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Abstract. The method of the dressing transformation is used to perform a mass re-
normalization of a neutral scalar free field in the Hamiltonian formalism, for arbitrary
space dimension. The resulting situation is analyzed by means of a Bogoliubov transforma-
tion, and seen to yield the expected results.

1. Introduction

It is well known that quantum field theory is plagued with divergences
which make the construction of mathematically meaningful models a
formidable task. These divergences are of two types: ultraviolet (UV)
divergences, connected with high momentum behaviour, and divergences
connected with the infinite volume (Haag's theorem).

A significant progress in circumventing the first class of divergences
has been made recently by Glimm [1,2] using the hamiltonian formalism.
He considered, among others, the case of a neutral scalar field Φ with
a Φ4 interaction in three dimensional space time [2], with a space cut-
off which eliminates the infinite volume divergences. The remaining
UV divergences still make it impossible to define the Hamiltonian of
the system in the original Fock space. However, Glimm was able to
define a new Hubert space in which a suitably renormalized version of
the Hamiltonian makes sense as a symmetric operator. Unfortunately,
the construction of the new Hubert space and of the renormalized
Hamiltonian is fairly complicated; in particular, it is not known whether
the latter is semi-bounded and can be extended to a self-adjoint operator.
Moreover, in higher dimensional space time or with more singular
interactions, higher divergences occur, and it is not clear how to extend
the method to such cases. It is therefore of interest to test the method on
a simple model, namely the quadratic Hamiltonian [3,4], for which
nevertheless arbitrarily high divergences occur if one takes the dimension
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5 of the space sufficiently large. In particular, for 5^4, UV divergences
require a change of Hubert space as in the Φ4 theory for s = 2.

In this paper, we perform the renormalization of the quadratic
Hamiltonian for arbitrary space dimension in a rigorous way. Starting
from an interaction Hamiltonian with a space cut-off and a UV cut-off,
we first apply Glimm's method to remove the UV cut-off and to define
a new Hubert space and renormalized Hamiltonian as a symmetric
operator in this space (Section 2). In order to identify the new space
and Hamiltonian we follow a different path and perform a Bogoliubov
transformation, which almost diagonalizes the original Hamiltonian.
This makes it possible to define another renormalized Hamiltonian in
the Fock space of the Bogoliubov transformed of the original creation
and annihilation operators. The two procedures turn out to be equivalent:
in fact, there exists a unitary mapping from one Hubert space to the
other, such that the matrix elements of the operator defined by the first
method correspond under this mapping to the matrix elements of the
operator defined by the second method. This identification shows that
the renormalized hamiltonian is positive and has a unique ground state
(Section 3). We can then proceed to remove the space cut-off. It is re-
markable that, for this limit, no further change of Hubert space is
required. The field operators and the Hamiltonian converge in the strong
operator topology on a suitable domain, and we end up with a free field
corresponding to the renormalized mass (Section 4). Technical verifica-
tions are collected in two appendices.

2. Renormalization Using a Dressing Transformation

In this section, we perform the renormalization of the quadratic
Hamiltonian for a neutral scalar field of mass m in s-dimensional space,
following closely Glimm [2]. We use the following notations [5]: let §
be the Fock space; a vector ψ in § is a sequence {ψ (K); K = kl9..., kn\
n = 0,1,2,...} of symmetric square integrable functions of n vectors in Rs.
The scalar product is defined by:

where

-\sdk1...dkn.
nn = 0

The vacuum state is denoted by Ω. We shall make use later on of the
set 3ι C 9) of vectors with a finite number of particles and with wave
functions belonging to the Schwartz space Sf. The creation and annihila-
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tion operators, the field operator and the free Hamiltonian are defined
respectively by:

(a(k)φ)(K) = ψ(K,k)

where Kt is obtained from K by omitting fcf.

