̂  L}. (3.4)
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Proof. The only part of Speer's discussion that needs modification is
the proof that CP cannot vanish on compact subsets of (3.4). Suppose
otherwise, that CP does vanish at (r, z). Then the matrix

(tL...tltr*(tL...tljr*%zlrilirilj9 ( l ^ U ^ L - F ) , (3.5)
se

which has determinant CP, must be singular. As in [3] the indices l{

correspond to those values of / for which NPJ = 1 + NP,/-I. The matrix
[77] is the loop matrix of G; it can be any L x (L — V) matrix, the columns
of which span the null space of the incidence matrix [e]. Here it is chosen
to have the additional property that rfp(l)i = 0 if I > /,-. If the matrix (3.5)
is singular, there is a nonzero eigenvector v with zero eigenvalue. Multi-
plying (3.5) from the right by v and from the left by its complex conjugate
v* yields

I ZP<O IE iPwv&L • • • tp (tL . . . g-*i2 - o . (3.6)& i
Since Rez^O for all /, each term in (3.7) must vanish. This is possible
only if v vanishes [3], contrary to hypothesis. Hence the matrix (3.5) is
non-singular and CP does not vanish, q.e.d.

The second lemma is more directly concerned with the manner in
which the contour deformation is to be done. Let A denote the set

A = {a e 1RL I a, > 0, 1 ̂  l^ L} , (3.7)

and let Ap, where P is a permutation of <£?, denote

Ap = {a e A \ ap(1) g ap(2) ̂  • • • g aP(L)} . (3.8)

Sector coordinates on Ap are defined by

t^L-i.-.r^a^, ( /e^) . (3.9)

The fact that a belongs to Ap means, in particular, that £ = (£L_1 ; . .., tv]
is restricted to the set

f ={ te lR L - 1 | 0^ t^l, 1 ^ / ^ L - l } . (3.10)

Finally, define a one parameter family of mappings (* : ,4(x)(£-»(CL by

Cf(a,K) = a /Cr(a,K),

Cf (a, X) - exp{ix(r? - //?)}, (/ e J^) .

The parameter x is real, and the vectors rt are given by (2.14).

Lemma 2. Let the notation of Lemma 1 be adopted. Let a be restricted
to Ap, and let sector coordinates (3.9) be introduced. Let R0C&bea compact
convex set. Then there exists x > 0 such that the following statements
are true:
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(i) The functions £f are holomorphic in all variables (x, i, K) on
[0, x]® T(x)£t0

3. They do not depend on tL.
(ii) The equalities

P(x,t,K), (3.12)

are true. The functions CP and D^r are holomorphic in (x, t, K), and CP

does not vanish, on [0, x]®T(x)^0.

Proof. Part (i) is immediate from (2.14) and Lemma 1. In particular
the functions r] — uf are bounded on T® ft0. Consequently, the number
x can be chosen small enough that Re( f>0 on [0, x](x)T(g)ft0. Sub-
stitution of (* for z/ in Lemma 1 completes the proof, q.e.d.

The final lemma is primarily concerned with the function 7(x, a, K)
= Y(C*(a, K), K) on >l(x)ft0, where A is the closure of A.

Lemma 3. There exists x > 0 such that for each x e [0, x] the mapping
L,X can be continuously extended from A®$t0 to A®RQ. In addition, the
following statements are true for all x e [0, x].

(i) Let a and a' be in A, K and K' in 5^0, and let4

n(a, a'; K, K') = |a - a'| + ||X - K;|| max {|a|, |a;|} . (3.14)

Then there exists a finite number M, dependent only on x and ft0, such that

|C*(a, K) - Cx(a', KOI ̂  Mn(a, a;; K, X') , (3.15)

1 7(x, a, K) - 7(x, a', K')| ^ Mn(a, a'; K, K') , (3.16)

|| PKY(x, a, K) - P^Y(x, a', K')|| ^ Mn(a, a7; X, K') . (3.17)

(ii) For all oceA and Ke(5^0n(£ r) the inequality

Imy(x ,a ,K)^ ixXa /Of -^ 2 ) 2 (3.18)
y

holds.

