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Abstract. A simple, yet rigorous derivation of all possible forms of a local Lie algebra
& g subject to a certain finiteness condition is presented. This result is used to describe all
possible continuous finite dimensional representations of & g.

\. Introduction

The program for the study of the hadrons through current algebra
[1-3] presents the problem of finding all possible representations of the
so-called local Lie algebras. Here a local Lie algebra <£g is defined to be
a Lie algebra (over the real or complex numbers) with generators Va(k):
α = l ,2 . . .μ; kεRn (Euclidean /t-space), satisfying the commutation
relations / fc/) (U)

where the clβ denote the structure constants of an arbitrary Lie algebra g.
(The summation convention is used for the Greek indices throughout).
We shall for the most part assume g to be semisimple and finite dimen-
sional and in what follows we refer to g as the Lie algebra on which the
local Lie algebra Sfg is based. In physical applications of (1.1), the VΛ(k)
are identified with the currents expressed in the momentum co-ordinates
k. The Lie algebra g is supposed to represent an approximate symmetry
of the strong interactions, which may for example be su(2\ su(3) or
su(3) x sw(3). The larger local algebra &g, in which g is embedded, mixes
this internal symmetry with the external space-time co-ordinates and
physically may be thought to play the role of a spectrum generating
algebra.

Local Lie algebras belong to the class of infinite dimensional Lie
algebras and for these a representation theory has not yet been fully
developed. In the meantime, Chang, Dashen, and O'Raifeartaigh [4]
have suggested studying local Lie algebras whose generators admit an
expansion as a finite sum of the form

m

V,(k)=^ar(k)V: (1.2)
r = l

where the ar(k) are real or complex-valued functions carrying the depend-
ence of the momentum variable k. In the following we give a rigorous
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derivation of the most general solutions to (1.1) satisfying (1.2). In partic-
ular we show that the VJ close on a finite dimensional Lie algebra and
obtain the form of this Lie algebra explicitly. This reduces the problem
of finding all possible representations of (1.1) satisfying (1.2) to finding all
possible representations of a known finite dimensional Lie algebra. This
classification embraces all the finite dimensional (unitary and non-
unitary) representations of (1.1), since we can easily show that (1.2) is
satisfied in this case. In addition an important class of infinite dimensional
representations of (1.1) are included in this list.

We begin our analysis in § 2 by taking the fc-space to be one dimen-
sional (n = 1) and g semisimple. This is somewhat simpler than the
general problem, yet contains all its general features. In § 3 we extend
this argument to all finite n. A further generalisation is achieved in § 4 by
dropping the requirement that g be semisimple. In § 5 we conclude with
a discussion and comparison with previous results.

2. Classification Theorem (n = ί)

In this section we assume the fc-space to be one dimensional. The
analysis we give proceeds by reduction of (1.1) and (1.2) to a Cauchy
equation for the αr(fc). (An excellent account of the Cauchy equation can
be found in Aczel [5] which we refer to hereafter as A). To avoid well-
known pathologies (A, p. 35) that can arise in the solution of this equation
we impose the following measurability requirement on the ar(k), namely:
there exists an interval IcR (of non-zero measure) such that for all
r = 1, 2,... m, the integrals

J ar(k)dk exist and are finite . (2.1)

A physical justification of (2.1) comes through the need to carry out
transformations involving integration of the currents. Given this assump-
tion our main result may be stated as follows.

Theorem 2.1. Let ^g be a local Lie algebra based on the finite dimen-
sional semisimple Lie algebra g. Let its generators VΛ(k): a— 1,2,... μ:
keR satisfy (1.2) with the measurability requirement (2.1) imposed on the
ar(k): r = 1,2 ... m. Then to within a rearrangement of the summation in
(1.2) the VJ close on a finite dimensional Lie algebra h. Further, there
exists a positive integer j such that h is a direct sum of Lie algebras ht:

i = l,2...j of dimension μm{ with ]Γ mi = m. Each ht is of the form
ΐ = 1

(r _j_ 5 _ 2)! + - ι
α ' β (r — l)!(s — 1)! aβ y ' = l (2.2)

= 0 r -h s — 1 > mi

this being a contraction of the mrfold direct sum g®g®g®- ®g.
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In each Λ ί 5 Va(k) is given by

VΛ(k)= f k'-i(εxpξk)V; (2.3)

where ξ is an arbitrary constant.

