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Abstract. We examine the limiting free energy density a{ρ, 0 + ) = limα(ρ, γ) of a

classical system of particles with the two-body potential q(r) + yvK{γr), at density ρ in v
dimensions. Starting from a variational formula for a(ρ, 0 + ), obtained in Parti of these
papers, we obtain a new upper bound on α(ρ, 0 + ) given by

α(ρ, 0 + ) S CE{ME[a°(ρ) + i X m i n ρ 2 ] + β α - ΪKmm)ρ2} .

Here MEf, called the mid-point envelope of/, is defined for any function / by

MEf(ρ) = inf K/fe + Ό + /((? ~ W

/, called the convex envelope of/, is defined for any / as the maximal convex function
not exceeding /; also α Ξ= J" dsK(s) and K ^ is the minimum of the Fourier transform of K,
while α°(ρ) is the free energy density for K = 0.

For the class of functions K such that X m ί n < 0 and K m i n < 2 a , we deduce from this
upper bound that a(ρ, 0 + ) < C£[α°(ρ) + i α ρ 2 ] for aΠ values of ρ where Λ°(ρ) + i α ρ 2

differs from its convex envelope, or where aΌ(ρ) + \Kmϊnρ
2 differs from its mid-point

envelope. Consequently, the generalized van der Waals equation

does not apply in this case. We prove that in a certain sense the local density is non-uniform
over distances of order y'1 in this case, and infer that this density is periodic.

We also give a simpler derivation of other bounds on α(ρ, 0 + ) obtained by Lebowitz
and Penrose.

I. Introduction

Following the work of Kac, Uhlenbeck, and Hemmer [1] and
van Kampen [2] on the van der Waals equation, Lebowitz and Penrose
[3] (henceforth referred to as LP) considered the pressure of a v-dimen-
sional system of particles with the two-body potential

(1.1)
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and showed that in the limit y-^0 this pressure is given, for a certain
class of functions K, by a generalization of the van der Waals equation
together with the Maxwell construction. In the present paper we prove
that, for a different class of functions K, this equation does not hold.

Our method is based on the results of Part I of this series of papers [4].
We there proved that the free energy density α(ρ, T, y) of a classical
system of particles, with the two-body potential (1.1) at temperature T
and density ρ, tends to a definite limit when y->0 (the van der Waals limit),
provided that both q and K satisfy fairly weak tempering conditions
and that q has a hard core. As before q(r) is called the reference potential
and yvK(yr) the Kac potential We proved further that

α(ρ, Γ, 0 + ) = limα(ρ, T, y) = inf G(n, T) (1.2)
y->0 ne<β(ρ)

where the functional G is given by

G{n, T) = - 1 - f rfy{α°[π(y), T] + £n(y) J dy'ntf) K(y- y')} (1.3)

the integral with respect to y' being over all of v-dimensional space. Here
^(ρ) is the class of functions n that (i) are bounded by 0 and ρc (the
maximum density permitted by q\ (ii) are Riemann integrable over any
bounded region, (iii) are periodic, and (iv) have space average ρ, i.e.

μ ( ) (1.4)

The region Γ (which depends on n) is the unit cell of n and has volume
\Γ\. The function a°(ρ, T) is the free energy density corresponding to a
system with the two-body potential q(r\ called the reference system.

We shall use (1.2 and 3) to obtain an upper bound on α(ρ, T, 0 + ), but
first let us consider the bounds already obtained by LP. They showed that

ρ, T) + | X m i n ρ 2 ] + £(α - X m i n )ρ 2 ^ α(ρ, T, 0 + )
2 ]

where Km i n is the minimum of the Fourier transform
m i n

Sdse2πί»sK(s), (1.6)

α = J ds K(s) = K(0\ and CEf, called the convex envelope of/, is defined
for arbitrary / as the maximal convex function not exceeding /. These
bounds coincide in the following cases:

(a) If K(p) ^ 0 for all p (so that α ̂  0) then

a(ρ9 T, 0 + ) - a°(ρ, T) + \dQ2 (1.7)

for all ρ and T .
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(b) If1 X(p) ^ K(0) for all p (of which a special case is K(s) ^ 0 for
all s) then Kmϊn = α and hence

α(ρ, Γ, 0 + ) = CE[a°(ρ, T) + ^αρ 2 ] for all ρ and T. (1.8)

The canonical pressure corresponding to (1.8) is given by a generalization
of the van der Waals-Maxwell equation of state.

(c) For a general K, (1.7) holds for values of ρ and T where
α° + ^X m i n ρ 2 coincides with its convex envelope. One expects for any
α°, and can show for certain cases of α°, that this happens at least when
ρ « 0 and when ρ « ρc.

