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Abstract. We prove that the A(p*), quantum field theory model is Lorentz
covariant, and that the corresponding theory of bounded observables satisfies all the
Haag-Kastler axioms. For each Poincaré transformation {a, A} and each bounded region B
of Minkowski space we construct a unitary operator U which correctly transforms the field
bilinear forms: Ug(x,t) U* = ¢({a, A} (x,t)), for (x,t)e B. We also consider the von
Neumann algebra (B) of local observables, consisting of bounded functions of the field
operators @(f)=§ @(x, 1) f(x,t) dx dt, supp f C B. We define a *-isomorphism o, 4,: %U(B)
— A({a, A} B) by setting o, 44(4)=UAU*. The mapping {a, 4} -, 4 is a representation
of the Poincaré group by x-automorphisms of the normed algebra Ugz(B) of local
observables.
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1. Introduction
1.1. Discussion

We study the quantum field ¢ of the A(¢*), quantum field theory.
This field ¢ satisfies the nonlinear equation

= Qe+ Mm@ +4l9> =0, 1>0, (1.1.1)

where ¢ is suitably defined. The construction of a field ¢ satisfying (1.1.1)
was carried out in [1-3]. The field ¢(x, ) is a densely defined bilinear
form on Fock space, and the values of this form are continuous in x
and t. If f(x,t) is a real ¥ function with compact support, then the
bilinear form

p(f)=fox 0 fx, )dxdt (1.1.2)

uniquely determines a self adjoint operator on Fock space. The field
(1.1.2) is local, so that ¢(f) commutes with ¢(g) if f and g have space-
like separated supports. The field ¢ is space-time covariant. This means
that for a = (a, 7), there is an automorphism o, of the algebra of field
operators such that

a(e(f)=o(fa), (1.1.3)
(fax)=f(x—at—1).

The automorphism (1.1.3) is implemented locally by a unitary
operator [3].

Another desired property of ¢ is covariance under Lorentz trans-
formations, but this property was not established in [1-3]. Lorentz
covariance requires the existence of an automorphism o, of the algebra
of field operators, such that

aa(@(f)=o(f4)- (1.1.5)

Here f, is the function f transformed to the Lorentz frame moving at
velocity tanh §,

(f4) (x, )= f(x coshf —tsinh 3, t coshf — x sinh f3). (1.1.6)

The group of Lorentz transformations A=A, satisfies the multi-
plication law

where

Ag Ag, = Ay 1y, (1.1.7)
Acting on space-time, the Lorentz transformation is defined by
A(x, t) =(x cosh f + t sinh 5, t cosh f + x sinh f§) . (1.1.8)

In this paper we establish this Lorentz covariance. We prove the
existence of the automorphism ¢, of (1.1.5), and we show that ¢, is
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implemented locally by a unitary operator. Combining the spacetime
translation automorphism o, of (1.1.3) with the Lorentz automorphism
(1.1.5), we obtain covariance under the Poincaré group. In other words
the automorphism

Clady=0,04, (1.1.9)

is a representation of the Poincaré group,

Oa, M0, 4y = O(Aa’+a,44'} 5 (1.1.10)

T, (P(S) = 0(flaa) - (1.1.11)

In addition to the field operators themselves, it is convenient to
study bounded functions of the fields. We let B be a bounded region of
space-time, and 2[(B) the von Neumann algebra generated by

{ei?V): f = fe 6T (B)) . (1.1.12)
The C* algebra of observables U is the norm closure of
Up(B). (1.1.13)

In [2-3] it was shown that the algebras (B) yield a theory of
bounded observables satisfying all the Haag-Kastler axioms, with the
possible exception of Lorentz covariance. Our results here on Lorentz
covariance of the field ensure Lorentz covariance of the local algebras.
Hence our results show that the algebras 2(B) give a complete Haag-
Kastler theory in two dimensional space-time. The automorphism
04,4y 18 an isomorphism of A(B) onto A({a, 4} B).

We now explain the basic ideas which motivate our construction. One
would expect that an operator of the form

M =M, + 2§ :p*(x) xg(x)dx, g(x)=0, (1.1.14)

where g(x)=1 on a sufficiently large interval, is the infinitesimal
generator of Lorentz boosts in a bounded space-time region B. The
same physical ideas motivate the use in [1-3] of the locally correct
Hamiltonian,

H=Hy+ [ :¢*(x): g(x)dx. (1.1.15)
Here M, and H, are the self adjoint generators of Lorentz rotations
and time translation for the theory with no interaction, that is for the
case 4=0. One also expects that

[iH, M]=P"*, (1.1.16)

where P'° generates space translations in the region B. We would say
that P'° is a locally correct momentum operator. For a locally correct

19*
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momentum operator, we expect that
[iH, Pl°°]=R"*, (1.1.17)

where R is localized outside the bounded region B. Thus for
supp S CB,

[R™, o(f)]=0. (1.1.18)
These commutators lead to the equation
UM, o(f)]= —o(xfi+1f), (1.1.19)
which in integrated form states that
eMo(f)e” ™M =o(f,,). (1.1.20)
In other words, the putative Lorentz transformation
()= o(fa,) (1.1.21)

is implemented by a unitary operator that depends only on 8 and the
support of f.

In Section 2 we prove that it is sufficient to carry out the above
argument for space-time regions B lying outside the light cone, in the
region x> 0. For such a region B, we can replace M of (1.1.14) by

M=aH, + Ofi {n(x)* + (V)* (x) + m?@(x)?} : xgo(x) dx

5 2 B (1.1.22)

+ 4§ 0*(x): xg,(x)dx,
0

which formally generates Lorentz transformations in B provided that
o+ Xgo(X) = x = xg; (x)

for x in a sufficiently large interval of the positive x axis.

In Section 2—-6, we show that the formal ideas outlined above can be
made mathematically rigorous. We prove in Section 3 that the expres-
sion M of (1.1.22) defines a symmetric operator M on Fock space, and
in Sections 4-5 we prove that M is self adjoint. In Section 6 we prove
that M generates Lorentz transformations in B, by establishing the
covariance (1.1.19-20).

In order to define and gain quantitative control over the operator M,
and the other operators involved, we estimate the kernels of certain
Wick ordered monomials in creation and annihilation operators. In
[1-3], kernels are estimated with #? norms. Such norms are insuffi-
cient for our problem, and we find it convenient to introduce ¥* — ¥*
norms on the kernels. For these new norms we find estimates that
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yield Fock space operator inequalities. We use these inequalities, along
with other inequalities, to define (1.1.22), to prove that M is self adjoint,
and to establish (1.1.19-20) as a mathematically rigorous theorem. The
results of Section 2 then ensure Lorentz covariance of the theory of the
algebra of local observables 2.

In this paper we do not consider Lorentz invariance of the vacuum
state of [4], or other questions concerning the physical representation.
The results of this paper combined with the results of [4] show,
however, that g, 4 is locally implemented in the physical representation
by a unitary operator.

An important feature of our proof is the use of operator inequalities
of the form

HIN’/~* < const(M + by, (1.1.23)

for j = 2, proved in [10] and in sections 4—5. Formal perturbation theory
suggests that (1.1.23) hold for the 1(¢*"), quantum field theory, although
somewhat weaker estimates are proved in [10]. We remark that with
higher order estimates established for the A(¢>"), models, n>2, our
method should ensure Lorentz covariance for these theories.

1.2. Notation

We work on Fock space &, the Hilbert space completion of the

direct sum
o0

Z, . (1.2.1)
n=0

The vectors in the n particle space &%, are represented by the
symmetric functions in #%(R"). We use the standard notation for
creation and annihilation forms on %. A summary of mathematical
properties of these bilinear forms and operators on Fock space is
given in [4, Section 3.2]. We use the domain 2 of smooth vectors on
Fock space,

2 ={y:peZp"e LR, p™ =0 for n sufficiently large} . (1.2.2)
Here #(R") is the Schwartz space of rapidly decreasing €* functions with
rapidly decreasing derivatives of all orders. The annihilation operator
a(k) 1s defined on the dense domain & by

(atyp)r Dk, ..k, ) ="k, ky, ... k,—y), (1.2.3)

and the creation form a(k)* is defined on 2 x & as the adjoint of a(k).
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The time zero field ¢(x) and its canonical conjugate n(x) are #(R")
(1.2.4)

valued forms on 2 x & defined by
@(x)=(4m)* [ e~ a(k)* + a(—k)} u(k)~* dk,,
(1.2.5)

and
n(x) = i(dn)~* [ e " {a(k)* —a(— k)} g(k)* dk

%, The Wick powers of the time zero fields
are also #(R') valued bilinear forms on

where u(k) = (k* +m?)
ro ()", ()", (P ()
2 x 9. The Wick powers of the field ¢ are defined by
s =(@n) Y, (f)fe"f*"“*"’“‘")
j=0
'li(k1)_% “e ﬂ(kn)_%a*(lﬁ) a*(kj)
a(—kjiy) ... a(—=k,dk, ... dk,.

(1.2.6)

The Wick powers of & and Ve are similarly defined and the Wick dots :

are extended to polynomials in ¢ and = by linearity.
(1.2.7)

The free Hamiltonian H, is defined by
Hy=3[:m*+ (Vo) + m*p*dx

= Ja(ky*a(k)u(k)dk .

The interaction energy density T;(x) for our theory is
(1.2.8)

T(x) = 4:0(x)*, Ai>0.
(1.2.9)

We also use the number operator
N = (a(k)*a(k)dk ,

(1.2.10)

the fractional energy operators
N, = fa(k)*a(k)u(ky dk ,

and the momentum operator
P = fa(ky*a(k)kdk . (r.2.11)

The operator N, and P are essentially self adjont on 2.
The locally correct Hamiltonian
H(g)=H,+Ti(g), 9¢()20, ge%q, (1.2.12)

is self adjoint and essentially self adjoint on 2(H32) [1-2].
Let I = [a, b] be a bounded interval in R'. The causal shadow of I
(1.2.13)

is defined as the region B, C R?,
{x,t):a+tl]<x<b—|t]}.
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If g(-) of (1.2.12) equals one on I, then H(g) is a correct A(¢?*
Hamiltonian for B,. In fact, for (x, t) € By,

o(x, 1) = " HO p(x)e 1HO (1.2.14)
is a solution of (1.1.1) and is independent of g(-), see [3]. If
f=/fe®F(B)), the bilinear form

e(f)=fox 1) f(x, t)dxdt

uniquely determines a symmetric operators on the domain Z(H(g)),
and ¢@(f) is essentially self adjoint on this domain [3]. The bounded
functions of these self adjoint operators ¢(f) generate the local von
Neumann algebras U(B) described in Section 1.1.

2. Lorentz Covariance
2.1. The Main Results

Let 4 be the restricted Poincaré group of transformations of two
dimensional space-time. For {a, A;} €%,

{a, Az} (x, 1) = (x+ xcoshf + tsinh B, t + tcoshf + xsinh B) . (2.1.1)
On functions f(x, t) we define
(f{a,A}) (X, t) = f({aa A} -t (X, t)) . (212)

We prove that the field ¢ of the (¢*), theory is Poincaré covariant
in the following sense:

Theorem 2.1.1. Let B C R? be a bounded set and let {a, A} € 4. Then
there exists a unitary operator U on & such that for all fe %5 (B),

Up(f)U* = €D(f{a,A)) . (2.1.3)
This equality holds in the sense of self adjoint operators.
In the case of space time tranmslations, A =1, Theorem 2.1.1 is
proved in [3]. In this case,
Ua; B) = e PeeitH@ (2.1.4)
where g(-) =1 on a sufficiently large set depending on a and B.

We remark that it is sufficient to prove Theorem 2.1.1 for pure
Lorentz transformations {0, A}, since

{a7 A} = {a7 I} {0> A} s (215)

and {a, I} is implemented by an appropriate unitary operator (2.1.4).
Using Theorem 2.1.1, we define a norm preserving map

0,y W(B)—>UA({a, A} B) (2.1.6)
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by
Oan(A)=UAU*, AeUB). 2.1.7)
Since
UeltVIU* = el (2.1.8)

the mapping (2.1.6) can be defined on all generators of A(B) and it
yields generators of ({a, A} B). Furthermore, all the generators of
A({a, A} B) are obtained in this manner. Since the mapping (2.1.8) is
unitarily implemented, it extends to a =-isomorphism of the von Neu-
mann algebras A(B) and W({a, A} B). Furthermore if U and U, are
two different unitary operators satisfying (2.1.3), then

U Uo(f)U*U, = o(f), (2.1.9)

so that o, 4 of (2.1.6) is well defined, and independent of the
particular choice of U satisfying (2.1.8). In this manner g, , is
defined as a norm preserving *-automorphism if the algebra

U A(B), (2.1.10)

and hence extends by continuity to a star isomorphism of the C* algebra
of local observables . Finally the mapping

{a, 4} -0y, 4 (2.1.11)

is a representation of 4. To prove this, we note that

O-{a1,A1}(O-(a2,A2} (exp(i(p(f))) = Ofay, Ay} (exP(iQD(f(az,Az;)))
= eXpU@((ﬁaz,A;}){m,Al}))
. = Olay, 40 a2, 42 (KPR (1))
since

(f iz, a)an, 46 D) = fiay apy({ar, 43710, 1)
= f({ay, A2} Hay, 4} 7Hx, 1)
= f(({ala Al} {a29 AZ})_X(xr t))

= f{au/‘l) (aziAz)(x’ t) .

(2.1.12)

Hence we obtain

Corollary 2.1.2. There is representation o, 4 of 4 by a group of
x-automorphisms of A such that

00,1 (U(B)) = A({a, 4} B).