Φ(x) = (2π)-s/2 J dk{2ω(k))-1/2 eikx{a(k) + a+ ( - k)),

H0 = $dkω(k)a+(k)a(k) (2.0)

where ω(fc) = (fc2 + m 2 ) 1 / 2 .
The interaction Hamiltonian is given formally by:

V=2λ$dx:Φ{x)2:

and corresponds to a mass renormalization δm2 = 4λ.
For this operator to make sense in Jr>, it is necessary to introduce a

space cut-off and (for s ^ 2), an ultra violet (UV) cut-off. Let / be a
real positive even function in Sf, normalized to /(0) = 1, with positive
(even) Fourier transform / defined by:

ikx
= (2πΓsSdxf(x)ei

f will serve as a space cut-off and will be kept fixed until Section 4,
where we shall take the limit /-> 1, i.e. f-+δ. Let χσ(k) be a positive ^°°
function with compact support, equal to one for |fe| < σ. The elimination
of the UV cut-off consists in taking the limit σ->oo. Define:

Φσ(x) = (2π)" s / 2 J dk(2ω(k))- ^2χσ(k) eikx(a(k) + a+ ( - k))

Vσ = 2λSdxf(x):Φσ(x)2:

Vσ exists as an operator in § and Hσ = Ho + Vσ is essentially self adjoint
on the domain of Ho (Appendix 1). Vσ can be decomposed as a sum:

K=vOβ + vlσ+v2σ

where

VOσ = V+σ = λ$dk dl\_ω{k) ω(0] ' 1/2f(k + ΐ) χσ(fe) χσ(0 α(fc) a(l),

F l σ = 2A J dkdl lω(k) ω(t)T 1 / 2 /( fc- 0 X*(k) χ.(0 α + (k) a(l).

The UV divergences depend in an essential way on the dimension of
the space. We expect the following situation to happen [6]: for 5 = 1,
no divergence occurs, V^ exists as an operator on the domain of Hθ9
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and no UV cut-off is needed. For s = 2,H^ is defined in § , but
n@(H0)= {0}. For s = 3, a change of domain is again necessary, and
an infinite constant has to be added to the Hamiltonian. For s ^ 4 ,
it is no longer possible to define H^ in § , and a change of Hubert space
is required.

In order to perform the change of domain or the change of Hubert
space, we introduce a dressing transformation [2,5]:

Wσ) (2.1)

where
Wσ=^dkdlwσ(K-I)a+(k)a+(l)

Here, vvσ(/c, /) is a real L2 - kernel satisfying vvσ(/c, /) = wσ(/, k) = wσ( - fc, - /),
to be chosen below. wσ defines a bounded self adjoint operator in the
one particle space ξ)ί =L2(Rs,dk), which we shall again denote by wσ.

With this definition, the following identity holds:

(Hσ + Cσ) Tσ = Tσ[_Hσ- (Ho + VOσ + Vlσ)+Wσ + 1 VOσ^-W^ (2.2)

where -ζ- denotes the connected product with p contractions [2, 5] and:

(2.3)

Since we want to use (2.2) to define the renormalized Hamiltonian in the
limit σ-*oo, we choose Wσ so as to eliminate the most singular terms in
the RHS, namely, in the square bracket, the terms containing two creation
operators. This gives the equation:

Rσ^V2σ-H0^-Wσ-Vlσ^Wσ+$V0σ^-Wσ

2 = 0. (2.4)

In the next section and in Appendix 2, we shall prove that for λ > — m2/4,
Eq. (2.4) has a solution wσ with the following properties: for σ ^ o o ,
wσ(fc, /) is real symmetric bounded ^°° function of (fc, /), and Suρ| |wJ < 1.
For σ finite, wσ(/c, /) has compact support in (/c, /), and therefore wσ is a
Hubert Schmidt operator: Ύrw2 < oo. For σ infinite, Trvv2 can be shown
to be infinite for s ̂  4. When σ tends to infinity, wσ tends to w in the
strong operator topology.

From now on, we choose this specific wσ.
We shajl now use Tσ to define a new scalar product on a dense subset

of ξ>. For this purpose, it will be convenient to have an explicit expression
for {Tσψ, Tσφ). To perform this calculation, the following notations are
useful. Let K = (kl9.'.., kn) and L = (^,..., /J. Let α e L2 (Rs, dk) be a one
particle wave function. We define a vector £α e § by:

Ea(K)=f\a(ki).
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Let s(/c, /) be a symmetric function of two vectors (/c, /). We define (cf. [7]):

E{s){K\L) = 0 for m + n
n

= Σ Π ^ / ' W for m==n

where the sum runs over all permutations π of (1, 2,..., ή).
We finally denote by E(S) (K) the sum over the partitions of K in

pairs of variables (this requires that n be even for E(s) (K) to be non zero)
of the products of the s(kh — kj) for all the pairs of the partition.