Remark. The first part of this theorem, namely that the VJ close on
a finite dimensional Lie algebra h, does not require the semisimplicity
of g. Again the closure of h does not require the finite dimensionality of g.

Proof. The proof proceeds by substitution of (1.2) into (1.1) followed
by a solution of the resulting equations for the ar(k). However before
doing this a few preliminaries are necessary. Let us first suppose we are
given a set of functions et(k, k'): t = 1, 2 ... m for which

et(k, k'} Vj = 0 for all y . (2.4)
f = 1

Then if the et(k, k') do not all vanish identically (say e sφO) we can use
(2.4) to eliminate Vy

s: y = l ,2 . . .μ from (1.2). Hence we can assume
without loss of generality that the et vanish identically. Combining this
with the semisimplicity of g (it is sufficient that g coincide with its derived
algebra) we have the implication

m

£ et(k, k')clβ VJ - 0 for all α, β=*et(k, k'} = 0 for all t . (2.5)
ί = l

Again we may assume that the ar(k) are linearly independent. Then a
simple induction argument shows that we may pick a set of points ks :
s = 1, 2 ... m in R such that detαr(/cs)Φθ. With this choice we set

(2.6)

where

ars(k) = ar(k): r = s

= ar(ks): r φ s .

These quantities satisfy

ar'(ks) = δrs (2.7)

where δrs denotes the Kronecker delta. It is also clear that (2.6) may be
solved for the af(fe) in terms of the a/(k) and so we may rewrite (1.2) in
terms of the primed variables. This we do, dropping the prime. Then on
substituting (1.2) into (1.1) which gives

m m m

X Σ αr(/c)αs(/c') [T/, F/] = c>, £ α((/c + fc') F/ (2.8)
r=l s=l ί=l
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and using (2.7) we obtain

m

[ya',Vβ']= Σc>A + W (2-9)
ί = l

This demonstrates the first part of the theorem. Observe that we have
not so far used semisimplicity or finite dimensionality of g. Eq. (2.9) is
not a complete statement of the commutation relations in h since the
at(k) are not arbitrary. To determine these functions we substitute (2.9)
back into (2.8) using (2.5). This shows that the ar(k) satisfy a relation of
the form

m m

Σ Σ βrstar(k)as(k'} = at(k + k') (2.10)
r = l s = l

where the βrst are arbitrary constants. This is a matrix generalisation of
Cauchy's equation (A, pp. 197, 353). Such equations may be solved by a
variety of methods, the simplest of which and the one we shall adopt here
being differentiation. Before we can do this we must show that the
assumed measurability (2.1) of the ar(k) implies their differentiability to
all orders. The method used is standard (A, p. 190) and so we omit the
details except to mention that we use (2.7) to impose a condition on the
βrst which is necessary for the proof.

Differentiating (2.10) /-times with respect to fc, setting

_^_ ar(k) = br

l (k) and k = 0, K = k,
u/C

Σ Σ β,,tbr

l(V)b,°(k) = bt

l(k). (2.11)

dl

we obtain

The (m + l)-vectors bl: 1 = 0, 1,2... m with components 6/(0) are
necessarily linearly dependent. Hence there exist constants α z :
/ = 0, 1, 2 ... m which are not all zero such that

m m

£ octb
l = 0 or £ αA'(O) = ° for all r .

1=0 1=0

Multiplying both sides of (2.11) by αz and summing over /, this then
gives - d<

Σα ; — Γα,(fc) = 0 (2.12)
ι = o UK

for all t. We solve this differential equation for the ar(k). In this the
following two distinct situations can arise.
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Case 1. The roots ξί9 ξ2, . . . ξm of the polynomial equation ^Γ atξ
l — 0

z = o
are all distinct. Then by a suitable redefinition of the Va

r we may set

(2.13)

for all r. Substituting (2.13) back into (2.8) using the linear independence
of the exponential function for different arguments, we obtain

ίv;,vβ*] = δrsciβv; (2.14)
which is just the m-fold direct sum of g.