This is one of the Haag-Kastler axioms for the algebra 2 of local
observables for the A(¢p*), model. We note that the automorphism
O is implemented on A(B) by the unitary operators U of
Theorem 2.1.1.
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Remark. We will construct operators U = U({a, A};B) in The-
orem 2.1.1 with the following continuity: For {a, A} in a neighborhood

of an element of ¢4, U({a, A}; B) can be chosen strongly continuous in
{a, 4.

2.2. Reduction of the Problem

In this section we reduce the proof of Theorem 2.1.1 to the form
that we analyze in the remainder of the paper.

Lemma 2.2.1. 1o prove Theorem 2.1.1 it is sufficient to establish the
following: Let A be a pure Lorentz transformation and let B CR?* be
a bounded subset of R* with closure in {x>|t|}. Then there exists a
unitary operator Uy on & such that for all fe €3 (B),

Uip(f) Uf = o(f4)- (2.2.1)

Proof. In Section 2.1 we observed that it is sufficient to prove
Theorem 2.1.1 in the case of pure Lorentz transformations. Let A be a
pure Lorentz transformation and BCR? a bounded region. Then a
suitable space-time translation {a, I} € ¢ exists such that

(a,I}B"CS, ={(x,0):x>t]}, (22.2)

where B~ is the closure of B. By hypotheses of the lemma, for
supp f CB,
Suppf{a,l) C {as I} B C S+ s

and there exists a unitary U, such that

U1<P(f{a,1;) Uf = <P((f{a,1;)<o,/1)) = q)(f{/la,A}) (2.2.3)

by (2.1.12). As discussed in Section 2.1, space-time covariance was
established in [3] and the space-time translations are implemented in
bounded regions by unitary operators in Fock space, namely (2.1.4).
Let U(a) and U(—Aa) be the unitary operators implementing space-
time translation by a and — Aa in the convex hull of

BuABu{a, I} BuA({a,I} B).
Then
U(—=A4a)U, U(@) (f)(U(—Aa) U, U(a))*
=U(-4a) U, U@ p(f)U(a)* UfU(— Aa)*
= U(=A0) U, fiq ) UF U(~ Aa)*
by (2.2.3)
= U(_Aa)qo(f{Aa,A}) U(—Aa)*
=o(f4).
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Thus the operator
U=U(-Aa)U;U(a)

is the operator U required by Theorem 2.2.1, and the proof of the
lemma is complete.

Corollary 2.2.2. To prove Theorem 2.1.1, it is sufficient to establish
Lemma 2.2.1 for regions B'C R* such that

B'UAB CB, (2.2.4)

Jor the causal shadow B; of a closed interval 1 of the right half line,
{x>0}.
Proof. Given B and A, we can choose a space-time translation
{a, I} such that
{a,}B=B’

satisfies (2.2.4) for an appropriate B;. We now follow the proof of
Lemma 2.2.1.

We remark that the advantage of performing the Lorentz boost
in the causal shadow of I C{x>0}, is that a positive operator M can
be used to generate the Lorentz transformation. This operator will be
introduced and studied in the following sections. The positivity of M
allows us to use known techniques [2] to study the self adjointness
of M. In Theorem 6.1, we prove that there is a unitary operator

U, =M

satisfying the hypotheses of Lemma 2.2.1 and Corollary 2.2.2. Hence
Theorem 6.1 completes the proof of Theorem 2.1.1.

3. First Order Estimates on the Local Energy Density
3.1. The Basic Inequalities

We estimate monomials in creation and annihilation operators in
terms of the operators N,,

N, = [a(k)*a(k) u(k)dk . (3.1.1)
We note that for t =1,

N.<H;,, and N2<HZ". (3.1.2)
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For our first estimate we consider the bilinear form
W = fa(k)y*w(k, p)a(p)dk dp (3.1.3)

where the kernel w(k, p) is measurable and |w(k,p)| is symmetric.
We define two #! — #® norms on the kernel w, which may be finite or

infinite
M, (7) = S}gpu(k)”t fiwk, p)ldp, (3.1.4)
M, (7) = Sgp#(k)“z‘ J Iw(k, p)lu(p)dp . (3.L5)

Lemma 3.1.1. If for some T, M1(1)<oo then W is a bilinear form
on the domain Z(N})x Z(N?), and N, *WN;* is a bounded operator

on F with
[N FWN ¥ < My (7). (3.1.6)

Remarks. a) The operator N, % is defined on the orthogonal
complement of the no particle vector. Since W equals zero on the no
particle vector, we define WN, * to be zero on the no particle
vector.

b) If £ = 1, then (3.1.2) ensures that

HyPWHG™? (3.1.7)

is a bounded operator with norm less than M,(1).

Proof. Since the bilinear form W commutes with the projection
onto vectors with exactly n particles, it is sufficient to prove that for n
particle vectors 1 € Z(N?), the following inequality of forms is valid:

l(w, W)l = M, (7)(, N:y) . (3.1.8)

The existence of a bounded operator satisfying (3.1.6) then follows by
the Riesz representation theorem.

(IP, WIP) = ”I@(Pa k2’ cero kn) W(pv Q)'P(qs kZ’ ’kn)dkdpdq

We use the Schwarz inequality in p and g,

lop, W)l < n | [p(p, k)* w(p, q)| dkdpdq
and by (3.1.4),

(w, W)l <n My (1) § lw(p, k)| w(p)* dpdk = M, (1) (w, N.y).

Lemma 3.1.2. If for some t,M,(t) and M,(t) are finite, then
W determines an operator on %(N,) such that WN_' is bounded with

[N S (M, (1) + M) = My(2) (3.1.9)
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Remarks. Since |w| is symmetric, N, !W is also bounded with a
norm less than M;(z). If t =1, WH © is bounded with a norm less than
M; (7).

Proof. As in Lemma 3.1.1, it is sufficient to prove that for n
particle vectors p € Z(N,),

<
We defin Wl < Ms(0) [N (3.1.10)
Cj=dky,....,dk, {fdpwk;, p) Pk, ....k;— 1, DjsKjurs ... k) (.1.11)
fdpwk, p)wky, oo ki, P ki, s kD))
and note that u
||W1P”2 = Z le‘

=1

Forj=1=1,and k =(k,, ..., k,), we have
— 2

< [dkdq(f dpiw(g, p)w(p, K)])*.
By the Schwarz inequality

Cj; < [dkdq(fw(g, p)ldp § ly(r, k)>w(r, g)dr)
by (3.1.4),

< M, (v) f dkdqdr pu(q) ly(r, k) w(r, q)|
and by (3.1.5),

< M (1) My(v) § dkdp u(p)** lp(p, k).

We also estimate Cj, for j=1[. Suppressing all but the essential
variables k;, p;, k, and p;, we have

|Cjzl = jdkjdkldpjdpl ]W(kja Pj) W(Pj, k)w(k;, p) w(ps, kj)l . (3.1.13)

By the Schwarz inequality in p, and (3.1.4),

ICl < M, (c) § dkdk,ulk,f" pk )" (§ wiky, p)w(ps, k)*ldp)?
~(§ ks, p)w(pi, kj’1dp)*
by the Schwarz inequality in k,
< M, (0)(§ dk;dk,dp;utk)) Iwik;, p;)w(p;, k))*)
and by (3.1.4)
< My (1) § dkydp;utk)) n(p)* lw(p;, ki)l
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Hence by (3.1.11)+3.1.13),
IWll? < M, (2) (M, (z) + (M,(7)) Idk( > ulk) 1)’Iw(k)12>

J.I=1
= Ml(Ml +M2)(lpa N‘t 1P)>

and (3.1.10) is proved.
We now let

W= f(a(k)*...ak)*wky,....k.;p1,....pJa(py) ... a(p)dkdp (3.1.14)

where w(k; p) is a measurable kernel. Let o <r, and define E.(k) by

Ec=p(ky) ... utk,) . (3.1.15)
Similarly, let f <s and define E,(p) by
Ej=p(py) .. plpy) - (3.1.16)
Let ML) = I wik, p)
Eckf™ Exlpy” (3.1.17)
wi(k, p)

|
Ec(k)"? E 4(py"? ll2

where ||v(k, p)|l,, denotes the operator norm of the kernel v(k, p) as an
integral operator from .#?(R®) to £*(R"). The norm | - [l op is dominated
by the Hilbert Schmidt norm |- |, .

We next give a lemma proved by Glimm [5, Theorem 2.4.3] for
the Hilbert Schmidt norm. We present it here with a direct proof.

Lemma 3.1.3. If M,(7) is finite for some a, f as above and for some T,
then W is a bilinear form on 2(N¥*>N°?) x (NP> N*?), where o+ =r,
f+e=s. Also

W=N"*2N"92WN-2N"F? (3.1.18)

is a bounded operator and )
W1 = My(7). (3.1.19)

Proof. Let Q,y be vectors with a finite number of particles and
wave functions in Schwartz space . Then, if Aq(k) = a(k,) --- a(k,) and

Ax(p) = alpy) ... alpy),
(©Q, Wy) = [ (Ac(k) 2, wik, p) As(p)y)dkdp,
and by the Schwarz inequality,

(@ WP < (J 14K @] - wik, p) - | Ax(p) vl dkdp)?
< M, (0)? [ Ec(lF | Ac(0) 211> Ex(p) | 45 () dkdp
< M, (0)? N2 NO2Q|12 - | NE2 N2 )2,
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The last inequality is proved as follows:
§ Ec(k) | Ac(k)Q||* dk

- z (14 1) o (14 D)ty ok, FIQOy Ky PE dK

I\

i j (Z u(k,)‘) (n -+ 112" ()2 dk

n=0 j=1

= |[N2N°2Q|2,
n+r a /n+r
since |Q"*"|? is symmetric and(Z uk ) (Z u(k )0) when expanded,

<
has /

’l (n+r)=(n+1)...(n+r)

¥

terms with all variables distinct. The existence of the bounded operator 74
now follows by the Riesz representation theorem.
Remarks. a) We could choose any ¢ and &, positive or negative,

satisfying ao+pf+0+e=r+s

In that case (3.18)-(3.19) are replaced by
(I +N) 92N *2WN_P2(I + N)~*?|| < const M,(7), (3.1.21)

where the construct depends on 4, ¢.

b) If the kernel w(k, p) is symmetric in the r creation variables or
in the s annihilation variables, the norm M,(t) may be infinite even
though W is bounded. For symmetric kernels and « <r or p<s, we
can use a polynomial E; of degree «. Let

Ec(a,t) = Ec(o, T3 ky s ..., k)
— !
= () bt

r!

(r—a)!
two of the i, ..., i, equal, and 1 £i;<r. In other words, Ec(a, 7) is the
average of those monomlals in the expansion of

(Z u(h)’)a

that are products of energies of distinct variables. If t =1, = r, then
E(a, t) = E¢. Similarly let

B0 = =S e

(3.1.22)

The sum > in (3.1.22) extends over the monomials with no
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By the same proof above, we obtain

Lemma 3.1.4. If o <r, p <s and for some 1,0
w(k, p)

Ec(o, 1) E(B, 0)

then W is a bilinear form on D(N¥?N°?) x D(N!2N®2) for any 6, ¢
such that oo+ f+ 6 + ¢ = r + 5. Furthermore

W=+ N) 2N “2WN; PN +1)~*? (3.1.24)

Ms(t, 0) = “ <o, (3.1.23)

op

is a bounded operator with
| W] < const M,(z, 0) . (3.1.25)

Remark. We note finally that w(k,, ..., k,;py, ..., py in (3.1.14) may
be a bounded operator on Fock space. In that case, we replace
w(k, p)l by |w(k, p)| in (3.1.17) or (3.1.23). The Lemmas 3.1.3-3.1.4 are
still valid in the case o+ 0 =r, f+e=s. We require that w(k, p) be
measurable in the sense that for all Qe #, (Q, w(k, p) Q) is measurable.

3.2. The Energy-Momentum Density

The energy-momentum density tensor' T,,(x,1) for the @),
theory is a bilinear form on Fock space. The energy momentum vector
P, is formally related to T, by

P,=[T,,(x, t)dx, (3.2.1)

and the generator M of Lorentz transformations is formally related
to T,, by
M = § Tyy(x,0)xdx . (32.2)

The usual expression for the unrenormalized T,, is a Wick ordered
polynomial in the time zero canonical fields ¢ and . In this case the
Hamiltonian H = P, defined by (3.2.1) is a bilinear form, but it is a
semibounded operator only for free fields [6].

In this section we show that for the A(¢*), theory the integration
in (3.2.1) can be restricted to a bounded domain to yield a local energy
or momentum operator on Fock space. The local version of (3.2.2) can
be handled similarly. It is customary to write T,, as the sum of a free
field part and an interaction part. Explicitly, we write the energy density as

T(x) = Too(x, 0) = Ty (x) + Ti(x) (3:2.3)

! For a general introduction to the properties of the energy-momentum tensor
density, see for instance the book of R. Jost, “The general theory of quantized fields”,
Amer. Math. Soc. (1965), pp. 27-31.
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where
To (%) = 3 m(x)* + (Vo (x))* + m? o (x)*:, (3.2.4)
and
Ti(x) = 4 :0(x)* . (32.5)
For the momentum density,
P(x) =T, (x,0) =3 :1(x) Vo(x)+ Vo(x)n(x):, (3.2.6)

there is no interaction term.
In order to avoid problems caused by sharp spatial boundaries,

we consider
T(9)= | T(x)g(x)dx = Ty (9) + Ty(9) (3.2.7)
P(g)= [ P(x)g(x)dx, (3.2.8)

where g(-) is a real function in . (R'), the space of smooth, rapidly
decreasing functions. This is our local form of (3.2.1).