Proof. Because A is dense in A it is sufficient to prove the theorem
for a and a' in A. Consider first the mapping £x. Let a and a' be any two
points of A, and let K and K' be any two points of 5^0. Define

av = (1 — v)a+ va' ,y ' ' ' (3.19)
f

3 This is understood to mean that there exists an open set in (C(x)(CL : (x)(£ containing
[0, x](x)r®5^0 on which the functions C^ are holomorphic.

4 The norm j - | for numbers z = (z l9 . . . , zL)e(CL is |z| = (XIZJ2)1/2- ^ne norm || • j| for
n-tuples [/ = («!,. . . MM) of complex-valued four vectors is || U\\
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The mapping £*(ar Ky) is then C°° in y on the interval [0, 1]. Therefore,
the mean value theorem can be applied to each of the constituent real
functions :

Ha, K) - Ha', Kf) = (a - a') - PaC*(a,, K,) + (K - K') • FxC*(ay, ̂ ) , (3.20)

where O ^ y ^ l . Eq. (3.20) is to be understood as a collection of real
equations with perhaps a different y for each. Use of the Schwarz in-
equality yields

|Cx(a, K) - £*(«', K')\ ̂  Mn(a, a' ; K, K'), (a, a7 e A) , (3.21)

where M is the larger of

M1 = («,. (3.22)

M2 = sup(£|MKC>,K)||2¥. (3.23)

The supremum in (3.22) is over x e [0, x], OLE A, K e &0. That of (3.23)
has the additional restriction |a| ̂  1 because of the factor max{|a|, a'|}
in (3.14) and the homogeneity in a of £*.

Lemma 1 and Lemma 2 (i) are used to prove that Mt and M2 are
finite. For example, the Jacobian in (3.22) is

J = -d^~Jmn dan (3.24)

— /v \ ply yyit f l r / \ P\ s
n an Z^ ^vr ' m' ^rs W ^W?

In each sector Ap, according to (2.14) and the lemmata, the functions Jmn

are holomorphic in the variables (x,i,K) on [0, x]®T®5^0. They are
therefore bounded on each set [0, x] x ,4F(g)ft0, implying that M1 is
finite. Finiteness of M2 is proved in the same way.

The inequalities (3.16) and (3.17) are proved in exactly the same way,
appeal being made to Lemma 2 (ii) rather than Lemma 1.

To prove (3.18) consider a e A and K e (5^0n(£r)- Let x be chosen in
agreement with Lemma 2. The function Im Y(x, a, K) is C°° in x and can
be expanded in a Taylor series with remainder:

Im 7(x, a, K) — x ]T a/(rf — /^2)2 + (remainder). (3.25)
j?

Explicit calculation, together with Lemma 2 and the Schwarz inequality,
yields a bound for the remainder,

x2

|(remainder)| rg zl £ a f(r2 — juf) > (3.26)
2 c?
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in which A depends only on 3c and 5t0. Inequality (3.18) results from
choosing a new x as the lesser of the original x and (A)'1, q.e.d.

The manner in which the contour of a-integration is to be deformed
can now be formulated as a theorem.

Theorem 1. Let 5Vc(£r be a compact convex set, and let A0CA be
compact. Then there exists x > 0 such that for all e > 0 the limit

JFf (A, K) = lim lim FF r »(A, K) ,
r - o + K - o o £'r'*v (3.27)

zs obtained uniformly in (x, A, K) on (0, x](x)/l0(x)5V. TTie convergence of
the integral in (3.27) is absolute.