We shall also use the notations E{s)(K\L) and E(s)(K) with s an
operator in L2(R\dk) represented by a symmetric even kernel s(fc, /)•

We can now state the following result:

Lemma. Let σ be finite, φe!3,ψe@. Then:

(2.5)

dK dL άlL ψ(K, K') WΛ)
(2.6)

)

Proof. In order to deal with the combinational problem, it is suffi-
cient to consider the case where wσ is a finite matrix and where a finite
number of modes occur. For each mode, we introduce coherent states
[8] \ξk) defined by ak\ξk) = \ξk), (ξk\ξk) = 1, where ξk is a complex number.
Let |£)=(X)|£fc). These states satisfy the completeness relation:

2π

where dξkdξk = 2 d(Re £fe) d(Im 4).
We first consider the case where φ = £α, ψ = £/?, where α and jS

are one particle wave functions. Using (2.7), we obtain:

{Tσφ,Tσxp) = {TσEa,TσEβ) = l]\^-^{E^ξ)
k Z π

x {ξ, Eβ) exp I - 1 Σ *σ*. -i(fJi + &ί i)}
I L k,l J
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Therefore:

Σ
k,ι

An elementary calculation of gaussian integrals gives:

( 7 > , Tσ ψ) = det(l - wlr ^ e x p {(α, (1 - f i £ Γ x jβ)

- I (α, wσ(l - wlT1 α ) -

where α£ = α_fe.
For α = /? = 0, we obtain (2.5). For general α and /?, we obtain (2.6)

in the special case where φ = Eoc, ψ = Eβ. Since the EOL form a total
set in Fock space, the result holds for general φ and ψ.

The convergence problems are elementary.
When σ tends to infinity, Trw^ may become infinite, and actually

does for s ^ 4 . Then ||7^Ω|| tends to infinity and Tσ kicks the vacuum
out of Fock space. In any case (2.6) tends to a well defined limit when σ
tends to infinity, because of the above mentioned convergence properties
of wσ. This limit is easily seen to be a positive definite bilinear form on Si.
We can therefore define a new scalar product on the range of T by:

,2,)

= f dK dK'dL dLψ(K, K') φ(L, L) E(- w(l - vv2)"x) (Kf)

where we have used the notations φr,ψr for Tφ, Tψ.
If || 7^ β || is finite, then T^ maps Si into Fock space, and the new

scalar product is equal to the old one, up to a multiplicative factor.
If || Too β| | is infinite, then T^ does not exist as a mapping from Si to § ,
and what we are really doing is to define a new scalar product on Si.

The completion of the range of T under the scalar product (2.8)
gives a new Hubert space, denoted by $ r , which is appropriate for the
description of the renormalized quantities. We now proceed to define
the renormalized Hamiltonian Hr, using equation (2.2). With the previous
choice of Wσ9 the RHS of (2.2) will be well behaved, whereas the vacuum
self energy — Cσ diverges for 5 ̂  3 when σ becomes infinite. We therefore
subtract it from Hσ before taking the limit. The matrix elements of Hr
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are defined, for φ and ψ in 3f^ by:

<φ^HvwS>= lim

, Tσ(H0 + FO σ

l i m

-?Z \\ΎσΩ\\2

The choice of Wσ has eliminated the dangerous pair creation terms.
The existence of the limit then follows easily from the explicit ex-
pression (2.8) for the scalar product and the convergence property of wσ.
Similarly, the following quantity tends to a finite limit when σ tends to
infinity, and is therefore bounded uniformly in σ:

It then follows from the Riesz representation theorem that Hr is an
operator, defined on the range of T. This operator is clearly symmetric.
We call it the renormalized Hamiltonian.

The same procedure can be applied to a large class of sufficiently
regular operators, and in particular to linear functions of creation and
annihilation operators.

We conclude this section with the following remark: there is some
arbitrariness in the choice of wσ and therefore of Tσ. To make Hr well
defined, the condition R = 0 is not necessary. It would be sufficient
to require R^-^-W^ < oo in addition to the important condition
||w|| < 1. In particular, one could choose HQ-Δ-W= V2 for s ^ 4 , at least
for λ sufficiently small.