We establish here various properties of T(g) and P(g). We prove,
among other things that T(g) and P(g) are symmetric operators on a
reasonable domain. Since it is well known that the interaction term
Ti(g) is a symmetric operator, our result pertains to Ty(g) and P(g).
We expect that stronger results can be obtained. For instance we
expect that for g=0, the operator T(g) is bounded from below.
Thus we expect that it is possible to construct a physically acceptable
local energy that is affiliated with a bounded region of space.

We use different techniques to study the pure creation part of
T, (g) and the particle number conserving part of Ty (g). This is also true
for P(g). We estimate the particle number conserving parts with
Z* — #* norms and the pure creation parts with %2 norms. Thus we
define two separate parts for each.

For the local free field energy we write

and

To(9) = Ts"(9) + Ts™(g) (3.29)
where
R pulky) (k) + ke ky +m?
T5"(9) = Z;I glky —k2) { 1k, )* pulky)® } (3.2.10)
~a*(ky)a(ky)dk, dk,
and
R — kg ko) + kyky + m?
TP (g) = *8*1;;9(’(1 - kz){ pu(ky )t (ko) } (3.2.11)

Aa*(ky)a*(—ky) +a(—kp)a(ky)} dkydk, .
Similarly, for the local momentum we write

P(g) = PV(g9)+ P?(g),
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where
_ 1 ky ptky) + ko pulky)
P = g 0t~ PR (3212
-a*(ky)a(k,)dk dk,
and
o ky plks) — ko p(ky)
P = g k) [ (6213)

A —a*k)a*(—ky) +a(—ky)alk,)} dk, dk, .
Here j(p) = [ e P g(x)dx.

Theorem 3.2.1. The bilinear forms T,(g) and P(g) define symmetric
operators on D(H,). The following operators are all bounded

To(9)(Ho+D7',  Plo)(Ho+D7', (3.2.14)
(I+H0):iTo(g)(I+Hol_)%, (3.2.15)
(I+Ho) *P(g)I +H,) *,

TPgI +N)~', and PP (gI+N)~ 1. (3.2.16)

This theorem is an immediate consequence of the following two
lemmas and of Lemmas 3.1.1-3.1.3.

Lemma 3.2.2. The kernels of T *(g) and the kernels of P®(g) are
L? functions.

Proof. We first note that

pulky) pulkey) = kyky = 5 (ky — ko) — 5 (ulky) — (k) +
<3k —ky)? +m?,
SO
pulkey) ke ;) — ky ko, < comst u(ky — k). (3.2.17)

Using (3.2.17) we can bound the kernel of T§*(g) in (3.2.11) by

Gk, — k :u(kl):u(k2)’_ klkz1 B m2 }
st = [

< const|gi(k, — k)| ulky — ky)? uiky) ™ * p(k,) ™ *

const

(3.2.18)

which is square integrable since § is rapidly decreasing. Similarly, we
bound the kernel of P‘®(g) by using the following inequalities:

Iy plkes) = key (k)| < 2pky) k) < 2plky —ko)?, if kyky, <0, (32.19)

and
lky (k) — ko ik, = pulky) p(ky) — kykyy i kik, 200 (3.2.20)

20 Commun. math. Phys., Vol 17
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The inequality (3.2.19) is clear, while from
ky plko)l = pulky) plky)

lky u(ky)l = Lky ks

we derive (3.2.20) when |k, u(k,)| > lk,u(k,)|, and by symmetry it is
valid in general. Thus by (3.2.17) and (3.2.19-3.2.20),

lky (k) — ko (k)| < const u(ky —ky)*. (3.2.21)
Hence the kernel of P'?(g) in (3.2.13) is bounded by
kyulky) — ko piky) }
plky ) ulley)
< const [§(ky — ko)l ulky — ko) ulky) ™ F ulk,) ™%,
which is square integrable, as is (3.2.18).

Lemma 3.2.3. The kernel of T{"(g) and the kernel of P™(g) have
finite M| (z), M, (1) defined in (3.1.4)~3.1.5) for t = L.

Proof. Both the kernel of T{!(g) and the kernel of PM(g) are
dominated by

and

const

3k, — kz){

const|g(k, — ko)l ptky )? k) .
Thus

M, (1) = const supu(k) ™" §|g(k — p)| p(K)* p(p)* dp .
Since u(p)* < const u(k — p)* u(k)* and § is rapidly decreasing,

M, (1) = const sup [ |g(k — p)| u(k — p)* dp

(3.2.22)
< const.

Similarly, M,(z) is finite for ¢ = 1. This completes the proof of the lemma
and the proof of Theorem 3.2.1.

For the remainder of this section we define a momentum cutoff
operator T,,, and we establish properties of T, that will be useful later.
It is convenient to assume that

g(-)=h(-), h20, he #(R"), (3.2.23)
and we do this in the following. We will use the cutoff function
1 = -
Gilky, ko) = —— h(p — k) h(p — k,)dp (3.2.24)
T |p[sx

For k <0, G, (k;, k,) € #(R?), and
G, (ki ky) = gilky —ky) . (3.2.25)
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We define

To(9) = T5(9) + T57(9) (3.2.26)
by replacing §(k, — k,) in the kernels of T§"(g) defined in (3.2.10)+3.2.11)
by G,(ky,k,). If x < oo, then the T§)(g) have #? kernels and so T, (g)
is essentially self adjoint on 2(N), since vectors with a finite number of
particles are analytic vectors. We write

To(9) = Tox(9) + 0 Tok(9) » (3.2.27)

defining 6 T,,, and similarly we define 6 T§(g).
Theorem 3.2.4. a) The bounded operators

ST +Hy)™ and (I+Hp) TN +Hy) ™t (3.2.28)

converge strongly to zero as K —c0.
b) The kernel of 6T§¥(g) has an ¥* norm that is O(x %) for any
e <. Thus
16T (@I +N)"H 079, £<3. (3.2.29)
c) Ask— o0,
(I + Ho) "0 Tou(g)I + Ho) | S O(x71). (3.2.30)

Proof. a) We note that the kernel of §T§} has bounded norms
(3.1.4)«3.1.5) for T = 1, and these bounds are uniform for x < co. Thus the
operators (3.2.28) are uniformly bounded, and it is sufficient to prove
convergence on a total set of vectors, namely vectors in 2(H,) with
exactly n particles. It is sufficient to prove the strong convergence of
S8 T{Y on this domain. For y an n particle vector in 2(H,),

I(é T(g%()lp) (kl LR ] kn)lz

: 4 . ulky) (@) +k;q +m? }
= dpfdgh(p—k)h(p— ! Y
jgl Ip'j;k pidgh(p~k)h(p q){ ulk;)? u(g)?
2
'w(kl,...,kj_l,q,kj+1,...,kn)
. (3.2.31)

< const

——

Y | dpfdqlh(p—k)h(p—a)

Jj=11p|>x

2
k) 1@ (ks .. ...,km} .

The right side of (3.2.31) is monotonically decreasing as x —oo. Since

wla)* = constu(p — k)* u(p — 9)* plk)*,

and since 7 is rapidly decreasing,

wk, q) = [ dplh(p — k)h(p — @) u(k)* u(q)*

20*
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is a kernel with finite norms (3.1.4)«3.1.5) for t=1. But the right
side of (3.2.31) has the form (W |y|)? where |p|€ Z(H,) since 1 is.
Hence by Lemma 3.1.2, the function Wy| is #? so that (3.2.31) is
uniformly bounded by an #* function. By the dominated convergence
theorem, the integral of (3.2.31) tends to zero as k — oo, which completes
the proof of strong convergence.

b) The kernel of 6 T§2)(g) is bounded by

w(k, p) = const u(k — > u(k) *pu(p)™* | lhlq—k)h(g—p)ldg. (3.232)
By (3.2.20) we write .
p(k)~* = constu(p)~“ uk — p),
pk —p)*** < const u(q — k)* " (g — p)**,

pu(k)™*** < constu(q)™* "t u(g — k¥ 7%
Then

w(k, p)| < constutk —p)~ u(p)~* ¢
[ dqlh(q—k)h(g— p)u(q — k) plg — p)* o plg) "2

lgl>x
< const ()" e ke — ) u(p)
’ j dq [il(q —k)il(q —p)lulg— k)%‘u(q _p)3 +e

lgl>x

We can now use the Schwarz inequality in ¢ and the rapid decrease of i
to bound the integral over g by a constant. Thus

ik, p)| < constO(<~* (k= p)~* u(p) ¢ 7,

which is #? for any ¢>0, and has an ¥? norm that is O(x~**¢) for
any ¢>0. This proves statement b of the theorem.

c) The proof of this estimate is carried out by estimates on the
kernels of 6T{(g) and 6T{?(g). The estimate on the kernel of
6 T§H(g) is similar to the above, but we estimate the #* norm of
wik, p) (k)™ * u(p)~* for the w of (3.2.32). We then get an #? norm
that is O(x~#*%), and Lemma 3.1.3 in the case a =2, § =0, 7 =1 for the
creation part or a =0, f = 2,7 =1 for the annihilation part yields

I+ Ho) ™ 6 TG (I + Ho) 7'l < O™ * 7). (3.2.33)

The estimate on the kernel of 5 T§")(g) will be made with the norm (3.1.4).
We find that M, (z = 2) is O(k"!), so that by Lemma 3.1.1, and remark b
following it,

IHs ' T§(9) Ho ' £ O(x™Y). (3.2.34)
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We now prove this estimate on the kernel of 6 T{Y. The kernel of
5 T§(g) is dominated by

w,(k, ¢) = constu(k) u(q)t | Ih(p—k)h(p—q)dp,

Ip|>x

Fwelk, q)dg < constu(k)® | |h(p—k h(p— g

|pl>x
~u(p—k)* u(p— q)* u(p) ' dpdq
< constu(k) " uk)® | |h(p—k)h(p—q)

Ipl>x
u(p — k) pp — q)* dpdq
or by the Schwarz inequality
fwylk, 9)dg < constu(x) ™" u(k)*.

and

Thus
supu(k) 2§ wilk, )dg < Ok ™),

which completes the proof of (3.2.34) and the proof of the theorem.
It is convenient to write Ty, (g) and 6T,,(g9) in another form. We
define the following operators with %2 kernels on the domain 2(N?).

B,(p) = % § h(p — k) (k) alk) di (3.2.35)
- \

B,(p) = ﬁ Fh(p— k) kuk)~*a(k)dk (3.2.36)

By(p) = jh(p kymu(k)~*a(k)dk . (3.2.37)

Then for g = h?, and k < o0, on the domain Z(H,),

T$Ng) = f i B;(p)*B;(p)dp, (3.2.38)
and e
STHg) = —;— ;pL ) ii B;(p)*B;(p)dp . (3.2.39)
We also define
Ai(p) = {B (p)+ Bi(— p)*} i=1,2,3, (3.2.40)

which are also operators on Z(N?). Note that

[4i(p), Ai(p)*]12(N)=0. (3.2.41)
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The operators A,;(p) are related to the operator T, (g9) without Wick
ordering. For k < oo, define
3

T,(9) = Y f A, (p)*A;(p)dp=0. (3.242)

i=1 —x

An easy calculation shows that

TOK(g) = Tox(g) - (QOa Tox(g) QO) (3243)
where €, is the no-particle vector. Since
(2, Toxl9) 20) = § Gulp: P)u(p)dp (3.244)

where G, is defined in (3.2.24), we have for k <o that T, is bounded

from below and
Ty + § Gilp, p)(p)dp 2 0. (3.2.45)

Theorem 3.2.5. Let ¢>0 and g, g, be positive as above. Then there
is a finite constant b such that on 9(H3) x 2(H3),

0T{Ng) =0, forall 0<k <0, (3.2.46)
eN+Ty(g)+b=0, (3.2.47)
eN+Tig)+b =0, (3.2.48)

and
eN + Ty(g)+ Ti(gy) +b = 0. (3.2.49)

Of course these inequalities are also valid with H, in place of N.

Proof. The positivity of § T{!)(g) is a consequence of the representation
(3.2.38). In order to prove (3.2.47) we write

eN + To(g) =N + 0 Tg2(g) + 6 T3 (9) + Tou(9) -

Since 6 T is positive by (3.2.46) and T, (g) is bounded from below by
(3.2.45), we need only prove that e N +  T§?(g) is bounded from below.
By Theorem 3.2.4b, the #? norm of the kernel of § T{2 is O(x~ #). Thus

IT+N)"FTRAHUI+N)"# 0(™) (3.2.50)

and for sufficiently large «, (3.2.50) is less than ¢. Hence e¢N + 6 T{2(g)
+¢2=0, and (3.2.47) is established.

The bound (3.2.48) is the semiboundedness result of Nelson [7] and
Glimm [8]. Although they proved that ¢H, + T;(g,) is also bounded
from below, the same proof can be carried through with N replacing H,,.
Combining (3.2.47) with (3.2.48) yields (3.2.49).
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4. Second Order Estimates

In Section 3 we proved mainly linear estimates on the operators
T(g9) and P(g), the local energy and momentum. In this section we
prove estimates that are quadratic in T(g). These estimates give us
better control over T(g) and are an essential ingredient for the self
adjointness proof of the next section.

The main result of this section is a second order estimate on
operators of the form

Hy + To(go) + Ti(91) 4.1)

where g, and g, are spatial cutoffs satisfying (3.2.23). For g, =0, such
an estimate was proved in [1], see also [2, Proposition 1].

Theorem 4.1. Let ¢ > 1. Then there is a constant b <oo such that for
all0 S p <1,
(Ho +1)* + f* Ty (go)* + Ty(g:)* < c(Ho + BTy (go) + Tilgy) + b, (4.2)

as a bilinear form on 2(H3) x 2(H?).

We remark that each operator H,, Ty(g,), and Ty(g,) is defined
on 9(H3).