(d) If α° shows no first order phase transition and

for all ρ and T, where C is a positive constant, then (1.7) holds for all ρ
provided that

min\/C. (1.9)

To prove this, we merely note that α°H-^i£m i nρ2 is convex when (1.9)
holds. As an example, when q corresponds to a one-dimensional system
of hard rods of length r0 we find that C = 27/c/4r0 where k is Boltzmann's
constant.

The bounds on a(ρ, T, 0 + ) given by (1.5) do not exclude the possibility
that (1.8) might hold for all functions K and for all ρ and Γ. To show that
this is not so, we obtain a stronger upper bound on α(ρ, T, 0 + ) which
enables us to find some conditions under which

II. Stronger Upper Bound on the Free Energy

This section is devoted to obtaining the above mentioned upper
bound on α(ρ, 0 + ) (dependence on T is henceforth omitted from the
notation). Our method consists of choosing judiciously a function
ne^iρ), noting that a(ρ,0 + )^G(ri), and finding an upper bound on
G(n) for this function n.

As a first choice one might try n=ρ, which clearly belongs to ^(ρ),
and which by (1.2) gives α(ρ, 0 + ) ^ G(ρ) = a°(ρ) + jocρ2. Since α(ρ, 0 + )
is convex [4], it follows that α(ρ, 0 + ) ̂  C£[α°(ρ) + i α ρ 2 ] . This is just
the result (1.5) of LP, but here it is an almost trivial consequence of the
variational formula.

1 This implies α ̂  0 since X(p)->0 as |p| ->oo.
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To obtain a stronger upper bound, let p 0 be a value of p where 2C(p)
attains2 its minimum, i.e. K(p0) = Kmin. Now let us choose

n{γ) = ρ + /ιsin(2πp0 y) (2.1)

with h a positive constant and 0 ^ ρ ± h ̂  ρc for a given ρ. Hence we
have ne%>(ρ). In this case the unit cell Γ of n has length IPQΓ1 i n the p 0

direction, while its other dimensions are arbitrary. Our choice of n is
motivated by the conjecture of LP that spatial ordering may occur; the
sine function is chosen so that the calculations are simple; and the period
is chosen so as to give the best possible upper bound for functions of this
form.

To obtain an upper bound on G(n\ defined by (1.3), we first find an
upper bound on its quadratic term

I(n) = ——- f dy \ dy' K(y — y') n(y) n(y'). (2.2)

I I Γ

This can be written as

I(n)= X K(p)\n{V)\2 (2.3)

where VΓ is the set of all vectors that connect points in the reciprocal
lattice of the unit cell Γ, while K is defined by (1.6) and ή by

L π ι ^ . (2.4)
τ

For the choice (2.1) of n we obtain

ίρ for p = 0,

τih for p - ± p 0 , (2.5)

[ 0 otherwise.

Hence from (2.3) we have

I(n) = K(0)ρ2 + 2K(Vo)(h/2)2

Next we find an upper bound on the integral involving a° in the

functional G(n). Since α°(ρ) is convex we have, for all ρ' in the interval

[ρ - ft, ρ + ft],

α V ) £ ̂ ^ α«(ρ + h) + ̂ p t a°{ρ - h). (2.7)

2 The minimum is attained because K(p) is continuous [3].

14*
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B u t (2.1) i m p l i e s t h a t ρ-h^ n(y) ̂  ρ + h for all y, a n d h e n c e

~ j dy a\n{y)-] <* ̂ | ± ^ J dy[n(y) -

Combining (2.6) with (2.8) and (1.3) gives an upper bound on α(ρ, 0 + )
which is conveniently expressed in the form

Because of the arbitrariness of h, we can minimize the right side with
respect to h, which gives

a(ρ, 0 + ) ^ MEla°(ρ) + iX m i n ρ 2 ] + βα - iKmin)ρ2 , (2.10)

where MEf, called the mid-point envelope of/, is defined for any function
/by

MEf(ρ)= inf *[/(<?+ Λ) + /(ρ-ft)], (2.11)
hD

where Dρ is the set of values of h such that ρ — h and ρ + h lie in the
domain of/. Since α(ρ, 0 + ) is convex [4], we obtain from (2.10) our first
main result:

Theorem 1. If q and K satisfy the conditions of Part J, then

α(ρ, 0 + ) g CE{MEla°(ρ) + | £ m i n ρ 2 ] + βα - |K m i n )ρ 2 } . (2.12)

We note that this upper is at least as strong as the LP upper bound
CE{a° + iαρ 2 ] because, from (2.11), MEf g / for any function /

III. The Mid-Point Envelope

To proceed further we need to know more about the function MEf
defined by (2.11). We shall prove the following lemmas.