3. Renormalization Using a Bogoliubov Transformation

The method of Section 2 did not yield any information on the self-
adjointness and spectrum oίHr. Moreover, it relies heavily on the existence
and properties of a w satisfying (2.4), which is not very convenient to
analyze directly. In order to circumvent these difficulties, we try to
diagonalize the Hamiltonian by the use of a Bogoliubov-type trans-
formation.

Let us define:

ίbσ{k) = a(k) + ίdlΰσ(k, 1} (a(l) + a+ ( - /))

ik) = a+(k) + J dlΰσ(k, ϊ) (α+(/) + σ(-1))

where ύσ{k, ϊ) is a real symmetric kernel, possibly depending on σ
and /. The b* and bσ satisfy the following commutation relations:

(fc)A(0]=o
(k) K (mδ(kt)+2a(k i) { '
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Note that (3.1) is not a Bogoliubov transformation in the usual sense,
since it does not preserve the CCR. It is introduced as an intermediate
step, for convenience reasons.

An elementary calculation shows that Hσ can be written in the form:

Hσ = Sdkω(k)b:(k)bσ(k)-Dσ (3.3)
where:

Dσ = Sdkdlω(k)ϊίσ(kJ)2, (3.4)

provided ύσ satisfies the following equation:

ω(0) uσ(K 0 + ίdpω(p) uσ(k9 p) δσ(p, 0 = λvσ(K 0 (3.5)

where:

UK 0 = X.(k) χβ) f(k - /) [ω(k) ω(Q] " ι ' 2 . (3.6)

Eq. (3.3) seems to be a natural starting point for the renormalization of
Hσ by the method of the preceding section. We therefore introduce Tσ

by Eq. (2.1) and commute it successively with bσ and b+. The first step
yields the identity:

bσ(k) Tσ = Tσla(k) + μiύσ(K I) (a(l) + a+(-1))

Previously, the crucial requirement was the absence of the pair creation
term in the square bracket in the RHS of Eq. (2.2). We now enforce this
condition by imposing the absence of the creation operator in the square
bracket in the RHS of (3.7). This leads to the equation:

uσ(K I) = wσ(K t) + $dp uσ(k, P) ύσ(p, I) (3.8)

Eq. (3.5) and (3.8) will determine ύσ and wσ. Before actually solving them,
we first prove that the kernel wσ thereby obtained is also a solution of
the equation R = 0 (2.4), which can be written more precisely as:

0) wσ(/c, /) = λ{vσ(K I) - Sdpίvσ(K p) * σ (p, 0

4- wσ(/c, p) ϋσ(p, ΐf] + $dp dqwσ(K P) vσiP> Φ %{<!> 0}

where vσ(k, ΐ) is defined by (3.6).
In order to compare the equations, we simplify the notations. We

denote by βσ, vσ and wσ the operators in the one particle space ξ)ί defined
by the corresponding kernels and by h0 the restriction of Ho to ξ)x.
The quantities corresponding to σ infinite will also be used later on, and
will be denoted without a subscript. Eqs. (3.5), (3.8) and (3.9) can be
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rewritten respectively as:

uσhouσ + \ (uσh0 + Mσ) = λϋσ, (3.10)

uσ = wσ + ύσwσ, (3.11)

σ + w A ) = λ(l - wσ) βσ(l - wσ). (3.12)

Multiplying (3.10) from the left and from the right by (1 — wσ) and using
(3.11), we obtain immediately (3.12). Therefore wσ defined through (3.10)
and (3.11) solves (3.12). We next show the equality of the constants
Cσ(cf. (2.3)) and Dσ(cf. (3.4)). They can be rewritten as:

σ9 (3.13)

Dσ = Tvh0u
2

σ. (3.14)

The equality is obtained immediately by multiplying (3.10) by wσ, taking
the trace, and using (3.11) and the commutativity of ύσ and wσ. The pre-
ceding arguments will become rigorous after we have solved (3.10).
These two results exhibit the connection between the two renormaliza-
tion procedures.