Lemma 4.2. Let ¢ >1 and ¢> 0. Then there is a constant b < oo such
that
To(9)Ho+ HyTy(g) = —eHg — b (4.3)
and forall0 B <1,

(Ho +1)* + B> Ty (9)* < c(Ho + BT, (g) + ) (4.4)

as bilinear forms on 9 (H,) x Z(H,).
Proof. We expand (H, + BT, (g) + b)* to find

(Ho+ BTy (9)+b)* = (Ho +1)* + B> Ty (9)?
+20=D)(Ho+1+ 4, To(9)+2(b—1) (45)
+ B(Ho To(9) + To(9) Ho) + 3 (b —1)%,
where B, = Bb(b—1)"'. For b sufficiently large, H, + B, To(g) + b/4 is
positive, for the proof of Theorem 3.2.5 gives an estimate that is
uniform for 0 <, <2. Hence it is sufficient to prove (4.3) to establish

(4.4, for if
HoTo(9)+ To(9)Ho Z —4eH5 — v, (4.6)

we choose ¢ and b so that

4e<1 and $b*>y+1.
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We write
To = To + O TSP+ S TEY, 4.7
and we prove (4.6) separately for each term in (4.7).
Using (3.2.40)—(3.2.45) we write
Ho Ty + Ty Ho = —2Ho [ G (k, k) (k) dke + Ho T+ To, Ho
= —¢H2 —const+ H, T,, + T, Ho

= ——8H(2) — const + 2 i f A(p)*HyA,(p)dp 48
+ Z f {[Ho, Ai(p)*1 4i(p) + Ai(p)* [Ai(p), Hol} dp .

i=1 —«x

Note that the kernels occurring in A;(p), 4;(p)*, [H,, 4;(p)] and
[Hy, A(p)*] all belong to F(R') for fixed p. The £* norms of these
kernels are uniformly bounded on compact intervals in p. Thus each
of these operators is defined on 2 (N?) and maps 2(H,) into 2(Hg). As
a consequence, each term in (4.8) is defined. Since

f Ai(py*HoAy(p)dp 20, 4.9)

we need only bound the commutator terms. By the above remarks on
the #? nature of the kernels, the operator

(I+Hy)™* f{[Ho,Ai(p)*]Ai(p)+A,~(p)*[Ai(P), H,J}dp( + Ho)™*

—K

is bounded for any x <o, so that

Mo

J {[Ho, 4:(p)*] 4;(p) + 4,(p)* [4:(p), Ho1} dp
2 const(H, + 1) (4.10)
= —¢H}— const.

1

I

i

Thus by (4.8)(4.10)
H, T, + T, H, = — 2¢ Hj — const, (4.11)

which is the contribution of T, to (4.6).

By Theorem 3.2.4b, the kernel of § T ?(g) has an #? norm that is
O(x™*). Hence

I+ Ho) ™" (Hod Tsy) + S Ts3 Ho)I + Ho) ™' S O(x™ %)
and for sufficiently large x,
Hy 0T+ 0T Hy = —e(HE+ 1),
which is the contribution of § Tg2’ to (4.6).
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Finally, for § T;L we write
Hyd TV + 0 TOVH, = 2H3 S TEVHS + [HE, [HE, 6 T]. (4.12)

By Theorem 3.2.5, the first term on the right of (4.12) is positive, and we
now study the double commutator. Since neither 6 T{Y) nor HZ changes
the particle number, we restrict attention to vectors e Z(H3) with
exactly n particles. Let 6t(k,, k,) be the kernel of 6 T{!(g).

Then

(p, [H§, [HE, 0T$ ] w)
—n [ Pleyy o k)0, kas .o k)t (e, D) AR Ky s ... ) dpdK, ... dK,,

where

(4.13)

Ap, ki, ks, k)

={(éu( )) (ﬂ(P)‘*‘ zu(k)) } i

:(i #(’ﬂ‘)) 1+i(lj_)_ﬂ_(k*1) 5_1 2'
' (Z u(k)

If u(p) — n(k,) = 0, we use the inequality for x =0

T+xp—-1<4x
10 prove

ﬂ,(p, kl LA ) é?lt(#(l?)—ll(kﬁ)z (415)
k),

Since A(p, ky, ..., k,) = Alk;,p, .. the bound (4.15) is valid for all
D,k k,. Since

lu(p) — u(ky)| < constu(p — k),
we have

Ap,ky ... k,) < const u(p — ky)*. (4.16)
Suppressing the variables k,,...,k, in (4.13) we have by (4.16), the

>n

Schwarz inequality, and the symmetry of |w(k, p)|,
(. [H3, [H3,0 T5. 1] w)l
< constn [ |yp(k,)* 6t(ky, p)| u(k, — p)* dp dk; .
As in the proof of Theorem 3.2.4, the kernel 6t(k,, p) is dominated by
const|§(k, — p)l u(ky)* u(p)*.
Thus we have the ' — #* estimate
§10t(ky, p)l uik, —p)*dp < constu(k,),
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and so, by Lemma 3.1.1,

\(w, [H§, [HE, 0TS ()11 )l
< constn { [p(k,)*| u(k,) dk,
= const(yp, Hyp)

< 2
Thus for (4.12), < (w, (eHj + const)y).

Ho 0T+ 6 TVH , = 2HES TV HE — e HE — const
> —¢H% — const.

This establishes (4.6) as an inequality on D(HZ) x Z(H}). It extends by
closure to Z(H,) x 2(H,), and this completes the proof of the lemma.
We remark that these methods can be used to prove that

Wiz, n)=(ad Hy"(T{"g), =1, n=1,23 ...,
is an operator on %(H,), and that W(t,n)Hy ' is bounded.

Lemma 4.3. Let ¢ >0 and x < oo. Then there exists a constant b < oo
such that on Z(H}) x 9(H3),

TiTo+ To 1 2 —e(H5+ T —b. (4.17)
Proof. Using (3.2.40)—(3.2.45), we have the identity

T, To. + To Ty = — const T+ T; T, + To Ty
3 K
= —constT; + Z | {A:(py* TLA(p) + Ai(p) TLA,(p)*} dp
L T (4.18)
f p), [A:(p)*, Ti1]

“M‘“

+ [Ai(p)*, [4i(p), T} dp,
which follows from
B(AA*+ A*A)+ (AA*+ A*A)B=2ABA* +2A*BA+[A,[4* B]]
+[4*,[4, B]].

We give a lower bound on each term on the right side of (4.18).

Clearly for any ¢ >0,
—const T; = — ¢, T — const .

Furthermore, by (3.2.48), for ¢, > 0,

Ai(py* T1A,(p) + Ai(p) L A,(p)*

4.19)
= — const A;(p)* 4;(p) — e, {A4:(p)* NA(p) + Ai(p)NA;(p)*} . (
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By the remarks following (4.10) on the #? nature of the kernels
occurring in A4,(p), we have for |p| <k <00, and any &3>0,

— const 4;(p)* A;(p) = — const(N + I) = —e;H3 —const,  (4.20)
and
— & {4;(p)* NA;(p) + Ai(p) N A;(p)*}
= — g, const(N + I)? 4.21)
> —¢,const(H2+1).

Thus we can choose ¢, ¢,, &5 sufficiently small so that after summing
(4.19)+44.21) over i and integrating over |p| <k, we obtain for (4.18),

1
TiTo+ To Ty 2 — > e(H?, + T?) — const

12 x

i=1 —x

We note that [A4;(p), [4;(p)*, T{]] and its adjoint are sums of second
order monomials in creation and annihilation operators with %2
kernels that have uniformly bounded #? norms for |p| <x. In this
interval of p,

(4.22)

[4:(p), [4:(p)*, Ti1] + [4:(p)*, [4:(p), Ti]]
= —const(N +1)
—¢; N* — const .

v 1

Thus by choosing ¢, sufficiently small, we obtain from (4.22) the following:
TiToe + To Ty = — e(H% + T?) — const , (4.23)

which is the desired inequality (4.17) and completes the proof.
Lemma 4.4. Given ¢ > 0 there exists a finite constant k, such that for
K> Kq
TOTE + TR T2 —s(Hy + T2 +1), (4.24)
as bilinear forms on P(H}) x D (HY).
Proof. For any ¢ >0

0y, T T < | Tiwll 10 TSR wll

1 1 (4.25)
< 2 (2),,]12
S5 el Trpll” + 3% 16 Toi vl .
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By Theorem 3.2.4b, § T{? has an .#? kernel with norm O(x~ *). Thus
for fixed ¢ >0,

1
55 19 TsRwl> <o) (N + Dwl* = o) I(Ho + 1) ?

< 2 (IHopl+ )
for k > Ky = Ky (g). Thus for K> K,
LTS+ 0Ts Ty = —e(Hg + TY) —
which completes the proof.

Lemma 4.5. Given any ¢ > 0, there is a constant ik, <oo such that for
>
K> K TOTH+6TVT, = —e(HE+ 1), (4.26)
as bilinear forms on D(H3) x Z(H3}).

Proof. We consider 6 T{Y as (3.2.39) and write
ToTs) +0T6)Ti= | Bi(p)* T;Bi(p)dp

Ipl>x
3

1
+5 Y [ ILBOIBG (42

i=1 |p|>k

+ Bi(p)* [Bi(p), TiJ} dp .

The integrals over p in (4.27) are absolutely convergent as weak
integrals of bilinear forms on 2(H}) x 2(H2). We note that for any
& >0,

3
Y. | Bp*TiBi(p)dp

i=1|p|>x (4.28)
z —¢ Z | Bip)*NBi(p)dp—b3 T,
i=1 |p|>«k
using (3.2.48). By Theorem 3.2.4c,
—bOTH =2 — Ok Y)(Hy+1)* = —¢,(HE+ 1), (4.29)

for x sufficiently large. Since the right side of (4.28) commutes with
the projection onto vectors with n particles, it is sufficient to bound it
below on such vectors. By Theorem 3.2.1, or Lemma 3.2.3,

M

§ (., B{p)* NB,(p)y)dp

1lpl>x

1

=2(n—1)(p, 6 TgYy) (4.30)
< const(n —1)(p, Hyp)
< const(y, Hay).
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Inserting the bounds (4.29)—4.30) into (4.28), we have for sufficiently
small ¢; and ¢,,

L1 BOPTBOME - S ED. 43D

Ipl>«k

We now use Lemma 3.14 to bound the commutator terms in
(4.27). We write out

/4
=y ( ) T, 432)
r=0 \V

T, = [ bky, ..., k) a*(k,) ... a* (k) a(—K,,1) ... a(—kg)dk  (4.33)

and .
Gilky + -+ ky)

bky,...,k)=c A —— 2% 4.34)
SRR A EAL (
for a constant c. Let us write B; of (3.2.35)+3.2.37) as
Bi(p) = [ h(p — k) by(k) a(k) dk. (4.35)
where we note
Let b)) < (k. (436)
1/4 N

W)= ] | B(pf*[Bip) Ti)dp

"tz 4.37)

= fw,ky, ..., kq;)a*(ky) ... a*(k)a(—k,,,) ... a(—ky)dk,

where w,, is the symmetrization in k, ..., k, of
—(Hrebith iy .. k)
2 \p TR - s (4.38)

- | dpidabiq)u@) Fh(p—k)h(p— q)d, (@ +ky + ks +ky) .

Ipl >«

Thus using (4.31) we write for (4.27)
1 3 4
TOTg + 0T T = — 5 (He+1)+ Z Y (W) + W, (1)%) . (4.39)
=1r=0

We will use Lemma 3.1.4 in the case of r creators, (4 —r) annihilators,
o=min(2,r), f=min(2,4—7r), t=1 and o =1 to prove that

INTCTIRHG 2, () Hy PPN~ S0 7)), 5<i. (440

Assuming this result, we have for all i and r,

I(Ho + D' Wy, () (Ho + 1) SOk ™7),  6<73.
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Exchanging o and B gives a similar bound for W, (k)*. Thus for
sufficiently large x, we conclude from (4.39) that,

LOTg +0Te) Ty =z —e(HS + 1), (4.41)
which is the desired bound (4.26).
We now estimate the kernel w;, of (4.38). Note that by (4.36)
[ dpidabia@ (@)™ *hp —k)h(p—4)gi(q+ Ky + ks +ky)

|pl>x
< | dpfdqlh(p—k)h(p—@)g,(q+ky+ky+ky)  (4.42)

|pi>x

< [ dplhp =kl (p+ Ky + ks + k),

|pl>x

where :
hy(p)= [ lh(p—q)d,(9)dq

is a rapidly decreasing function. Since for 0 <¢ =1,

1 = (const) u(p — ky) u(p) ™ pulkey ),
we have by (4.42)

[ dpjdqbi@) ul@)* h(p—k) h(p—q) §1(q + ky + ks + k)

[pl>x
< const u(k,)* j dp,u(p)_a,u(p—kl)gIil(p—kl)lhl(p+k2+k3+k4)
Ipl>x (4.43)

<constu(k, ()™ | uwp—kyflh(p—k)lhy(p+ky+ - +ky)

lpl>x
< constu(k, ) u(k)~*gy(ky + - + ky),
where .

g2 (k)= [ dp u(p) |h(p)| hy(p+ k), (4.44)

is a rapidly decreasing function (independent of k). Thus for w;,, the
symmetrization of (4.38), we have by (4.36) and (4.43)

Wi ky, ..., kg s 1)

4

< const p(x)~* ( z #(kj)l H) (u(ky).. 'H(k4))—% galky + -+ ky),

J=1

(4.45)

and this bound is independent of i and r.
In applying Lemma 3.1.4 with ¢=min(2,r) and f=min(2,4—7),
we have
250+ p=4.

Since Ec(x, 1) Ex(f, 1) is a homogeneous polynomial of degree o+ f
in the p(k,)s, the most favorable bounds occur with «+ =4 and the
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least favorable bounds occur with « + f=2. In any case

E= sup u(ky)pu(k; =const Ec(x, 1) E5(f, 1). (4.46)
i)
12i,js4

We note, as in [1, Section 2], that
uk)?* < const Eutk, + -+ +ky)

(4.47)
<const Ec(o, 1) EA(B, 1) uulky + -+ + ky) .