Proof. Let (e, A, K) be fixed, and let /(a) be the integrand of (2.9). The
first step of the proof is to show that x can be chosen so that for every
choice of r and R, 0 < r < R, the function / is holomorphic on the set

Z(r, R) = {z 6 <CL I z, - £f (a, K), r g a, ̂  #, 0 ̂  x ̂  x} . (3.28)

But this is trivial. The function /(z), ze(CL, is holomorphic except on
the sets {zl = 0} and {C(z) = 0}. Since, by Lemma 2 (i), the function
Cf can vanish only if a, vanishes, the manifolds {zl = 0} do not intersect
T(r, K). That (C(z) = 0} also does not intersect I(r, R) is immediate from
Lemma 2 (ii). Hence, the function / is holomorphic on Z(r, R).

The set Z(r,R) is a topologically (L + l)-dimensional chain in <CL, a
fact that allows the application of the Cauchy-Poincare theorem [14]:

0 = FE^R - F^R + (remainder) . (3.29)

The remainder comes from the parts of the boundary 3Z(r, R) on which
a/ = r or a, = R for some /. The task now is to prove that this remainder
vanishes in the limit (3.27). This is done by computing integrable upper
bounds for / and for the Jacobians appropriate to the surfaces a/ = r and
^ = R.

Consider first the Jacobians Jt for the surfaces of constant a,. They
are, up to an unimportant sign, the determinants of the matrices formed
by substituting the column

4o = ~f = ̂ (>i-^) (330)

for the column Jml of the matrix (3.24). Consider Jt on each sector Ap

separately, expressing it in terms of the sector coordinates (3.9). According
to Lemma 1, the functions Jt are C°° in all variables and have the form

Jt = tLJt(x, ?, K) , (3.31)
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where Jl is holomorphic. There exists, therefore, a finite number w0,
dependent only on 3c and 5V, such that

|J^m0|a| (3.32)
for all /.

The calculation for /(Cx(a, K)) is similar. The functions are considered
on each sector Ap, sector coordinates (3.9) introduced, and uniform
bounds computed. The result is the existence of constants ml and m2,
dependent only on 3c, A0, and 5V, such that

I/I g m,(\ + |a|r(n «7'W [-8 X a, ReCfl - (3.33)
\^ / L & \

The exponents nt are given by

- 1(/) - JVP > P-i ( /_1}) , (3.34)

where P"1 denotes the inverse permutation of P, and NP ? p- i ( 0 ) = 0. They
are bounded for AE A0 and satisfy the inequality nt ^ 1. The quantities
Re£f are, according to the arguments of Lemma 2, bounded from below
by a positive number % if x is chosen small enough. Consequently, the
integrals for the surfaces aL = R are dominated by a factor exp( — e^P),
and those for the surfaces af = r by a factor rni. Both types of integrals
vanish in the limit (3.27), so the remainder in (3.29) can be ignored. Uniform
convergence in (x, A, K) is immediate from (3.33). q.e.d.

The homogeneity in a of the integrand of (3.27) can be exploited to
obtain a more convenient from of the integral. Let K be any point of 5V
and /I any point of A0. Let Zv((*, K) denote the homogeneous (in (x)
components of the polynomial Z, the numbers v being the degree of
homogeneity. Let v be the maximum value of v for which Zv is nonzero.
Then the integration over |a| can be performed, leaving only the angular
integration over

S+ ={aeIRL | |a - 1; am ̂  0, 1 ̂  m ̂  L] . (3.35)

The resulting expression for the distribution F(A, K) is

F(l,K)= J ^aco(a;l,K)[7(a,K) + fO]-^ U ) , (3.36)
s +

where , v \ v
(337)

f (a, K) = y(C*, K) , (3.38)

(3.39)

F) + v - v . (3.40)

Eq. (3.36) is used in the sequel as the standard expression for F(l, K).
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IV. Non-Landau Points

The first problem is to reproduce the well known property that the
renormalized Feynman integrals are singular in (£r only on the positive-a
Landau surfaces5. These surfaces are associated with the Landau
equations which, for the graph G, are usually written

e ( r 9 l ) P l + qr(K) = 0, ( r e T T ) , (4. la)