Case 2. All roots equal. Then by a suitable redefinition of the Va

r we
may set

~ (2.15)

Substitution of this into (2.8) gives (2.2) with mi = m. The fact that
(2.15) is a limiting form of the solution (2.13) should make the stated
contraction property of (2.2) clear. To show this explicitly we let ε be a
positive number and set

(2.16)

where Aε is the difference operator which acts on the function / accord-
ing to

From (2.16) the primed variables a'r(k) can be shown to take the form

where the as(k) are given by (2.13). By the property of Δε, this linear
combination of the as(k) become the quantities defined in (2.15) in the
limit ε-»0. Correspondingly we define the primed elements V'J through

r = l r = l

which gives, after a little reduction

Use of (2.17) and the known commutation relations (2.14) for the
Fα

s, we deduce
r + s-l / γ _ ι \ | r + s-ί-1

Γ T Λ / i T / / s-i v ; t
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where we have used (r, s) to denote the larger of r and s. Taking the limit
ε-»0 in (2.18) we obtain (2.2) and this demonstrates the contraction.

Finally we remark that in the general case, when some roots are equal,
h is a direct sum of algebras hh each ht corresponding to a given root.
The theorem is proved.

3. Classification Theorem (General Case)

We now state and prove the generalisation of Theorem 2.1 for the
case when the fc-space is of arbitrary finite dimension. In this the measur-
ability requirement (2.1) on the ar(k) is assumed to hold in each co-
ordinate separately at a fixed value of the remaining co-ordinates.

Theorem 3.1. Let ££g be a local Lie algebra satisfying the requirements
of Theorem 2Λ with k e Rn. Then ^g satisfies the conclusions of Theo-
rem 2.i with each h{ of the form

l ^ ί r + Λ - l ^ / r flί/r, (3.1)

= 0 : otherwise .

where the lr : r = 1, 2 . . . n are positive integers and ir, jr = 1, 2 . . . lr for all r.

This is a contraction of the I Y[ lr \-fold direct sum of g. In each ht, Va(k)
is given by \r = ι /

VΛ(k)= |,..., Σ (nV'expi-fcJF.' '-"'" (3.2)

where ξ is an n-tuple of arbitrary constants.

Proof. Substituting (1.2) into (1.1) and following through the analysis
of Theorem 2.1, we obtain the Cauchy equation

m m

Σ Σ βrstar(k)as(k) = at(k + k) (3.3)
r=l s=l

where the βrsί are arbitrary constants. Arguing as before we obtain
from (3.3) a set of differential equations of the form

for alii = 1,2 ... π, the α/ being arbitrary constants. Let ξiίrι:ri = 1,2... mt ;
i — 1, 2 ... n, where the m{ are integers satisfying 1 ̂  mi ̂  m, denote for
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each ί the distinct roots of the polynomial equation
m

Σ «,'£' = < > .
ί = 0

Let ξ be an n-tuple with ith entry ξ ί > Γ ι. Then

Lemma 3.1. There are at most m different n-tuples ξ that occur in each
solution of (3.3).

Proof. Pick a solution of (3.3) and let u be the number of ξ n-tuples
occurring in it. Then we may write

ar(k)= £ &,„(*) exp^ fc (3.5)
υ = l

where the brv(k) are at most polynomials in the fcs: s = 1, 2 ... n. We may
assume without loss of generality that the brv are linearly independent

m

in the sense that ]JΓ a.rbrv = 0 for all ι;, implies αr = 0 for all r. Otherwise
r = l

we may eliminate at least one of the ξ n-tuples from (3.5). We show that
M g m by substitution of (3.5) into (3.3). Through the linear independence
of the exponential function for different arguments this gives

ι = l s = l

for all t whenever ξv Φ £w and hence whenever υ φ w. If u > w, then through
the linear independence of the brv, βrst = 0 for all r, s, ί, which is impossible.
Hence u ̂  m and the lemma is proved.

In virtue of the above lemma we may, in any given solution of (3.3),
take a linear combination of the VJ such that the ar(k) each involve only
one exponential function. It is clear that this gives the direct sum decom-
position into the nt . Thus it suffices to check the case when u = 1 in (3.5),
that is when

(3.6)

for all r = l, 2 . . . m . Now the most general polynomial in the kt can
always be written in the form

Σ - Σ A,...
i ι = l

where the jr: r = l , 2 . . . n are positive integers and the βiίίι2...in are
arbitrary constants. Setting each br(k) equal to such an expression and
substituting back into (3.6) and (1.2) we obtain (3.2) as required. Eq. (3.1)
follows by equating coefficients in powers of the fef. The contraction
property follows through similar reasoning to that given in § 2 and hence
the theorem is proved.
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It is important to realise that the VΛ

lίtl2""ln defined above need not
all be non-zero or linearly independent. Indeed for n>l, the general
solution of (1.1) is prescribed only by including in (3.2) all linear relations
of the form