Thus by (4.45),

Wik, ..., kg K]
(Ec(o 1) Ex(, D)

< const ()" (z:ukr)uw> k) (448)

ke k) galky k)

Since g,(k) is rapidly decreasing, the right side of (4.48) is square
integrable for ¢ < 5. Thus

wi (ke .., ks k) 1
Ec(o, 1) EA(ﬁ DF 2’

and by Lemma 3.1.4, (4.40) is valid. This completes the proof of the
lemma.

Proof of Theorem 4.1. We expand

(Ho + BTo(go) + Ti(gy) + b)*

=(Hy + BTo(g0) + 3b)* + Ti(g1)* + b(Ho + BTo(g0) + 2 Ti(gy) + 3b)  (4.49)
+§b* + Ti(gy) (Ho + BT (g0)) + (Ho + BT5(90)) Tilgy) -

Given ¢>0 and b sufficiently large, Lemma 4.2 ensures that the first
term on the right of (4.49) is greater than

(1 =) (H§ + B* Ty(g0)*) - (4.50)

Furthermore, for b sufficiently large, the proof of Theorem 3.2.5 ensures
that for0<p <1, s
Hy+ BTo(g0) +2Ti(gy) + 50 20. (4.51)

Hence to prove the theorem it is sufficient to prove that for b
sufficiently large, the last three terms of (4.49) satisfy

Lb% + Ti(g,) (Ho + BTo(g0))
+ (Ho + BTo(g0)) Ti(gy) = —e(HE + Ti(g,)?) -

S0k, e<

(4.52)
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We write T, =Ty, + T2 +5T§Y. Then by Lemmas 4.3-4.5, for b
sufficiently large,

160° + Ti(91) To(go) + To(90) Ti(g,) Z —e(Hg + Tilg1)?) . (4.53)

Hence we need only prove that for large b,
16b% + (Tig1) Ho + Ho Ti(9y)) Z —¢Hg - (4.54)
We expand
T,H, + H, T;=2H; T,H3 + [ H§, [Hg, T] -
Using (3.2.48),
T,Hy + Hy T, = —e HZ — const + [ Hg, [HE, T{]] ,
and by [1, Theorem 2.1]
[H§, [H§, T]] = —eHj — const,

which proves (4.54). Alternatively, a proof of (4.54) could be obtained
by writing

TiH, + Ho Ty =2 { a* (k) Tra(k) (k) dk
+ J{LT;, a* (k)] a(k) + a* (k) [Ty, a(k)]} (k) dic

and using the methods of the proof of Lemma 4.5.

5. Self Adjointness and a Fourth Order Estimate

In this section we study the operator
M =aH,+ Ty(go) + Ti(91) (5.1)

where a>0 and g,, g, are spatial cutoffs satisfying (3.2.23). We prove
that M is self adjoint and is essentially self adjoint on many reasonable
domains. We can then use the spectral theorem to define operators
M" n>?2, and we prove an estimate for M*. It is sufficient to prove
self adjointness for the case a=1, since o 'g, and a 'g, also satisfy
(3.2.23). In Section 6 we make special choices for «, g, and g;.

The proof of self adjointness of M relies on the following lemma.
It concerns an operator B, relatively bounded with respect to A, with
an A-bound greater than one.

Lemma 5.1. Let A be essentially self adjoint on the domain
2(A) and let B be a symmetric operator on PD(A). If there exists a
constant a such that for all ye 9(A) and all 0 S <1,

Byl =a{(A+pB)yl, (5.2)
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then A+ B is essentially self adjoint on 2(A), and its closure has
domain 9 (A").

Proof. Let 0=y <1 and g, >a. Then ya; 'B is a Kato perturbation
of A. For pe 9(A), =0,

lya;y 'By| <Ay, &<1.

Thus by [9, page 288], 4 + ya; ' B is essentially self adjoint on Z(4) and
the domain of its closure is Z(4 ). Thus by (5.2) with f=a; !, we have
that ya; ' B is a Kato perturbation of 4+ a; ' B. Hence 4 +a; (1 +7)B
is essentially self adjoint on Z(A4) and its closure has domain Z(4 ).
Continuing in this manner, for any integer j satisfying ja; ' < 1, we prove
that ya;'B is a Kato perturbation of the essentially self adjoint
operator 4 +ja;'B, so that A+ a;'(j+y) B is essentially self adjoint
on Z(A) and the domain of its closure is 2(4 ). By choosing the largest
such j, we have for some 0 <y <1,

a'j+p=1, (5.3)
and so we establish the essential self adjointness of 4 + B.

Corollary 5.2. Let A and B be as in Lemma 5.1. Then A and
A+ B have the same cores. If A is bounded from below, then A+ B is
bounded from below.

Proof. If B is a Kato perturbation of 4, the corollary is valid. The
proof of Lemma 5.1 exhibits A+ B as a finite number of successive
Kato perturbations, and yields the corollary.

Theorem 5.3. Let a>0 and let g,=h?, h;e #RY), h;=0, for
=01 Then M =aH,+ Ty(go)+ Tiig) (5.4
is self adjoint on 2 (Hy) N\ 2(Ti(g,)) and is essentially self adjoint on € *(H,).

Proof. We let a=1. Let

A=H,+ Tg))+D,
B=T,(go).

We choose b sufficiently large so that 4>1. From [1, Theorem 4.1],
we known that A4 is self adjoint on 2(Hy)n2(Ti(g;)) and that A4 is
essentially self adjoint on €*(H,). Let 2(A) =%~ (H,). The inequality
(5.2) is proved as follows: By Theorem 3.2.1, namely the boundedness
0f (3.2.14), || Ty (go) wll < const |[(Hy + I) | . By Theorem 4.1, if ¢ >1 and b
is sufficiently large,

[(Ho + 1) wll S cli(Ho + BTo(g0) + Tilgy) + b) wll
forall ,0<p<1.

21 Commun math Phys., Vol. 17

and
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Thus for p € 2(A)=€*(H,),

1T6(go) vl = const||(Ho + BTo(g0) + Ti(gy) + b) wll »

which is (5.2). By Lemma 5.1, M is essentially self adjoint on €*(H,),
and M is self adjoint on

P(Ho)n2(Ti(g)=2(A4).

Corollary 5.4. The operator M of (5.3) has the same cores as the
operator a Hy + Ti(g,).

Proof. We use Corollary 5.2.

We now prove a fourth order inequality for M of (5.4). Such an
inequality was proved for the case g, =0 by Rosen [10].

Theorem 5.5. Let M denote the self adjoint operator oH,
+ Tolgo) + Tilg,) for o and g; as above. Then 2(M?)C 2(H,N), and there
are finite constants b, ¢ such that as forms on 2(M?*) x 2(M?),

H2N?<c(M + b)*. (5.5)

Proof. We will prove that 2(NM)C 2(NH,) and that there are
constants b, ¢ such that, for p e Z(N M),

INHowl =cl(N+ 1) (M +Db)y| . (5.6)

The inequality of Theorem 4.1 extends to Z(M)x Z(M) since by
Theorem 5.3, ¥°(H,) is a core for M and the operators involved are
closable. Hence 2(M)C 2(H ), so

DM?CDHM)CD(NM)CZ2(NH,),
and by (5.6) for new constants ¢;, ¢,, b; and yp e Z(M?),

INHopl = ¢ [(Ho+ 1) (M + b) v

5.7
S |(M+by)* 7

As a first step to prove (5.6), we establish that ¥*(H,) is a core for
(N 4+ I)(M + b), where b is sufficiently large so that M + b is positive.
It is sufficient to show that the range of (N + I) (M + b)I 4% (H,) is dense,
for this operator has a continuous inverse. Hence the closure of its
inverse is the inverse of its closure. Let &, denote vectors in Fock space
with a finite number of particles. By the proof of Theorem 4.1 of [1],
we have that ¥°(Hy) N2, is a core for « Hy+ T;(g,). Hence by Lemma
5.4, 1t is a core for M, so that

D, =M+ b)(¢*(Ho)n D)
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is dense. However every vector in &, is an analytic vector for N, and
hence 9, is a core for N. We conclude that (N + 1) 2, is dense; so
€*(H,) is a core for (N + I) (M + b).

It is sufficient to prove (5.6) for y belonging to a core for
(N + I)(M + b), so we show that as forms on ¥*(H,) x €*(H,)

HIN?*<c(M+b)(N+1?(M+b). (5.8)

We note that it is sufficient to establish (5.8) for & = 1, since the constant
o may be absorbed into g, g;, b and c¢. We let T=T,+ T; and note
that (5.8) is equivalent to showing that the following operator is positive
H3(N+1)?—c¢ 'HZN*+ T(N+1)* T+ T(N+1)> H,
+ Hy(N+D?*T+b(Hy+ T)(N + 1> +b(N+1)*(Hy+ T)
+ b3(N + I)?
=H3(N+I?—c *HiN*+ T(N+I1*T
+2b(N+1I)(Hy+ T+%b) (N + 1)+ 2b[N, [N, T1]+ T(N + I)* H,
+ Ho(N+1)?> T+ 3b*(N +I)*.

(5.9)

Note that for sufficiently large b,
T(N+I*T+2b(N+1)(Hy+ T+%b) (N + 1)
is a sum of positive terms. Also if ¢ > 3,
1HZ(N + 172 — ¢ 'HAN?*20.
Thus (5.9) is positive for large b if

and sb(N+1)*+[N,[N,T]]=0 (5.10)

IHXN+12+ T(N+ 12 Hy+ Hy(N+ 12 T+i0* (N +1)*20.  (5.11)

To establish (5.10), we note that [N, T§"] = 0. Hence [N, [N, T1] is a
sum of Wick ordered monomials of degree two or four with #? kernels.

Th
* (I+N)" [N,IN, T]] (I + N)"*
is bounded and (5.10) is positive for large b. To prove (5.11), we note

T(N+ I Hy+ Ho(N+1?T
=(N+D(THy+H,T)(N+ )+ [[T,N],(N+ 1) H,]
=(N+D(TyHoy+ HoTo)(N+ D+ 2(N+ D) H T, H}(N + 1)  (5.12)
+(N+D[H§, [Hs, TJJIN+ D+ [[T.N],N]H,
+(N+D[[T,N],H,].

21*
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By Lemma 4.2, we have for the first term in (5.12)
(N+D(TyHy+ HyTo)(N + 1)

(5.13)
> — LeHZ(N + 12— by (N + I)?

for any ¢>0 and for some b, <oo. The second term in (5.12) is
bounded below by using (3.2.48)

2N+ D HTH(N + 1)
> — ¢ HA(N + I)* = b, Hy (N + I)? (5.14)
> — LgH2(N + 12 — b(N + I)?

for any £ > 0 and some b = b(g).
In [1, Theorem 2.17 it is shown that for any ¢> 0 there is a b with

i [HS, [Hé, Tl = — $eHg b,
so we infer

(N+D[H [HE, TI](N+ D= —2eHIZN+ 12 =b(N+1? (515

Since [T, N] contains second or fourth order Wick monomials with

#? kernels,
(I+N)"'[[TLNIN]JUI+N)"'=4

is a bounded operator. Thus for y e ¢*(H,)

[p, [[T.NL, N]How)| = (N + Dw, AN + 1) Hoy)|
= const (N + Dyl (N + 1) How] (5.16)
S 7l Ho(N + D wl? + const [|(N + D) w||?.

Finally we analyze (N+I)[[T,N], H,]. We write T=T,+ T;, and
inspect these two terms separately. Let

[Ty, N1 = D¢+ D,

where D. and D, are respectively terms of the form (3.1.14) with
r=2,5=0 and with r =0, s=2. Each term has an .#? kernel. Applying
Lemma 3.1.3, we have that

Hy'[De, Hol and  [Dy, HolHy'
are bounded forms on €*(H,) x ¢*(H,). Thus
|y, (N + D [[To, N1, Ho] W)l < [(Ho(N + D)y, Hy ' [De, Hol )|
+ (N +Dw,[Dy, Ho) Hy ' Ho)|

< const (| Ho(N + D) | 9]l + (N + D]l [ Ho )
<del Ho(N + 1) ][> + const [(N + D) |,

(5.17)
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The remaining part of (N +1I)[[T, N], H,] contains the contribution
from [T}, N]. Let
Ti= T+ 0T,

where T, is defined as in (4.32)+4.34), but the kernel (4.34) is multiplied
by the characteristic function of {k;:lk|=<x,i=1,2,34}. Then
[[Tix. N1,H,] is composed of Wick monomials with #? kernels. As
in (5.16)

ip, (N + D) [T N Ho] )l < 52l Ho(N + D) ]2

+ const (N + ) p]|%. (5.18)

Using Lemma 3.1.4, we analyze the high energy tail,  T;,. It is a sum
of Wick monomials of degree four, and at least one variable k; is
greater than x in magnitude. By Lemma 3.1.4, and (4.47),

I+H) '[[6TNLHJU+Hy) ‘=W
is a bounded operator, and an estimate of the kernels of [[d T;,, N1, Ho],
as in Lemma 4.5 or [1] shows that
Wl <0(x™), t<j3.
Thus for sufficiently large «,

SOT)IWN+DHe+ Dyl IHo+ Dyl (5.19)
S Fe([Ho(N+ Dyl + [(N+ D y)?).

The inequalities (5.13)+5.19) dominate the various terms in (5.12).
Added together, they show that (5.12) is bounded by

T(N+I*Ho+ Ho(N+I)* Tz — e¢H3(N + I)* — const(N + I)2.
Thus (5.11) is valid for b sufficiently large and the proof of the theorem
is complete.