«/(p?-M?) = 0, ( / e JS? ) . (4.1 c)

The matrix [77] in (4.1 b) is the so-called loop matrix; it is any L x (L — V)
matrix, the columns of which span the null space of the incidence matrix
[e\. The positive-a requirements are expressed in the form

a E S + , KE&r. (4.1 d)

The positive-a surface £+ {G} is the set of all K e OP" for which Eqs. (4.1)
have a solution. The desired result is the following theorem:

Theorem 2. Let G be a Feynman graph, and let F(K) be the cor-
responding renormalized Feynman integral.

(a) // K belongs to (£r — £+{G}, there is a complex neighborhood
9( COB of K_pn which F(K) is holomorphic.

(b) If K belongs to ^3 — £+{G}, there is a complex neighborhood
91 C 2B of K on which the mass shell restriction of F(K) is holomorphic.

Proof. Part (b) is an immediate consequence of (a) since £B is a sub-
manifold of (£.

To prove (a) let the original contour of integration be deformed in
accordance with Theorem 1, assuming that 5V contains K as an interior
point. This means that (3.36), with x fixed, can be used. The domain of
integration S+ is divided into sectors S+'p = S + r\Ap. Sector coordinates
(3.9) are introduced, the variable tL being replaced by

L-i i-i
+ I ( ' L - l » . ' l ) 2

1 = 1

The lemmata of Section III imply that all of the functions appearing in
the integrand of (3.36) are holomorphic in (t, K) at every point of T® 5V.
The distribution F(/l, K) is therefore a holomorphic function at X,
provided that Y(a, K) does not vanish on any sector S+'p. It is trivial,

5 Although this is a widely accepted fact, the author has found only one published
reference that treats arbitrary renormalized integrals, a remark in Section 4 of the paper
of[11].
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given Lemma 3, that this can happen only if K belongs to £+{G}.
(The vectors rt defined by (2.14) automatically satisfy (4.1 a) and (4.1 b).)

Thus, if K does not belong to £+ {G}, it follows that there is a complex
neighborhood ft C (£, ftn(£r C 5V, of K on which F(l, K) is holomorphic.
Meromorphic continuation in A of the type described by (2.16) follows
in the same way as in [3]: the integral is divided into integrals over
sectors S+'p, sector coordinates introduced, and partial t-integrations
performed. That this leads to the desired results is insured by Lemma 2.
The holomorphy of F(K) then follows from (2.17). q.e.d.

V. Landau Points

In the last section it was proved that (2.17) defines a holomorphic
function on each connected component of ^3 — £+ {G}. The question in
this section is how the functions in different components are related.
When there are no mass shell restrictions, the answer is well known [11].
Set x = 0 in (3.41). Then it is clear that F(K) can be continued from any
real point of holomorphy to any complex point of (£ of the form
K = (1 + iy) ReK, y real. From this it follows that there is a single
holomorphic function such that its boundary values on (£r form the
distribution F(K). Unfortunately, this "^-prescription" is generally
incompatible with mass shell requirements, and another answer to the
question must be sought.

As a first step in obtaining this answer a more elaborate classification
of points in £+{G) is introduced. It is here that the directions of the
lines of the graph G become important. Mathematically they are included
by enforcing the extra condition

a^O, ( /eJS?) . (5.1)

This leads to the following definitions:
i>+[G]: the subset of £+{G) on which (4.1) and (5.1) are satisfied.
£i+[G]: the subset of £+[G] corresponding to solutions with a in

the interior of S+.
Q£ [G]: the set of all points of fi^ [G] that do not belong to fit

+ [G']
for any G' C G.

The set S + {G} is then the union of all sets £j [G'], G' e {G}.
Suppose now that K belongs to £+ {G}. Then there is a finite set of

graphs Gg, indexed by a set «/(X), with the following properties:
(i) Each graph_G0 belongs to {G}.