We now turn to the analysis of (3.10). It can be rewritten as:

ffβ

2 + ffσd
ll2 + 8ll2aσ = λfβ (3.15)

where:

9 = m, (3-16)

More explicitly:

1)XM) (3-16')

(3.15) is solved by:

g1'2. (3.17)

The operator g is self adjoint and bounded from below by \m2\ fσ is a
bounded positive operator, with | | ^ | | ^ 1 . Therefore, for any real λ,
g + λfσ is self adjoint on the domain of g, and bounded from below by
min (^m2,^m2 + λ). For λ> — ^m 2, g + λfσ is strictly positive, and its
square root is a well defined self adjoint (positive) operator. We shall
prove in appendix 2, that u'σ and ύσ defined by (3.17) and (3.16) have
the following properties: ύσ and ϋ'σ are bounded operators in § l 9 and
ύσ> —1/2. All the bounds are uniform in σ ^ oo. These operators are
represented by real symmetric ^°° bounded kernels. For finite σ, the
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Fig. 1. The integration contour in (3.18) and (A2.1, 2, 3)

kernels have compact support; for σ infinite, the kernels are rapidly
decreasing functions of each variable when the other is held fixed. When
σ tends to infinity, ύσ and u'σ tend to ύ and uf in the strong operator
topology. All these properties are easily obtained from a perturbation
expansion of (3.15) for \λ\ < \ m2, and will be derived in Appendix 2 for
any real λ> —\m2 by means of the integral representation:

(3.18)

where Cx is the contour shown in Fig. 1.
We can now define wσ by:

(3.19)

wσ has all the properties stated in Section 2; in particular | | w j < l
follows from uσ> -1/2 uniformly in σ (see Appendix 2). These results
complete the arguments given in Section 2.

We now come back to the Bogoliubov transformation. The previous
relation (3.1) between the (α, α+) and the (bσ, b+) did not preserve the
CCR. These are easily recovered through a second transformation
defined by:

cσ(k) = f dl(l + 2ύσ)-^2(K I) bσ(t) (3.20)
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The operator (l + 2wσ)~1/2 is bounded uniformly in σ and converges
strongly to (l + 2w)~1/2 for σ->oo.

The hamiltonian can be expressed in terms of the (cσ, c*) as:

Hσ+Cσ = ίdk dlhσ(K I) c: (k) cσ(l) (3.21)

where:

) 1 1 2 - (3-22)

These expressions suggest a new definition of a renormalized Hamiltonian.
Let (α'(fc), a' + (k)) be a representation of the CCR in the Fock space §'.
We define a renormalized Hamiltonian for the theory by:

H' = $dk dl h(k, I)a' + (k) a'{ΐ) (3.23)
where:

. (3.24)

Ή! is a self adjoint positive operator, and has the no particle state Ω'
as a unique ground state.

We now compare the two renormalization procedures. For this
purpose, we define a transformation S from S)Cξ) to 9)' by:

Sφ(K) = φ'(K) = f dK'dLE((l- w2)~1/2) (K\Kf),

E(- w(l - w 2)- ^ (L) φ(X', L). (3.25)

The range of S is immediately seen to be dense in §'. Furthermore:

(φ\ψ') (3.26)

for all φ, ψ e Q). Therefore, we can identify ξ>r and §', by identifying the
images φr and φr of the same φ for all φ belonging to 2.

In the same way as we have defined Hr in the space ξ>r, we also define
the operators cr in ξ>r by:

<Ψ,,cMψ,}=limΰiψs™. ,,27)

The adjoint cr

+(fc) is defined similarly.
We now prove that, the identification of § r with §', identifies cr

with a'. In fact:
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by (3.26). Now:

= $dKfdLdl(ί-w2)-ll2(Kϊ)E((l-w2yll2)(K\K')

E(- w(l - w2Γ m) (L) ψ (K'9 L, I) (3.29)

= μK/fdLE{(l-w2)-1/2)(KMKff)E(-w(l-w2r1)(L)ψ(Kf\L)

= (a'(k)Sψ)(K).

From the explicit expression of the scalar product, the regularity and
convergence properties of ύσ, it follows by the same type of computation
that for any φ, ψe3)\

<φr,Hrψr> = (φ'9H'ψ'). (3.30)

This relation completes the identification of the two renormalization
procedures.