6. Local Lorentz Transformations
In this section we study the operator
M =oH,+ To(xgo) + Ti(xgy) . (6.1)

We impose certain conditions on «, g, and g, and we then prove that M
is an infinitesimal generator of local Lorentz transformations. We
assume the relations (6.2)—(6.4).

>0, xg,(x) = hi(x)% h(x)=0, h,e Z(R"). 6.2)
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On a neighborhood of an interval I = [a, b], we assume
o+ Xxgo(x) =x = xg;(x). 6.3)
For all x € R!, we assume
xgy (x) = (0t + xgo(x)) gy (x) - (6.4)

The conditions (6.2-6.4) are understood as follows. Condition (6.2)
means that M of (6.1) is an operator of the type dealt with in
Theorem 5.3. Therefore M is self adjoint and generates a one parameter
group of unitary transformations exp (iM f).

The condition (6.3) ensures that M agrees locally with the formal
Lorentz generator of (1.1.14) and (1.1.22), and thus M is formally a
Lorentz generator for the space-time region

B,={(x.0):a+t|<x<b—|t}. (6.5)

The condition (6.4) is satisfied if o+ xgy(x)=x is valid on the
support of g;. In other words the free part, a H, + Ty(xg,), is locally
correct on suppg;. This restriction is necessary for technical reasons,
because our methods rely on the possibility of defining certain
multiple commutators between H(g,) and M. The condition (6.4) makes
the required commutators densely defined operators, rather than
bilinear forms. After analyzing operators M satisfying (6.4), we show that
this condition can be dropped. (See Theorem 6.16.)

We also note that (6.2) implies that I lies in the positive half line.
Of course, we can also consider

M = —aHy+ Ty (xgo) + Ty (xdy) ,

where §;(x)=g;(—x). Thus M is a locally correct generator for
B, = B_,. Applying Theorem 5.3, we conclude that M is self adjoint, and
our proof of Theorem 6.1 is also valid for M. Thus the essential
limitation (6.2) is that we cannot use M to generate Lorentz trans-
formations inside or on the light cone. In Sections 2.1-2.2 we have
dealt with this problem, and we showed that it causes no difficulty.
Using space-time covariance, we can construct Lorentz transformations
in an arbitrary region.

Theorem 6.1. Let M satisfy conditions (6.2)—(6.4).
a) If f€ (R, supp f C B; and supp f,, C By, then

eMo(f)e” ™M = o(f4,), (6.6)

as an equality for self adjoint operators.
b) If (x,t) € B; and Ag(x, t) € By, then

eMPo(x, e ™MP = o(A4(x, 1)), 6.7)
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in the sense of bilinear forms on D (M)x D(M). These forms are
continuous in (x, t).

Remarks. a) In [3, Theorem 3.3.5] it is proved that for real
fe€T (R, o(f) is a self adjoint operator, essentially self adjoint on a
variety of explicit domains. It is for this self adjoint operator that (6.6)
is valid.

b) Equation (6.6) entails the domain equality

M D(p()=D(@(f4,)- (6.8)

¢) We write I = [a, b], and define the expanded or contracted interval
Ib

= 0¥ L=[a—sb+s]. (6.9)

The conditions (6.2)—6.4) are easily satisfied since we can choose g; so
that for some ¢, 0 < ¢ < a/3,

suppg; CL,, suppg,Cl;, (6.10)
and

o+ xgo(x)=x, xel,,.
Hence (6.4) is valid. We can also let

gl(x):17 xe]

£

0 (6.3) holds on I,.

The Hamiltonian
H = H,+ Ti(gy) 6.11)

is correct in the region B;. We shall work with this particular choice
of the Hamiltonian.

Lemma 6.2. For M in (6.1)—(6.2) and H in (6.11)
P(M*)HCPD(H), DH>NCDM), 6.12)

P(M)CY(H +b)?), D(H)CD(M +b)?), (6.13)

where b is a constant sufficiently large so that H+b and M +b are
positive.

Proof. By Theorem 5.5,
PD(M?*CYHGN) and D(H?)CD(H,N).
Also elementary estimates show that
2(N?) C D(Ty(x9.)2(Tigy)
and by Theorem 3.2.1, 2(H,) C 2(T,(xg,)). Thus
DHN)CD2M)ND(H).
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This proves (6.12).
It was proved in [3, Lemma 2.2.4] that

D(H)CD((H+ b)?}).

By Theorem 3.2.1, the same proof extends in a straightforward
fashion to show that
9D(H,) CZ((M + b)?).
Since
IMUPDH)CD(H,),
the inclusions (6.13) hold.
We now introduce another local operator, defined for fe #(R'):

P(f) = To(f) = m* [ :p(x)* f(x)dx . (6.14)

By Theorem 3.2.1 and the definition of [ :p(x)* f(x)dx in terms of
Wick ordered monomials with #? kernels,

D(P()>2(H,). (6.15)

For f real, P(f) is symmetric on Z(H,).
In the next theorem, let M, given in (6.1), satisfy (6.2) and (6.4),
and let H be given by (6.11).

Theorem 6.3. a) For[=2,3,4,

M 2(H)—DH"?). (6.16)
b) As operators on 9 (H?3),
d
[iH, M] =P(—d—;(xg0)) (6.17)
and as operators on % (H*),
. [ d? d
[iH, [iH, M]] = P (W (xgo)> -1 (;i; gl) NG

¢) The roles of H and M can be interchanged in the following sense:
H:9MY->2(M'"?%), 1=234. (6.16")
The equality (6.17) holds on the domain 2(M?3), and on 2(M*),
. . d 2 d
[iM,[iM,H]] =T, E;(Xgo) + T *d*;(xéﬁ)
(6.18")
. d?
— P ((a+xg0 5 x (x50
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Remark. If condition (6.3) also holds, then the double commutator
(6.18) is formally localized outside a neighborhood of I. It is this
localization, made precise in the following, that results in M generating
Lorentz transformations in B;.

Proof. The case of (6.16) for I=2 is covered by Lemma 6.2, which
also defines M as a bilinear form on %(H) x 2(H). From this and the
fact that P, P, and T; are operators defined on Z(H,N)> Z(H?), it
follows that the terms involved in (6.17) and (6.18) are defined as
bilinear forms on Z(H?*) x 2(H?). In Lemma 6.6 we will prove that
(6.17)—(6.18) hold as bilinear forms on Z(H?) x %(H?). Assuming this,
we now prove parts a) and b) of the theorem.

Let y, p € 2(H?). We have

(Hy, My) = (X,MHw)—i(X,P<%(xgo)) w). (6.19)

Since, by Theorem 4.1 and Theorem 5.3

I(Hy+ D Q| < const ||(H + b) Q| (6.20)
for all Qe 2(H), it follows from Theorem 5.5 that

IMQ| < const ||(Hq + I) Q| + const |[N*Q||

< const |(H + b)* Q| (20
for all Qe Z(H?). Let Q= Hy; (6.21) yields the inequality
|(x. MHw)| < {const [[(H +b)> i} |zl - (6.22)
Since by Theorem 3.2.1 and (6.20)
(1.7 o) v = teonst 1, + Dy 12
< {const [[(H +b) I} llx »
we have by (6.19) and (6.22) that
((Hy, My)| < {const [[(H +b)* v} [zl . (6.23)

Hence My e 2((H I 9(H?)*)= 2(H), since H is essentially self adjoint
on Z(H?3). This proves part a) for [ = 3. As a consequence, i[H, M] is an
operator on Z(H?) and by (6.19),

(1, i[H, M]yp) = (x, P(di (xgo)> w)
X

for all ¥,y e 2(H?). This proves (6.17), since the y’s are dense.
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The proof of (6.16) for the case /=4 and the proof of (6.18) are
similar. Let y, y € Z(H?*). From (6.16) with [ =2, 3, and the assumption
that (6.18) is valid as a bilinear form, we have

(H?y, My)= —(x, MH*v)+ 2(Hy, MHy)

_(Xa [iH> [IH’ M]] ‘P)
= —(x, MH?*y)+ 2(y, HM Hy) (6.24)

(. d? d
_(X,{P<—d? (XQO))“ T; (‘d; gl)}W) .
By (6.23), (6.21) and the inequality

0 (P = T )l < {const(|(Ho + 1) ]l + (N> + D wl)} Iz
< {const([I(H + b) i + [(H +b)* wl)} Il .
which follows from Theorem 5.5, we have from (6.24) the inequality
\(H?, My)| < {const|(H + b)* |} 1] -

Hence My e ((H* 2(H*)*)=2(H?), proving (6.16) for the case [=4.
Thus [iH, [iH, M]] is an operator defined on Z(H*), and we find from
(6.24) that (6.18) holds.

The proof of parts a) and b) of the theorem is thus completed when
we establish the equalities (6.17)—(6.18) in the sense of bilinear forms
on Z(H?* x 2(H?) and 2(H*) x 2(H*) respectively.

The proof of part c¢) of the theorem is similar. For example, we
replace the inequality (6.20) by

I(Hy +I) Q|| < const (M + b) Q| (6.25)

for all Q € 2(M). This also follows from Theorem 4.1 and Theorem 5.3.
By Theorem 5.5, we replace (6.21) with

|H Q|| < const (M + b)* Q|| .

To complete the proof of part c) of the theorem, we need to establish
(6.17) as a bilinear form on 2(M?3) x Z2(M?) and (6.18') as a form on
D(M* x D(M*).

Lemma 6.4. 4s bilinear forms on 2(Hy) x Z(H,),

7). Tolol = (£ 52— 9 ). (626

and
df

[To(f), P(g)] =P(f %) - To(g W), (627)



Lorentz Covariance of the A(¢*), Quantum Field Theory 303

for f,ge L (RY). These equalities also hold if f =1 or g= 1. For instance

d
[iHo, P(g)] = P( di) (627)

Since D(H,) > 2(H)L 2(M), the equalities hold as forms on 9 (H) x 9 (H)
and on 9(M) x @ (M).

Proof. The operators T,, P, and P involved in (6.26)—(6.27) are
closable (symmetric), defined on Z2(H,) and bounded as operators
relative to Hy+I. Hence (6.26)—(6.27) are defined as forms on
9(Hy) x 2(H O) and it suffices to establish equality on a core for H, e.g. on

={peZ 1y e F(R"),p" =0 for n large} . (6.28)

In momentum space, elementary calculations on 2 x 2 yield the
equalities. For instance

[iHo, T5"(9)]

i N (k) u(p) + kp + m?
~g§dkdpg(k—p){

u(k)* u(p)*

} [Ho, a*(K) a(p)]

' k J 2

-] dkdpg(k-p)(u(k)—u<p>){"‘ f{,f;:@” }a*(k)a(p) (6.29)
1 k k

= o [k dp(itk—p) gk~ p) {—%} () alp)

dg
= pM[=L ).
()

By a more length calculation,

LTV, T6V (@) + LTEP(f), T (9] =PU(fg' ~gf") .
The remaining calculations are similar.
Lemma 6.5. As bilinear forms on 2(H,N) x 9 (H,N),

TR, To(f)] = =44 f () h(x): @(x)* m(x): dx (6.30)

[T, P()] = —ﬂ( (fh)> (6.31)

These equalities also hold if = 1.

It follows by Theorem 5.5 that 2(H,N) x Z(H,N)> Z(H?) x 2(H?)
VP (M) x 2(M?); so (6.30)—(6.31) hold on D (H*) x Z(H?) and on
D(M?) x D(M?).

Proof. The operators T,, T; and P involved in (6.30)—(6.31) are
closable, defined on 2(H,N), and are bounded as operators relative to

and
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(HoN + I). Furthermore it is easy to check by Lemma 3.1.3 that the
right hand side of (6.30) is a bilinear form on Z(H,N) x Z(H,N), and

At N (0 7 () () dx(l + HoN)

is a bounded operator. Hence each term in (6.30)—(6.31) is a bilinear
form on 2(H,N) x Z(H,N). It suffices to establish equality on 2 x &,
as in the proof of Lemma 6.4, since 2 is a core for HyN. On the domain
9 x 9, the equalities (6.30)—(6.31) are seen to hold by direct computation
in momentum space — as in the proof of the previous lemma.

Lemma 6.6. The equalities (6.17), (6.18) and (6.18") hold as bilinear
forms on 2(H?*)x Z(H?*) and on Z(M?)x D(M?). (We are assuming
the conditions (6.2) and (6.4).)

Proof. As bilinear forms on Z(H?) x 2(H* or 2(M?) x 2(M?),
[iH, M]=[iH,, Ty(xgo)]
+{[iHo, Ti(xg:)] + [i Ti(g,), «Ho] + [ Ti(g1), To(xgo)1}

To compute these commutators we apply Lemmas 6.4 and 6.5.

dx
+ 44§ {xg,(x) — ag, (x) — xgo(x) g (%)} : > (x) n(x) : dx

d
= P(-d; (xgo)),

d
[iH, M]= P(——— (xgo>)

by the condition (6.4). Hence (6.17) holds on Z(H?) x Z(H?*) and on
D(M?) x G(M?).

Similarly, using Lemmas 6.4 and 6.5, we compute in the sense of
bilinear forms on 2(H?) x @(H?) or on 2(M?) x 2(M?),

dx

iH, P(»d— (xgo))

d
o L e

) d

+ 1T, P - xao)

[ d? d d

= P(W (xgo)> - TI('d‘; (g1 dx (xgo))) .