(ii) The point K belongs to the closure of each of the sets fi^ [GJ.
(iii) If K belongs to the closure of fl+ [G'], G' e {G}, then G' g Gg for

some g.
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(iv) None of the graphs Gg are contractions of any of the other
graphs Gg,.

For each g e ^(K), there is a further index set ^g(K). This set labels
contractions Gh Q Gg for which K E £Q [G/J.

The sets £Q [GJ have one very important property. They are real
analytic submanifolds of (£r of codimensipn 1 [7]. That is, if K e Q$ [GJ,
there are a neighborhood ftrc6r of K and a real analytic function
<£j,(K), with gradient F 4>fc(K) that does not vanish on SV, such that

ftrn£^[GJ = {K|JCeSl r ,4> f c(K) = 0}. (5.2)

As is obvious from the Landau equations (4.1), the function <Ph depends
on K only through the combinations qr(K\ r E i^0. That is, there is a real
analytic function Xh(Q), Q = (qi,q2> ->,qv)>

 such tnat

$h(K) = Xh(Q(K)). (5.3)

According to Eqs. (4.4), (E.5), and (E.45) of [7] the sign of Xh, and hence
of 3>h9 can be chosen so that

( /-) V \
-jr

jL)(Q(K)) = *lP}, (le&). (5.4)
cqrv I

The number ch is positive and {a,, p,} is the solution to (4.1) corresponding
toG A .

The functions <&h are now used to define other functions cf)h:

- \\ImK\\ \\? 4>h(K)\\ cos6 , (5.5)

where Ke(£ and 9 belongs to the open interval (0, — ]. In (5.5) the

notation

8k,,

is adopted. The functions cf)h are used, in turn, to define the sets

(5.7)

It is always presumed in the sequel that 9 is chosen so that all of the sets
•30(0) are nonempty. That this is possible follows from (5.4): this equation
implies that K - V <Ph(K) > 0 for all h and hence that all the vectors P^
lie in an open half space. Consequently, all of the sets are nonempty if
9 is chosen close enough to n/2.
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A theorem that leads to a partial answer to the problem of the ze-pre-
scription can now be stated. It is the exact analog in (£ of Theorem 4
of [7].

Theorem 3. Let G be a connected Feynman graph, and let F(K) be the
corresponding renormalized Feynman integral Let K belong to £+{G}.
Then there exist 9 in the open interval (0, n/2) and a complex neighborhood
${ C (E of K such that on 5lr = ft n &r the Feynman integral can be written
as a sum

^F9(K). (5.8)

The sum is over <?(K\ and the objects F9 are Schwartz distributions that
are boundary values of functions holomorphic on the (nonempty) sets
ftn3g(0). The boundary values are themselves holomorphic on ftr — £ + {G}.

Proof. The notation is the same as in previous sections. The compact
convex set ft0 of Section III is chosen to be

The parameter x of the mapping (x is held fixed at a value determined by
Theorem 1 and the lemmata of Section III. Further explicit reference to
x is supressed.

If K belongs to £+ {G}, there is a nonempty set of positive-a solutions
{a/,p/} to the Landau equations (4.1). Let the projection of this set on
S+ be S0. The subsets of S0 corresponding to solutions {a/, pt} associated
with the sets £+ [GJ, g E J>(K) are denoted by S9. It is worth remarking
that it is not known if the sets S9 are pairwise disjoint. Their union, of
course, is S0.

The idea is to introduce into (3.36) a partition of unity with respect to
the sets S9. This splits, via (2.17), the distribution F(K) into a sum of the
form (5.8). The bulk of the proof is devoted to proving that the distri-
butions F9 so defined have the required properties.

The constituent functions nd(x) of the partition of unity are first
defined on the entire unit sphere and then restricted to S+.