Σ - Σ y i,,... ίΛ' l ί" = o (3.8)
ί ι = l in = l

which are consistent with the commutation relations given in (3.1).
Finding all such linear relations is equivalent to determining all the
polynomial solutions to (3.3), that is finding all the relations which hold
between the β f l ίn defined in (3.7). Actually in so far as a representation
theory is concerned these additional constraints are unimportant since
they will be automatically included as a set of conditions on the represen-
tation itself.

In analysing relations of the form (3.8), we may assume without loss
of generality that g is simple. This is because a semisimple Lie algebra can
be expressed as a direct sum of its simple ideals [6] and this decomposition
effects a separation of the local Lie algebra 3?g into mutually independent
parts which we may consider separately. The following theorem describes
all possible relations of the form given in (3.8).

Theorem 3.2. Let & g be a local Lie algebra satisfying the requirements
of Theorem 3.1 with g simple. Let ht be a Lie algebra defined through (3.1)
which satisfies the conclusions. Suppose that (3.8) holds for some α and
given constants y^...^. Then it holds for all α and furthermore

Σ - Σ yιί...in(
i* + Vv*1-~i'+ί-~in = v (3 9)

ΐ ι = l zn = l

holds for all s and for all α. The set of all such relations are consistent
with (3.1) and define the most general admissable ht appearing in ^g.

Proof. Using the simplicity of g we first prove:

Lemma 3.2. Given any set of quantities Xa: α = 1,2 ... μ such that for
at least one value of α and for each positive integer I

Xα = 0
(3.10)

ryι rj2 ryι Y — π
C α 0 ι c y ι 0 2 •" Sι-ι0ι A Vz ~~ U

for all βly...βt. Then

, „ ** = 0 (3.11)
for all α.

Proof. Let Xx: α =_1, 2 ... μ close on g. Then the set of relations (3.10)
with X replaced by X define a non-zero ideal in g which by simplicity
equals g. Hence these relations imply Xa = 0 for all α. Correspondingly
(3.10) must imply (3.11).
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Let us use Fα° to denote J/0 0""0 and Fα

s to denote VΛ

ίl -ίn: ir = <5,
Then through the above lemma if Fα° = 0 for some α, then Fα° = 0 for
all α. Again by commuting Vβ°: β = 1, 2 ... μ through (3.8) we can show
that the latter holds for all α if it holds for any one value. Then commuting
Vβ

s through (3.8) and using (3.1) we obtain

Σ - Σ y ί l...Jisί ι=l in = l

for all α, /?. From this (3.9) follows by simplicity of g. The set of all relations
of the form (3.9) is consistent with all Lie bracket relations (3.1) in which
one of the factors is Fα

s: s = 0,1,... m. By (3.1) these elements generate
ht and so through the Jacobi identities the commutation relations (3.1)
are consistent for the whole of ht and the theorem is proved.

As an illustration of Theorem 3.2, consider the simplest linear relation
of the form (3.8). This occurs when only one of the y^ ίn are non-zero.
Then 7αiι,...i« = 0 (3.13)

which by the simplicity of g holds for all α. Theorem 3.2 states that

J/'- ^O (3.14)

must hold for all α and for those values of lr satisfying /, ̂  ir for all
r = 1, 2,... n. This result can also be derived by studying the polynomial
solutions to (3.3), Indeed it is clear that (3.13) implies that the monomial

n

Yl kr

lr drops out of the summation in (3.2) and hence is not present in
r = l p "

any of the br(k). However if this holds then the monomials j | kr

r:
r = l

lr ^ ir for all r, must also be absent otherwise we obtain a contradiction
through substitution in the right hand side of (3.3) and identification of
coefficients in powers of the kt: ΐ = 1,2 ...n. Through (3.2) the absence
of these polynomials leads to (3.14) as we wished to show. This argument
can be extended to give an alternative proof of Theorem 3.2.