By condition (6.4),

d

T (x—a=xgo) g;)=0

and x —a — x¢go(x) =0 for x € suppg, ; hence

d
g1 =91 H(XQO)-
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This proves (6.18). Similarly

= —q

d

d
iH,, P(‘ch (xgo)>

d
Ty (xgo) P(;z;‘ (xgo))

d
- l[iT,(xgl), P(—d; (xgo))

. d? ) a?
= —OCP(Wi (Xg())) - P(Xgo Wd‘;c? (XQO))

#73{[ o) )+ - 01 00

which simplifies to (6.18") by condition (6.4).
Again let M and H be given by (6.1) and (6.11) and assume that (6.2)
and (6.4) hold:

Theorem 6.7. If n=2, 2(H") is a core for M and P(M") is a
core for H.

Proof. 2(H*) C 2(M) by Lemma 6.2. We prove first that Z(H?) is
a core for M. Since 2(M?) is a core for M, it suffices to show that

9((M r Q(HZ))*) D 2(M?). (6.32)
We use the smoothing operator, for j=1,2,3, ...,
1 -1
Ej=(1+7(H+b)) , (6.33)
which has the properties
Ej:@(H’)—m@(H’“), (6.34)
lE;I =1, (6.35)
st. lim E; =1, (6.36)
and on Z(H), jo o
[E;,H]=0.

Let pe2(M?). Since 2(M*)CZ(H), Ejpe2(H?, by (6.34). Since
E;ip—1p, the desired inclusion (6.32) would follow from
MEp—-Myp. (6.37)
We now prove (0.3/) for ail e Y(M?).
First we show that for Q € 2 (H?),
d

i /
MEQ=EMQ— —EP|— E.Q. .
Q-EMQ = EP( - (xa0 | 0 (6.39
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Each term in (6.38) is defined since Z(H?*)C 2(M), and P is defined on
9(H)C 2(H,). We now compute [E;, M] on 2(H?). If Qe 2(H?),
[E, M]Q=E;E;'[E, M]E;'E,Q
=E;,[M,E;"1E;Q

|
= E[M.H1E,Q

i d
=7 E;P (E; (x90)> E;Q,

where we have used Theorem 6.3, part a) and (6.17). Hence we have
established (6.38) on the domain Z(H?). Let we 2(M?), Qe 2(H?).
Since M is self adjoint on Z(M),

(E;MQ, p)=(MQ, E;p)=(Q, ME;p)

and
ME.Q p)=(Q, EMy).
Thus (ME;Q,y)=(Q, E;Mvy)
(@, [M,Ely)=(E;, M]1Q,y)
i d
i d
= (Q, - 7 E;P (—d; (xg0)> EﬂP) .

Since Z(H?) is dense,

i d
ME;p=EMy — 7EjP (_d; (xgo)) Ey, (6.39)

and (6.38) holds on 2(M?).
The convergence (6.37) now follows. By (6.36),

EMy—-My,

(o

1
< const~j— [(Ho + 1) E;pl|

and

J

d
EJP ( dx (XQO)

1

< const — [[(H + b) E;p||
J
1

= const 7 |E;(H+ b))yl

1
< const T [(H +b) pl
—0.
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We have used the fact that e 2(M?) C 2(H) C 2(H,). Hence by (6.39),
MEp—My

which proves (6.37) and establishes that Z(H?) is a core for M.
The inequality (6.21) and the fact that Z(H"), for n=2, is a core
for H? shows that

2(M T 2(H"))D>2(H?).
Since Z(H?) is a core, it follows that Z(H") is also a core for M.
The proof that Z(M") is a core for H is similar, and follows the
above proof by interchanging H with M.

In the following, we assume that M and H are given by (6.1) and
(6.11), and that (6.2), (6.3) and (6.4) hold.

Theorem 6.8. Let fe % (R*) have support in B;. Then o(f) is
defined on (M),

o(f): 2M*) > M),

and, as an operator equality on P (M?),

0 ot

Remark. In [3, Section 3] it is shown for f real, that o(f) is
essentially self adjoint on 2(H") for any n= %, and

o(f): 2(H+b)")—>2D((H+ by~ ?) (6.41)

[iM, o(f)] = (t?f-+ 5/") (6.40)

Proof. The terms in (6.40) are operators on Z(H?) since ¢(f) 2(H?)
CY(H*)C2(M) and MP(H*) C2(H)C 2(p(f)) by (6.41) and Theorem
6.3. In Lemma 6.14 we will establish that (6.40) holds on the domain
9(H?). Assuming this, we now prove the theorem.

Let y € 2(M?). By Lemma 6.2, 2(M?) C 2(H); by (6.41), y € Z(p(f)).
First, we show that

P(flye2(M). (6.42)

Note that Mype 2(M)C2(H +b)*)CZ(p(f)) by Lemma 62 and

(6.41). Also
sl o)

Hence, by the assumption that (6.40) holds on Z(H?), we have for all
7 € 9 (H?) that

(Mx,w(f)w)=(x,<p(f)Mw)+i(x,<p(t%[— +xi{~) w). (6.43)



308 J. T. Cannon and A. M. Jaffe:

So
o(f)we2(M 1 2(H?)*).

By Theorem 6.7, Z(H?) is a core for M; so we have (6.42). Next we can
use (6.42) to rewrite (6.43) as

(1, IM, o( /N p) = (/ ip (t% + x%)w) :

Since Z(H?) is dense, this implies

.oty =io (¢ 55+ x ),
0x ot
proving (6.40) on the stated domain.

The next six lemmas complete the proof of Theorem 6.8 by
establishing (6.40) on the domain & (H®). We then show that Theorem 6.1
follows from Theorem 6.8.

We introduce the self adjoint operator
M(t) = e "H M,

Since e'' leaves @(H™ invariant, we have by Lemmas 6.2 and
Theorem 6.3 that
9(H* C2(M (1))
and for [=2,3,4
M@):2HY->2(H'"?). (6.44)

Let fe.%(R? have support in B;. By (6.41) and (6.44),
o(f)D(H?) C D(HY) C 2(M(1)) and M(1) Z(H?) C D(H)C Z(p(f)). More
generally, we can replace @(f) by e™'o(f)e ', Thus for ye 2(H?)
and fe .%(R% with support in B, we define the function

F(t)=(p, [iM (1), (/)] y)
= (p(t), [iM, e o(f) e T p(1),
p(ny=eyp. (6.46)

LetI=[a,b],I,=[a—r,b+r]andlet B, be the causal shadow of /..
We define

B,=B, nil.0:lt<3e)

={(x, ) jtl < 3e, a+isl+ i1l <b—jsi — il -

(6.45)

where

(6.47)

Hence the points of B, have small times, and B, translated by times
less than |s| lies in B;.
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Lemma 6.9. If peP(H®), F(t) in (6.45) is twice continuously
differentiable. If f has compact support in By, then for |t] <|s,

F'(t)=0. (6.48)

Proof. We first prove the differentiability of F(t). Let 4,(e) be the

difference quotient for the n'™ derivative of e'#' at t=0. For instance,

46 = — @ ).

For pe Z(H"), and m+j=<n, as ¢—>0,
|H™{4;(e) = (HY} wl = [[{4,(e) — GHY} H"p|| 0.
Hence, for ype 2(H"), Me'#'yp is n—2 times differentiable, since for
j=n-2,
[M et {Aj(e) — ((HY} wl < [{4;(e) — (HY} (H+b)* p[| - 0.
The function F(f) has the form
F(0) = i(Me™ 'y, e o(f)y)—i(e™p(f)w, Me ™ y).

For we 2(H®), o(f)pe 2(H*) and F(t) is three times continuously
differentiable.

dF - ‘
d:t) = (MHp(r), "™ o(f)v) - (M (D), He™ o(f) )

= (™ o(f)w, HMyp(®)+ (e o(f) v, MH p(0)).
We now rearrange the terms in (6.49), using the domain relations of
Theorem 6.3.2)
dF
dr

(6.49)

= (. [H. M(] (1) v) = (¢(f) p, [H, M(©)] w)

o | (6.50)
— (w, e-‘”‘P(— (xgo)) ¢ (1) w)

Filo(n e P (L o))
by (6.17). We differentiate (6.50) as above, and writing P for
d .
P (E (:xgo)) we obtain

A*F(t)
ar?

= —(p, e"'[H, P1e™ o(f) )+ (o(f) p,e” ' [H, P]e™y)
(6.51)

./ d? d ) '
=i (w(t), [P (7;2— (xgo)) - T (E gl), eMo(f) e“’”'} w(t))-

22 Commun. math. Phys, Vol 17
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We note that each term in (6.51) is defined. For instance,

HPe™o(f)y
is defined since, for y e Z(H%), e’ ¢(f)y e Z(H*), and by Theorem 6.3,
Pet'o(f)y = [iH, M]e™o(f)y.
Both HM and M H map 2(H*) into Z(H), so HPe'®'¢(f)y is defined.

Likewise the commutator H,P(—d—d; (xgo))} is defined on 2(H%), and

e o(f)p belongs to that domain.

Now, assuming that the support of f is contained in B, and
[t] < s, we must show that F”(t)=0.
The proof is based on the locality of

. d* d
S EP(W(X%)) - Ti(-d—x_gl)'

which is symmetric on Z(H,N). By (6.3)
d? d
2 Xg0)=0=——g,
in a neighborhood of I. We prove that S commutes with the von Neu-
mann algebra
= {exp(ip(h;) + in(hy)): h; = h;e S(R), supph; C1}"

generated by the spectral projections of the time zero fields { ¢(x) h; (x) dx
and [ m(x) hy(x)dx, h;e #(R"), supph; C 1. We show that

[S,W()]2(H*)=0. (6.52)

To this end, we modify [1, Lemma 3.3] as follows: Let & be the
domain (6.28) of well-behaved vectors. If y,, y, € 2, a direct momentum
space computation (e.g. as in the proof of Lemma 6.4) shows that

(Sx1s (@(h) +m(hy)Y 22) = (@ (hy) + w(ho)Y 71, Sx2) - (6.53)

An easy computation yields
l(@(h)+m(hy)f x| < AB"(n!)?

for constants A and B depending on y € 2. Thus, the y € & are entire
vectors for the operator (¢(h;) + n(h,)), and the sum

E’: l(p(hl)_l'ln( )"

n=0

r=expliph) +inhy)y  (6.59)
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converges strongly. Now, we multiply (6.53) by i"(n!)~* and sum over n
using the convergence (6.54) to obtain

(811, Uxa) = (U* x4, Sx2) = (01, US 12)

for y;€ 2. This equality extends to y;€ 2(H,N) since 9 is a core for
H,N, S is defined on 2(H,N) and

ISxll = const [(HoN + 1) xII -
Hence for y € 2(H,N), we have proved that Uy € 2(S*) and
S*Uyxy=USy.
We now prove that Uy e @(H,N) if y e D(H,N), so that
SUy=USy, (6.55)
since S is symmetric on Z(H,N). We give Z(H,N) a norm,

lxlly = I +HoN) xll 5

the corresponding scalar product makes Z(H,N) a Hilbert space,
H,. We now prove that ¢(h,)+ n(h,) = B generates a one parameter

B U(®) = expliaB) = exp {ia(p(hy) + 7(h,)}
on 4. This is equivalent to proving that
B=(+H,N)B(I+H,N)™* (6.56)
generates a one parameter group on Fock space. Since B is essentially
self adjoint on &, and on this domain
B=B+[NH, B](1+H,N)™!

=B+ [N,B]Hy,(I+H,N)*+N[H,,Bl(I+ H,N)™*
= B+ bounded operator,

by Lemma 3.1.3, we infer that B 1 @ is a bounded perturbation of an
essentially self adjoint operator. Hence (B 1 %)~ generates a one parameter
group on Fock space, and

Br(I+HoN)"'9

has a closure in 4, that generates a one parameter group on ;.
Since the topology of s#; is stronger than that of &, the closure of
BMI+HyN)™*2 in #, is a restriction of B” in % and the one
parameter group in # is a restriction of the one parameter group
22%
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generated by B™ in % . This establishes that

U:2(HyN)->9(HyN) (6.57)
and (6.55).

By passing to strong limits of linear combinations of such U’s, we
obtain (6.52) (on restricting to the domain 2(H?*C2(H,N) via
Theorem 5.5). This makes precise the statement that S is localized
outside I.

We note that for each ¢, |t;] <|s|, the spectral projections of

Fo(x) fx, t;)dx
belong to W(Io_‘sl), where I_ s| 18 the interior of I_,
[g={x:(xt)eB}=1{xtatlsl<x<b—Is|}.
The support of f is contained in B,; hence the spectral projections of
HEH § p(x) f(x, t,)dx e HE+) (6.58)
belong to W(f|,|_ls|); [1,3,11]. For |t|__<__|s|,I°,,|_|S,CI; so the spectral
projections of (6.58) belong to W (I).

We now can use the locality property (6.52) of S. For ye 2(H?),
ye P(H?), we have

ve ([ o(x,0) f(x,t;)dx),
and for o(f) = [ @(x, t) f(x, t)dx dt, by (6.41)

eMo(f)e Hype g(HY). (6.59)
Thus from (6.52) and the localization of (6.58),

(Sy, e U [ p(x) f(x, t)dx e” HEH1y)
= (M [ p(x) f(x, t;) dx e HET Wy, Sy),

for |t|<|s| and supp f CB,. By [3, Theorem 3.2.3] we can integrate
over t; to obtain

(S, e o(f) e ry)= (e o(f) ey, Sy)
= (1, Se™o(f) e Hty)

where the last inequality follows by (6.59) and the fact that S is a
symmetric operator on Z(H,N)D> 2(H?). From (6.60) we infer that

(6.60)

Sw e 9((eth(P(f) e—th ) @(HZ))*)
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and hence that
Sped(E™o(f)e ™),

since by [3, Theorem 3.3.5], 2(H?) is a core for ¢(f). Hence from (6.60)
we conclude

eth(p(f)e—thSw — Seth(P(f)e_thUJ

for [t| |s|, supp f C By, and yp € Z(H?).
We now apply this relation to (6.51). In that case y(t) e Z(H®) C 2 (H?),
so
F'(t)=0, for [t|<Z]s].