(i) The functions n9 are C°° on the unit sphere and assume values
in the closed unit interval [0, 1].

(ii) The function ng is strictly positive on S9 and has support in

S9(d] = ja e IRL |a| = 1, inf a - j3| < < 5 l . (5.10)
I PtS9 J

(iii) The inequality ̂ n9 ^1 holds for all a, with equality holding on

S0(50) = uS f l f(50), (5.11)
where 0 < 8Q < d.

(iv) 7l° = l-Z7^
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There are two reasons for defining the functions n9 on the entire unit
sphere. The first is that existence is guaranteed by standard theorems.
The second is that it is a simple way to insure C00 behavior at the boundary
of S+ . This is important because the partial integrations used to prove
that the renormalization (2.17) is possible can be carried out separately
for each of the distributions

) = J Ja^(a)6o(a;;,,X)[7(a,X) + /0]~^U ) . (5.12)
s +

It is sufficient, therefore, to prove the theorem for the distributions (5.12)
with /I e A, the result then being automatic for the renormalized distri-
butions.

Consider first Jp°(/l, K). Because a is restricted to the support of 71°,
and that support is contained in S+ — S0(<50), the function Y(oc, K)
cannot vanish when K = K.It therefore cannot vanish in some neighbor-
hood of K, say in

&Q = {Ke® \\K-K\\ < Q } , (5.13)

where Q < QO. The holomorphy (in K) of co and Y imply that F° is holo-
morphic on RQ. It is therefore of no interest for the purposes of the
theorem and is considered as absorbed into one of the other distri-
butions F9.

Consider next the distributions F9(/, K). Let K e RQ and let

Ky = RQK + iyImK, ( O ^ y ^ l ) . (5.14)

It is clear from (5.13) that Ky e RQ for all y. The imaginary part of Y at
K can be estimated by using the mean value theorem, the required con-
tinuity in y being guaranteed by Lemma 2. The result is

Im Y(a, K) = Im Y(a, ReK) 4- Re{(ImK) • VK Y(a, K^} , (5.15)

where ye [0, 1]. Only those points a in the support of n9 are of interest
in (5.15), and these are contained in S9(d). There is, therefore, a point
/? e S9 such that |a - /?| < 6. At such a point the equation V K Y(a, K)
= VK Y(a, K) is true. Substitution of this information, together with (3.18),
into (5.15) yields

Im Y(a, K) ^ (Im K) • VK Y(fi, K)
_ (5.16)

K) • VK [ Y(a, K?) - Y(fi9

Lemma 3 implies that on $tg the right side of (5.16) is bounded from
below by

hc.(K,K)= inf { ( I m K ) - F K Y ( p , K ) - \\ImK\\ M(Q + 5)} . (5.17)
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Therefore, for any K in the set

(5.18)

the integral (5.12) defines a function H9(h, K) that is holomorphic.
The next step is to prove that the numbers Q and d can be chosen

small enough that 39(0)nfte Q 5^ r The key to the proof is the observa-
tion that all of the functions depend on K through the combinations
q,(K):

Y(a,K)=Y'(a,Q(K)). (5.19)

Explicit computation reveals that

(5.20)

This means, according to Theorem 8 of [7], that

FQy'(a,e(K)) = X chrQXh(Q(K)l c^O, (5.21)
Sg(K)

when a e S9. It now follows immediately from

(ImX) • VK y(a, K) = (ImQ(K)) - FQ r (a, Q(K)) (5.22)

and the triangle inequality that 3^(0) nfte £ fte>^ if

inf || VK y(a, K)||l cos0 . (5.23)

The possibility that || VKY(vi,K)\\ vanishes in S9, and hence that (5.23)
cannot be satisfied with nonzero Q and 5, is precluded by (5.20). Hence,
the set 30(0) satisfies 3g(0)n5^ egR e g and /F is holomorphic on