4. Removal of the Space Cut-off

Until now, the space cut-off / has been kept fixed, and we have
removed the UV cut-off σ. The ensuing situation is the following:

- The Hubert space ξ>r is the Fock space of the CCR for the operators
cr(k) and cr

+(fc).
- The Hamiltonian Hr is the positive operator:

Hr = $dk dl h(k, /) cv+ (Jfc) cr{l) (4.1)

where h is defined by (3.24), and its (unique) ground state is the no particle
state Ωr.

- The renormalized field at an arbitrary time t is given by:

Φr(x, ί) = (2πΓ s / 2 J dk dl\_2ω{k)Yll2eikx

ίί2e-irh)(Kl)cr(l) (4.2)

This formula is obtained as follows: for finite σ, the time evolution of
the cσ(k) is given by:

cσ(k9t)=*έt*<'cσ{k)e-itEσ (4.3)
or equivalently by:

cσ(k,t) = Sdle-itHkJ)cσ(l) (4.4)

where hσ is defined by (3.22).
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The a(k) and a+(k) are expressed as functions of cσ and c£ by:

cσ(ϊ)

)}

> 0 c σ

+ (/)

} ' }

Substituting (4.5,6) and (4.4) in the expressions of the field in terms of a
and α+, and taking the limit of infinite σ as in section 2, we obtain (4.2).
The only non trivial point is to prove the strong convergence of:

in 9)1 when σ tends to infinity. This is done in appendix 2.
We now turn to the elimination of the space-cut off /. The Hubert

space ξ>r and the vacuum state Ωr do not depend on /, whereas the field
operator Φr(x, t) and the Hamiltonian Hr contain/through the function ύ.
We now show that, when/tends to δ in the Schwartz space 5 '̂, the smeared
field converges strongly on any reasonable domain to the free field with
mass (m2 + 4λ)1/2. This conclusion follows immediately once we know
that:

(l + 2u)-1/2e±ith

converges strongly in § x to the operator that consists in the multiplication
by:

This is proved in Appendix 2.
As a by-product, we also obtain the strong convergence of the unitary

group Qxp(ίtHr).
We finally end up, as expected, with a free field theory, with the

renormalized mass.

Appendix 1. Self Adjointness of the Cut-off Hamiltonian

Let us consider the Hamiltonian H = H0 + V where Ho and V are
defined respectively by (2.0) and by:

V=Sdkdlr(k,l)a+(k)a(l) + Sdkdls(Kl)(a(k)a(l) + a+(k)a+(l)). (A 1.1)

The functions r and 5 are square integrable and real symmetric. It
is clear that H is a symmetric operator on the domain of Ho.
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We want to prove that H is essentially self adjoint on the domain 2ι
defined in section 2. For this purpose, it is sufficient to check that (z—H)@
is dense in Fock space for any non real z. This amounts to show that,
if for all φ in 3f,

(ψ,(z-H)φ) = 0 (A 1.2)
then ψ = 0.

Let ψ satisfy (A 1.2) for all φeSJ. If φ belongs to the n particle
subspace £>n, (A 1.2) implies that ψn is in the domain of Ho, because
the restriction of F t o ξ>n is a bounded operator. Here, ψn is the projection
of ip on § π . Then (A 1.2) implies that the projection on every §M of the
vector (z-H)ψ is zero. In particular, for all n, we have:

(φH9(Ho+V-z)ψ) = 0.

Taking the imaginary part, we obtain:

lmz\\ψj2 = Im[(φπ, Voψn+2)

where Vo and V2 are the pair annihilation and the pair creation terms of V.
We sum over n:

N

Imz £ \\ψn\\2=Iml(ψN, V0ψN+2) + (ψN_ί,V0ψN+1)'] .
κ = 0

Applying Schwartz' inequality, we get

IImzKΛΓ+2)-1 £ \\ψn\\2M\\4i{\\ψA2+\\ψ»+2\\2

n = 0

+ \\ψN-l\\2+\\ψN+l\\2}-

This inequality shows that for ImzφO, || ψ\\2= £ \\ΨN\\2 cannot be

finite unless ψ = 0.