The importance of Theorem 3.1 is that it provides an immediate
classification of all possible continuous finite dimensional representa-
tions of a given local Lie algebra <£g (with g semisimple). In this we define
the topology in <£g through the distance function \VΛ(k)— VΛ(K)\ which
is assumed to satisfy the usual inequalities with respect to addition and
multiplication of the Va(k\ the Lie bracket being represented by the
commutator. By the translation property implicit in (1.1), Fα(/c) is con-
tinuous over the whole of Rn if it is continuous at any one point and we
assume that this holds in the following. In virtue of the finite dimen-
sionality of the representation the choice of (locally convex) topology
in the representation space is immaterial [7]. It is convenient to choose
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the weak operator topology (Ref. [7], p. 441). The following theorem
characterises the representations.

Theorem 3.3. Let ^g be a local Lie algebra based on a finite dimen-
sional semisίmple Lie algebra of dimension μ, with generators VΛ(k):
kεRn; continuous over Rn. Then every continuous finite dimensional
representation of ^g has a direct sum decomposition into pieces of the
form given in (3.2) where the Fα

l1' ln define a finite dimensional representa-
tion of (3.1).

Proof. Suppose the representation is of dimension m. Then there
exists a basis Vr\ r = l, 2 . . . m 2 in the representation space such that

V,(k)= Σa.i(k)Vt (3.15)
ί = l

holds for all α where the aΆr(k) are real or complex valued functions on
Rn. Through the definition of the weak operator topology, continuity in
the Va(k) implies that the matrix elements aai(k) are continuous and hence
measurable over any finite interval. It remains to show that (3.15) can be
written in the form given in (1.2). This follows through the finite dimen-
sionality of g and of the representation which permits the relabelling

<α*)= Σ A«>*Γ(*) (3.i6)
r = l

in which the βΛir are constants. Substituting (3.16) into (3.15) we obtain
(1.2) and the theorem is proved.

4. Non-Semisimplicity of the Base Algebra

The requirement that the base algebra g be semisimple is essentially
unnecessary, though omitting this condition does alter slightly the con-
clusions of Theorems 2.1 and 3.1. For example if g is commutative, it
follows from (2.9) that h as defined above is also commutative as we might
expect, whereas the functions ar(k) are arbitrary.

In general let g' denote the derived algebra of g (Ref. [6], p. 10) and
let {VΛ,Wβ: α = l ,2 . . .μ ; /? = !, 2 . . . v } be a basis for g such that
{Fα: α = 1, 2 . . . μ] is a basis for g'. We shall assume for simplicity that the
/c-space is one dimensional. Then if (1.2) holds there exist integers m, /
with m ̂  / such that

V, = Σ <*r(k) V;\ Wβ=Σ ar(k) Wβ

r (4.1)
r = l r = l

where the ar(k) are linearly independent and the VΛ

r satisfy the implication
i

Σ erVΛ

r = 0 all a=>er = 0 all r . (4.2)
r = l

9 Commun. math. Phys., Vol. 19
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(This is not imposed on the WJ.) Following through the analysis of
Theorem 2.1 we obtain, successively using the linear independence of
the ar(k) and (4.2), that

I m

(k') = at(k + k) (4.3)

for all ί = 1, 2 ... /; where the βrst are constants. Further reduction gives
the set of differential equations

1 ds

Σ ccs-—at(k) = 0
s = 0 dK

for ί = 1, 2 ... /. When all the roots ξ1? ξ2 ... ξt of the associated poly-
nomial equation are distinct, we may write

for all r = 1, 2 ... /. Substituting this back into (4.3) and using the linear
independence of the exponential function for different arguments we
obtain m

for all r, t = 1, 2 ... /. Through the linear independence of the as(k') this
implies 0 * s

Prst = °rs°rt

for all r, t = 1, 2 ... /; s = 1, 2 ... m; which leads to a conclusion analogous
to (2.14). More generally each distinct root defines a separate piece of h
which therefore has the direct sum decomposition as described in
Theorem 2.1. Thus it is sufficient to consider the case when all roots are
the same. We may then set

(4.4)

Substituting (4.4) into (4.3), differentiating u times with respect to
k and setting k = 0, we obtain

ffr-W ft-1*1
5 )-0

- - "-"+Ts( '"

for all r, ί, u = 1, 2 . . . /. Through the linear independence of the as(k') this
gives an explicit expression for the βrst, which after a little reduction
results in the following commutation relation for the VJ, Wβ

s; namely

( r _(_ s _ 2V
\Vr WSΛ — ry τ/r+s-ι v _ ;>

 r _ ι _ c _ ι < /lvΛ,Wβl-cΛβvγ ( r_1 ) ! ( 5_1 }r
 r + s l = l

 (4>5)