The proof is completed by a discussion of what is meant by boundary
value. Let Kg(y\ K) be a C°° mapping from [0, 1] ® (S^n®1") into &Q with
the properties Kg(Q,K) = K and Kg(y,K)e(3g(0)nSte) for all y>0._It
is easy to see that such mappings exist. (Consider the function K + iyK.)
Let f(K) be a Schwartz test function with support in 5V = ften(£r, and
consider

lim J dKf(K) H°(J., Kg{y, K)), (g e ̂ (K)) . (5.24)
v-0 + ^r

The standard technique of partial integration, say with respect to the
local coordinate ||K||, shows that the limit exists and is equal to

(5.25)
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Thus, the original distributions F9(h, K) are boundary values, in the
sense of (5.24), of the holomorphic functions H9(k, K}. It is obvious from
(5.12) that F9(1,K) is holomorphic at points of $T-£+{G}, thus com-
pleting the proof, q.e.d.

The major problem in proving a mass shell theorem analogous to
Theorem 3 is in showing that the sets 3^(0) have nonempty intersections
with $B. For this an additional technical assumption appears to be
necessary.

Theorem 4. Let G be a connected Feynman graph, and let F(K) be the
corresponding renormalized Feynman integral, considered as a distribution
on ty. Let K belong to ^n£+{G}. Suppose further that:

All graphs G0, g e J>(K\ are stable particle graphs on ty . (5.26)

Then there exists 6 in the open interval (0, n/2) and a complex neighborhood
5ft C S1B of K such thai on 5ftr = ty n 5ft the renormalized integrals F9(K) of
Theorem 3 are the boundary values of functions holomorphic on the
(nonempty) sets 5ft n 3^(0).

Proof. It is sufficient to prove that the set 5ft n 3^(0) is nonempty and
has 5ftr as part of its boundary. Let z denote the local mass shell coordina-
tes, with K = K(z). Let 5ft = 2Bn5le with fte defined by (5.12) and Q
chosen small enough that 5ft is contained in a single coordinate patch.
Let Kr be any real point in 5ftr with corresponding local coordinate zr.
Let zu = (1 — u)zr + MZ, where z is some point such that Ku = K(zu)
belongs to 5ft for all u, 0 ̂  u ̂  1. The functions <ph(u) = ct>h(Ku, 9) are C°°
in u and vanish at u = 0. Hence, if the first derivative at u = 0 is positive,
there is a semi-closed interval (0,TT| on which <ph(u) is positive. Define
dh to be

dh = Im\(z - zr) •
d(z]

V$h(K)\. (5.27)

The difference between 0'n(0) and dn can be estimated with the help of
the continuity of K(z). This implies that there is a positive finite constant
c such that

|Im(z-zr)|(cos0 + |z-zr|). (5.28)

If
rr dW V$h(K) (5.29)

is nonzero, then z can be chosen so that dh is positive. It is then clear from
(5.28) that if 6 is chosen close enough to n/2 and if Q is chosen small
14 Commun math. Phys , Vol 19
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enough (so that \z — zr\ and \zr — z\ are sufficiently small), then <^(0)_is
positive. Of course, the same choice of z must suffice for all he^g(K).

The idea is to prove that all of the vectors Uh lie in an open half space.
Suppose not. Then there exist constants ch such that

T,chUh = v,
^ * * (5.30)

Icfc = l, c^O.

This implies (Eq. (B.10) of [7]) that

Ic f cP0 f c(K)=l/0 , (5.31)
where

C/o = (a + b 1 f c 1 , . . . , a + bJ/l). (5.32)