Lemma 6.10. Let fe % (R?) have support in B;. Then on 2(H?) we

have the operator equality

(MO, 0111 = M, ] | 1P{ - v (] . (660

Proof. Each of the six terms in (6.61) is an operator defined
on Z(H%), since o(f): 2(HY—>2(H'"?), M(s): 2(H)Y>2(H'"?) for
1=2,3,4, and (by Theorem 6.3) P (% (xgo)> CQH?)-D(H).

Let we 2(H?). Then

(. [IM(s), o(f)]w) = F(s)

for F defined in (6.45). By Lemma 6.9, F has two derivatives. Hence
by Taylor’s theorem with remainder,

2

F(s) = F(0) + sF'(0) + 32- F(t)

for some ¢, |t| < |s|. Furthermore, by Lemma 6.9,
F(s)= F(0)+ sF'(0).

By definition,

F(0) = (w.[iM, o(f)1y),
and by (6.50),

d
FO)= i [P xa0)) o] ).
This proves the equality
. . [ d
(0. LM, o) = (. LM 0 1) = [ iP - () ) ).

proving (6.61) by polarization and the density of 2(H?).
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The next step in the proof of Theorem 6.8 is to pass to the sharp time
limit of Lemma 6.10. We want to choose a sequence of functions
fn.€ L (R?) which pick out a time zero contribution in the limit.

Let

A(f, )= J o) f(x,)dx (6.62)

B(f,t)= [ n(x) f(x,t)dx, (6.63)

and

for ¢ and n the canonical time-zero fields. For real fe % (R?), with
compact support, A(f,¢) and B(f,t) are essentially self adjoint on
2((H + b)?).

Let fe ¢7(B)) and let f,(x, t)e #(R?) be a sequence of functions of
the form

J(x,5)6,(t)
with support in B and converging in the w* topology of measures to

f(x, s)6(t) as n—oo. For p e Z(H?), the vectors

M), Mw,P(% (xgo>)we@(H)

as in the proof of Lemma 6.10. Furthermore by [3, Eq. (3.2.8)3.2.9)]
the bilinear form ¢(x, t) for (x, t) e B, determines a bounded operator

(H+b) *(x,t)(H+b)~* (6.64)
which is continuous in (x, t).

Lemma 6.11. Let fe % (R? have support in B,. Then, in the
sense of bilinear forms on 9(H®) x 9(H?),

[iM(s), A(f, 9] = [iM, A(f, s)] = s[iP, A(f, )] (6.65)

where

_ d
P=P (E (xg0)> . (6.66)

Proof. Choose a w*-convergent sequence of measures f, € % (R?)
as above. Consider, for example, the first term in (6.61) as a bilinear form
on 9(H®) x 2(H?). Let p, y € 2(H®),

(6 GM(s), o(f)] w)
=[(=iM(s) 3, @(x, ) w) f(x, 5) 5,(t) dx dt (6.67)
+§ (@ (x, 1) %, iM(s) w) f(x, ) 6,(t) dx dt,
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where on the right hand side ¢(x, t) is considered as a bilinear form on
PD((H + b)*) x 9((H + b)*) continuous in (x,?) by (6.64). Thus, by the
convergence of the f,, the terms on the right hand side of (6.67)
converge as n— oo to

F(=iM(s) 5, @(x) ) f(x, 8)dx + J (@(x) 1, iM(s) ) f(x,s)dx.

This is the left side of (6.65), evaluated on y x p. The other terms of
(6.65) are similarly obtained by passing to the same limit in (6.61).
In Lemmas 6.12—6.14 let f € €3 (B)).

Lemma 6.12. As an equality of bilinear forms on 2(H) x 2(H),

[iP, A(f, 9] =4 (%f;— s) 6:68)

where P is defined in (6.66).

Proof. Let 9 be the domain (6.28) of smooth vectors. We prove
(6.68) in the sense of bilinear forms on & x Z by direct computation in
momentum space (e.g. as in the proof of Lemma 6.4):

P (4 xao)) A9 = A (2 (£ o))

which agrees with (6.68) because xg,=x — o on a neighborhood of I,
while f(x, t) vanishes for x ¢ I.
Note that 9 is a core for H, and

I(Py, A(f, s) w)| < const||(H, + 1) w|?,

for all ye 2(H,). Hence the equality (6.68) extends from 2 x & to
P(H,) x 9(H,), since the operators involved are closable. Since
9(H)C9(H,), the lemma is proved.

Lemma 6.13. As an equality of bilinear forms on %(H?) x @(H?)
LM, A(f,s)]=[iH, A(xf, )]=B(xf.s) . (6.69)

Proof. The proof is similar to the proof of Lemma 6.12.

Lemma 6.14. As an operator equality on 9(H?),

(6.70)

e )

[iM, (/)] = —<p(t~+x——
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Proof. We first establish (6.70) as an equality of bilinear forms on
P(H?) x 2(H®). Let p € 2(H®). By Lemmas (6.11)—(6.13),
. af
(. [IM (), A(f, 91 W)= (w, Bxf, ) w)=s |, A| 55w

—iHs

Substituting e ™" *y for p, we obtain

(p, [iM, e™A(f, s) e 5] )

(6.71)
ool )
0x
But [3, Theorem 3.2.4] states that
Fen(o) e 0 dxde= g |~ L |
on Z(H?) x 2(H?). Using this, we integrate (6.71) over s to obtain
. 0 0
(v, M, (/)] y)= — (tp, @ (t ~a~f— +x T{) w) (6.72)
: af of 5
Since Mo(f), o(f) M, and ¢ tgx_ + X are operators on Z(H>),

the operator equality (6.70) follows via polarization and the density of
9(H?). This completes the proof of Lemma 6.14, and hence it completes
the proof of Theorem 6.8.

We now proceed to use Theorem 6.8 to prove Theorem 6.1. We need
a simple uniqueness result for partial differential equations In the follow-

ing proposition, we assume that F(f, x,t) and — F(f, x, t) are con-

0/3

tinuous in (f, x, t), where the partial derivative exists for each (x, ¢).
Proposition 6.15. Let BC R?* and for all f € €3 (B)

j——(ﬂ x, 1) f(x,t)dxdt=— [ F(B,x, 1) {xf,+tf}dxdt. (6.73)
Then for all (B, x, t) such that A g(x,t)e B for 0<y <1,

F(B, x, )= F(0, A,(x, 1)

74
= F(0, x coshf + ¢ sinh 8, x sinh + ¢ coshf3) . 674

Proof. Clearly (6.74) is a solution to (6.73). Thus we need only prove
uniqueness, and it is sufficient to prove uniqueness for the case
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0 0
F(O,x,t)=0. Write 4 = {xﬁ + ta—x} for convenience, and note that

diﬁ, [F(B,x,0) f(Ay(x, 1) dx dt

i {gg_ (B % 1) f(Ap (. 0)+ F(Bx,0) Af (A (x, t))} dxdt (6.75)
=0
by (6.73), provided f (A, (x, t)) has support in B. Let
B,= () 4,,'B.

0=sy=s1
If fe¥67(B,), then (6.75) holds for all B’ between 0 and . So,
FEB,x,0) f(4p(x,0))dxdt=0
for all /'€ €5 (B,). Thus, in the sense of distributions,

FB,x,)=0, (x,t)eB;. (6.76)

Since F is continuous, (6.76) holds everywhere in B,. This establishes
uniqueness, and completes the proof of the proposition.

Proof of Theorem 6.1. Let we 2(M?), let

F(B.x,t)=(e" ™"y, o(x, 1) e” M )
for all (B, x, t) in R%; and for f € #(R?), let
F(B, f)= (e ™y, p(f) e”™MFy)
=[F(B, x,1) f(x,t)dxdt.
By [3, Lemma 3.2.17, ¢(x, t) is a bilinear form defined on 2((H + b)?)
x Z((H + b)?), continuous in (x,t)e R*. Since 2(M)C Z((H + b)*) by

Lemma 6.2, F(f3, x, t) is well defined and continuous in (x, t). Further-
more, F(f, x, t) is continuously differentiable in S,

oF . .
_EF (ﬁ, X, t) = - (ewlMBiMlp’ (P(X, t) e_lMﬂw)

which is also continuous in (x, t). One checks in the usual way that
this is the derivative of F. For example,

7;% {(H+b) 2p(x, ) (H+b)" %} (H+b)>e My
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exists in the strong topology since the operator (H+b) *¢(x,t)(H+b) " *
is bounded, since ||(H + b)* | < const ||(M + b) p|| by Lemma 6.2, and
since e ""MP M is strongly differentiable with derivative —e™"MPiM?1p.

To show that the two definitions above for F(f, ) agree, we use
(6.41) and [3, Theorem 3.2.3]. By the usual argument,

F ) .
€FWJ“=&”WWIMqune““w

(6.77)
j ﬁ (B, x, 1) f(x,t)dx dt.
By Theorem 6.8, we have that
F _ —iMp af af) ~iMp )
L R P
p P (6.78)
= —_fF(,B,x,t){x—é? +t—a;} fx, t)dxde,
provided that
supp f CB;. (6.79)
Hence, we conclude from Proposition 6.15 that
F(Ba X, t) = F(07 Aﬂ (Xa t)) s (680)
provided
U Aw(x t)eB;. (6.81)
That is, if (6.81) holds,
eMbo(x, 1) e”™MFP = (A,(x, 1) (6.82)

in the sense of bilinear forms on Z(M?) x 2(M?). This equality
extends by closure to 2(M)x 2(M), since 2(M)C2((H + b)*) by
Lemma 6.2, and

Iy, e o (x, 1) ™M)

(w, @(A(x, 1) v)|
co

é onst ||(H + b)*y||?.

Furthermore 2(M?) is a core for H, by Theorem 6.7, and hence a core
for (H + b)®. Thus (6.82) extends to Z((H + b)*) x 2((H + b)?), and on
this domain we also have continuity of the form in (x, t).
We note that it is necessary to assume that
U 4,,(x0eB;.

0=ys1
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However for the regions B, of (6.5), this is a consequence of
(x,t)e By, Ay(x,t)eBy;.

This completes the proof of Theorem 6.1, part b).
Finally, we prove the operator equality

eMo(f) e ™M =0(f,,), (6.83)

if fe(R?, suppfusuppfAﬁCBI By Lemma 6.2, ¢(f) and o(f,,)
are defined on 2(M?); by integrating (6.82) against f(x, t), we prove

that (6.83) holds on 2(M?). Furthermore, for p € 2(M?),
p(f)e ™My =e"Mo(f, ). (6.84)

lo(f4,) vl < const|[(H + b)* y|

and 2(M?) is a core for H by Theorem 6.7, the equality (6.83) extends
by closure to Z(H) and (6.84) holds for € Z(H). Since 2(H) is a core
for ¢(f,,) by [3, Theorem 3.3.5], we conclude that (6.83) extends by
closure to 2(¢(f,,)) and (6.84) holds for y € Z(¢(f,,)). Thus

e "M D (p(f4,)) > D (0())).

M D)= D0 (f4,)-

This proves (6.83) as an equality between selfadjoint operators,
completing the proof of Theorem 6.1.

Theorem 6.1 is sufficient for the proof of Lorentz covariance of the
J(@*), model of Section 2. We complete this section, however, with the
observation that the condition (6.4) is not necessary.

Theorem 6.16. If M satisfies only the conditions (6.2) and (6.3), the
conclusions of Theorem 6.1 still hold.

Proof. By (6.3) there is an ¢> 0 so that

Since

Similarly,

o+ xgo(X) = x=xg(x)
for xel,,=[a—2¢b+2e] Let §; be a ¥ function so that xg, =h?
for h,20,he &, §,(x)=0 for xélzu and §,(x)=1 for xel. Then
conditions (6.2)—(6.4) hold for the pair g, and §, and
091 = g1 — G
is non-zero only in the complement of I,. Let
M =aH, + To(xgo) + T(xd1),
SM =M —M = T;(xdg,) .
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By Theorem 5.3, both M and M are essentially self-adjoint on Z(H3).
M satisfies the conditions of Theorem 6.1. It is known that M is also
essentially self-adjoint on this domain (cf. [1, Theorem 3.17). By
[1, Theorem 3.2], the spectral projections of 6 M commute with ¢(f),
for supp f C B;. Hence if E is a spectral projection of ¢(f),
eiMﬁEe~iM[i — hm (eiMB/neiéMﬂ/n)n E(e—iéMﬂ/ne—iMﬂ/n)n

— o MBE—iMp

where we use the fact that
U supp f4,, C By

0sy=s1
if
supp fwsupp f4, CB;.
Thus M and M generate the same transformations on the spectral

projections of ¢(f), if supp f Usupp f,, C By
By Lemma 6.2, Theorem 5.3, and [3, Lemma 2.24 and Theorem 3.23],

D(H* CD(M)nD(M)
2(M)0(M)C 2(Ho) C2((H + b)*) C2(o(f)-
So
e M 9(HY) - D(e(f)),
e M G(H) - D(p(f).
Since we can express ¢(f) as a strong limit of an integral over its
spectral projections on its domain Z(¢(f)), we obtain, on Z(H?)

eMPo(f) e M= MPg(f) e
= (P(f/lﬁ) )

by Theorem 6.1. Since Z(H?) is a core for o(f, . this equality extends
by closure to the domain Z(¢(f,,))- Thus, part a) of Theorem 6.1 holds
for M satisfying (6.2)—(6.3). Part b) of Theorem 6.1 follows from this
since the form @(x, t) is continuous in (x, t) on Z(M)x Z(M) and for

peDM),
(w, o(f)p)={ (v, 0(x, ) y) f(x,0)dxdt.
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