-0 : r + s - l > /

for all r- 1,2... /; 5-1,2... m; α = 1,2... μ; j8 = 1,2... v.
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This is essentially the same result as that obtained in the case when g
is semisimple. It differs in only two respects. Firstly the functions ar(k):
r = ί + 1, / + 2, ... m are arbitrary. Secondly the V* are defined only for
r 5Ξ /. The first difference is essentially trivial and does not effect the
representation theory. As for the second we may formally define the VJ for
r>l assuming (4.5) to hold for all r, s = l, 2 . . .w, and then set these
quantities equal to zero. This last step, which brings (2.2) into the form
of (4.5) is not inconsistent with the extended commutation relations and
so will be automatically included in the representation theory. We may
sum up our conclusions as follows.

Theorem 4.1. Let <£g be a local Lie algebra satisfying the conditions
of Theorem 2.1 except that its base algebra g is arbitrary. Let g' be the
derived algebra of g with Kα, Wβ: α = 1, 2 ... μ; β = 1, 2 ... v defined as
above. Then £?g satisfies the conclusions of Theorem 2.1 with each h{ of
the form given in (4.5). With respect to each h^ Va and Wβ are given by

I I m

Fα= £ kr-1(^pξk)V:: Wβ= Σ kr-1(expξk)Wβ' + £ a,(k)Wfi'
r=l r=l s=l+ί

where ξ is an arbitrary constant and the as(k): s = / + 1, ί + 2 ... m are
arbitrary linearly independent functions linearly independent of the

Remark. If g is infinite, the same conclusions hold except that either
μ or v must be infinite and hence so are each ht.

5. Discussion

In comparison with previous work on local Lie algebras we remark
that Chang, Dashen and O'Raifeartaigh [4] have stated conclusions
similar to ours - or at least in the same spirit. However these authors
gave no proofs nor stated precise conditions under which their assertions
held. There are also a number of omissions in their results. In particular
they do not give the full set of commutation relations appearing in (3.1)
or discuss the possible sets of relationships between the generators
described in Theorem 3.2. Roffman [8] has derived all the finite dimen-
sional representations of (1.1) (for g semisimple) under conditions of
irreducibility and skew symmetry of the representation. This work has
been extended by Havlίcek [9] to irreducible skew-symmetric representa-
tions of a related (discrete) local Lie algebra satisfying a condition
similar to (1.2). Our results are more general than these in that we do not
impose either skew-symmetry or irreducibility of the representation.
Moreover our proof is direct, elementary and rigorous. We have also
stated and shown explicitly certain contraction properties of these
algebras and extended our results to arbitrary base algebra g.
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In a different spirit Mendes and Ne'eman [10] have studied represen-
tations of (1.1) with g = su(2) by an inducing procedure on the "isospin"
subalgebra obtained by setting k = 0 in (1.1). They derive all irreducible
unitary representations having arbitrary isospin with multiplicity one.
Though it is not a priori obvious, it turns out that all these representations
are included in our classification. Indeed they correspond to representa-
tions of su(2) x su(2) and its contracted form £(3) which is the case
described by setting m = 2 in Theorem 2.1.

Though our analysis is independent of whether Z£g is over the real
or complex field, it is worth mentioning that the complexification h*
of the Lie algebra h which appears in the decomposition of £?g occurs
in two stages. The first is through the choice of g over the complex field,
the second through the functions ar(k). Both steps are necessary and
correspondingly to obtain all possible real forms of ft* we must start
from all possible real forms of g* and allow all possible real and imaginary
multiples of the functions ar(k). Thus for g = so(3) and m = 2, the un-
contracted forms of ft are so(4) and so(3,1); whereas with g = so (2,1),
they are so(2, 2) and so(1, 3). The hermiticity condition which here takes
the form V\k) = —V( — k) requires the ar(k) to be real multiples of the
expressions given in §§ 2, 3 and this excludes some of the possible real
forms of ft*. In the above example only so(4) and so (2, 2) remain.

The classification that we have given certainly does not embrace all
possible representations of local Lie algebras, though it may well include
all those useful in physics. It remains to be seen whether the relaxing of
condition (1.2) can lead to unexpected and interesting results.
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