The vector a is arbitrary and the quantities bj are scalars. The left side of
(5.31) depends, however, on K only through the combination Q(K). This
means that if the external particle j is an initial particle and is attached
to the same vertex as another initial particle i, then bt = bj — 0. This is
because U0l = UOJ9 while fef and kj are not collinear ( K e t y ) . Similar
conclusions hold for final particles. If Gg is a stable particle graph, there
must be some "initial" vertex vt with at least two initial external particles,
and a "final" vertex v f , positive timelike with respect to vi9 with at least
two final particles. That is, there are two vertices i and /, each with two
external particles attached, such that they are connected by a chain of
lines, all of which are oriented in the direction i to /. It follows from (5.3)
that ch — 0 in (5.31) unless the two vertices i and/coincide in Gh, Gh£= Gg.
The same arguments are now applied to these remaining diagrams. A
finite induction leads to ch = 0 for all h. This contradicts (5.30) so the
hypothesis that the vectors Uh are not confined to an open half space is
wrong6. It follows that z can be chosen so that <^(0) > 0 for all h, with the
consequence that 9ln3g(9) is nonempty. The fact that 9lr lies on the
boundary of 91 n3^(0) is a consequence of (5.27) and (5.28). q.e.d.

At first glance (5.26) is not objectionable, at least from the ^-matrix
point of view. It is, after all, only the stable particle graphs that are of
interest in S-matrix theory.

There are, however, a number of objectionable features. First, there
is no known rule for deciding if (5.26) is actually satisfied. In fact, if the
graphs Gg, g e J(K) are not all contractions of the same stable particle
graph G'e{G), it is unlikely that the stability condition (5.26) can be
enforced. Second, except in the accidental case ^3 C £+ {G}, the assump-
tion (5.26) is superfluous for almost all K. This is because the set of points
K at which the sets ^nflo [Gh], /ieuJ^(K), are not manifolds is of

6 This paragraph corrects an error in the proof of Theorem 33 of [7]. The error is
that the second of Eqs. (E.60) of [7] does not necessarily follow from the first.
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(Lebesgue) measure zero with respect to ^3n£o [G/J. Thus either two
of the sets ^3n£o [GJ coincide or they intersect in a set of zero measure.
The first case cannot lead to conflicting /e-prescriptions [7] and so can
be ignored. In the second case the set of points K for which </(K) has more
than one member is of measure zero, proving the assertion that (5.26) is
superfluous almost everywhere. Third, a violation of (5.26) necessitates
such bizarre circumstances that it is hard to imagine that such a situation
is possible. The simplest violation is the one in which there are two
graphs G1; G2 e {G} such that K e (fl£ [GJnflJ [G2]). The graphs have
some lines in common, at leasj. one of which is oriented differently in Gv

than in G2 . This means that at K the sign of the energy of the corresponding
internal particle is indeterminant ! No examples of this phenomenon are
known.

What are the possibilities if (5.26) is not generally valid? There is, first
of all, at least one class of graphs for which the assumption is not neces-
sary. This class includes all single loop graphs that can be stable particle
graphs at all.

Theorem 5. Let G be a connected Feynman graph that has at least two
external particles at each vertex. Let K belong to ^3n£+ {G}, and suppose
that no two vectors fej, K = (/q, ..., fen), are collinear. Then Theorem 4
is true at K without the assumptions (5.26).

Proof. At such a point K it follows (from the argument following (5.32))
that UQ~0 in (5.31). Eq.(5.7) implies, on the other hand, that
K • V $h(K) > 0 for all h. This implies that all of the constants ch in (5.31)
must vanish. The argument now proceeds as for Theorem 4. q.e.d.

Another possibility is to find an alternative method of proof of
Theorem 4 that does not require particle stability. No progress in this
direction has been made.

The only other viable possibility seems to be to prove that (5.26) is true
if only one of the graphs Gg, g e */(K), is a stable particle graph. No such
proof is known at present.

There remains the problem associated with the independence
property. No information is provided in Theorem 4 about the division of
singularities among the distributions F9. The independence property
is equivalent to the assertion that F9 is singular only on fi+ [GJ. A proof
of this would require a proof that the sets S9 (defined in the proof of
Theorem 3) are pairwise disjoint. No counterexamples are known, but
there is also no general proof that it is so.
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