Appendix 2. Properties of ύa and Related Quantities

In this appendix, we analyze the solution of (3.15) and related operators
needed throughout the paper. For this purpose, we shall use the following
integral representation, which holds for any strictly positive operator A
and for all ψ in the domain of A:

where Cα is the contour shown on Fig. 1.
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The integral converges absolutely, is independent of the contour in
any reasonable sense and is easily seen, by the use of the spectral decom-
position of A, to represent the left-hand side. Applying (A 2.1) to the
operators g + λfσ and g, we can rewrite (3.17) for real λ>-\m2, as:

^ iz-gyigl (A2.2)

where both sides are defined on the domain of g, or equivalently:

U'σ=^tϊ Idz^-d-λLΓ'Liz-g)-1. (A2.3)

It is easily seen that this operator is bounded, with a bound independent
of both cut offs. Moreover, it is a continuous function of fσ in the strong
operator topology; in fact, the integrand is uniformly bounded in norm
by an integrable function, and is a strongly continuous function of fσ

since each factor is strongly continuous and uniformly bounded. The
strong continuity of ύ'σ then follows from Lebesgue's theorem. Because
of (3.16), the same properties hold for uσ.

We next prove that uσ + \ is strictly positive uniformly in σ and /.
In fact, let x = 2(g + λfσ)

ί/2. Then

Therefore x has a bounded inverse, and

where:
41\~ 1 / 2/ / 41

1, 1+^r
\ \ ™

Now:

On the other hand:

Consequently:

It is important to remark that this bound can be made cut off independent,
since | |^ | | is bounded uniformly with respect to both cut offs.
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We now turn to prove that ύ'σ can be represented by a regular kernel.
In fact, after extraction of the lowest order term 2λ fσ (fe, Z) [ω(fe) + ω(Z)] ~1,
we are left with the following remainder:

• r̂ ίdzz-Wiz-fl-ifaz-a-λfoMz-g)-1. (A2.4)

In order to derive its properties, it will be sufficient to prove that the
operator {z — g — λfσ)~x maps £f into ίf. Let ψ etf and

φ = (z-g-λfσy
ίψ

or:

( ^ j (A2.5)

The function φ is obviously °̂° because of the explicit form of fσ. The
following remarks show that φ is rapidly decreasing. The last term in
the RHS of (A 2.5) is uniformly bounded in k, because of Schwartz ine-
quality. Therefore ω(k)2φ(k) is bounded. Multiplying (A2.5) by co(fc)2

and using the inequality:

ω(k)^Ctω{ϊ)ω(k-ϊ)

we prove that ω(k)4φ is also bounded. This process can be iterated and
applied to all derivatives of φ. Consequently φ e £f. This result implies
that when σ is finite, the kernel of ύ'σ is #°° with compact support. For σ
infinite, / reduces to the convolution with /, and the kernel u' belongs
to Sf as a function of each variable when the other is held fixed.

The properties of wσ stated in section 2 follow easily from the corre-
sponding properties of ύσ and the relation (3.19). In particular, the
regularity of the kernel is exhibited in the partial expansion:

Furthermore, wσ is a strongly continuous function of ύσ and therefore
converges strongly as σ tends to infinity.

Similarly, the operators (l + 2uσ)± 1 / 2 converge strongly as σ tends
to infinity and/or / tends to δ, because the operator 1 + 2ύσ is uniformly
bounded away from zero.

We next prove the strong convergence of hσ on the domain of h0

as σ tends to infinity and/or / tends to δ. The operator hσ can be rewritten
as:

= (1 + 2ΰσ) h0 + (1 + 2ty 1 / 2 lh0, (1 + 2ΰγ^
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The first term in the last member of (A 2.6) converges strongly on the
domain of h0. The commutator in the second term is seen by the use of
Cauchy's formula for (l + 2uσ)

112 to be a uniformly bounded strongly
continuous function of [h0, ϋσ~\ provided the latter is uniformly bounded.
By the same method using the representation (A 2.3), it is sufficient to
ensure the uniform boundedness and strong convergence of {ho,fσ~\. This
last property holds in particular when σ tends to infinity for fixed /
and when / tends to δ in SP.

A theorem of Trotter [9] then implies the strong convergence of the
unitary group e±u*σ as σ tends to infinity and/or / tends to δ. As a
consequence, the unitary group exp(iίHr) converges strongly in 9)r as /
tends to δ.

Finally, the limiting expression for u when / = δ is easily computed
to be:
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