Lemma 1. For any function f

CEf(ρ)^MEf(ρ)Sf(ρ) far all ρ . (3.1)

The equalities apply for all ρ if f is convex.
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Lemma 2. // CEf < f in some bounded open interval, but not at the
end points, and ρM is the mid-point of this interval, then

MEf{ρM) = CEf(ρM). (3.2)

Lemma 3. A function f is convex in any interval where it coincides
with MEf.

These lemmas give some guide to the shape of MEf, an example of
which is shown in Fig. 1.

To prove Lemma 1, we note that in any interval [ρ — h, ρ + h] the
graph of CEf, being convex, lies on or below the chord which meets it
at ρ — h and ρ + h.In particular, at the mid-point of this interval we have

CEf(ρ) < \CE /(ρ — h) + \CE f(ρ -j- h)
(3.3)

where the second inequality holds because CEf ^ /for any/. Minimizing
the right side of (3.3) over all heDρ, and using (2.11), gives the first
inequality in Lemma 1. The second inequality follows directly from (2.11).

To prove Lemma 2, let ρ_ and ρ+ be the end points of an interval
where CEf <f (see Fig. 1). We then have CEf(ρ±) = f{ρ±) so that

(3.4)

= M £ / ( ρ M ) .

This, together with Lemma 1, proves Lemma 2.
To prove Lemma 3, let J be any interval in which / is strictly concave

(see [6] p. 75), and let J be the set of values of h such that ρ±heJ.

C E f ( ^ )

Fig. 1. An example of a function / and its envelopes. The lines marked with a double stroke
have equal lengths
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Since JρCDρ, we have from (2.11)

MEf(ρ)SMEf(ρ) for ρeJ, (3.5)
j

where
MEf(ρ) = inf [/(ρ + ft) + /(ρ - Λ)] . (3.6)

J ΛeJρ

Let CΈ/, called the convex envelope over J of/, be the maximal function

which is convex in J, and does not exceed /. Then if ρ' is the mid-point
of J, we have by Lemma 2 and the definition of J

MEf(ρ') = CEf(ρ')<f(ρ'). (3.7)

It follows from (3.5 and 7) that MEf(ρ') < f{ρ'\ so that J cannot be a
subset of the set of values of ρ where MEf = /; i.e. this latter set has no
subinterval in which / is strictly concave. Thus / is convex throughout
the set, which proves Lemma 3.

For most functions /, we find that MEf can be found only by
numerical methods. The following examples are exceptions which we
have found useful:

(i) M £ ( s i n ρ ) = - | s i n ρ | . (3.8)

(ii) If f(ρ) is a quartic polynomial in ρ, whose fourth derivative / 4

(a constant) is positive, then

I?® for all ρ where/2(ρ)^0,
{ h where /2(ρ)̂ 0, ( 3"9 )

where /2(ρ) = d2f(ρ)/dρ2. We leave the proofs of (3.8) and (3.9) to the
reader.

We require two further lemmas for use in the following section.

Lemma 4. For any constants A and B and any function f

ME[f{ρ) + Λρ + 5 ] = MEf(ρ) + Aρ + B (3.10)
and

B. (3.11)

Lemma 5. For any functions f and g with the same domain

ME{f + g)^ MEf + MEg (3.12)
and

(3.13)

Eq. (3.10) follows directly from (2.11). Eq. (3.11) follows from the fact
that CEf can be found by the double tangent construction [3].
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To prove (3.12) we note from (2.11) that

MEf(ρ) + MEg(ρ) g l [/(ρ + h) + g(ρ + h) + f(ρ - h) + g(ρ - ft)] (3.14)

for all h and ρ such that ρ + h and ρ — h are in the domain of / and g.
Minimizing the right side with respect to h gives (3.12). To prove (3.13)
we use Lemma 1 and obtain

CEf+CEg^f + g. (3.15)

But since the left side is convex, the result (3.13) follows.

IV. Deviation from the van der Waals-Maxwell (vdWM) Theory

In this section we deduce some consequences of Theorem 1. Firstly
(Theorem 2) we prove that there is deviation from the vdWM theory
under certain conditions, and secondly (Theorem 3) we find some inter-
vals of values of ρ in which such deviation occurs.

Theorem 2. // Kmin<0 and Kmin<2a, and the function a°(ρ,T)
+ i^min£2 1<s n o t convex in ρ (i.e. T is sufficiently low), then there are
values of ρ for which

α(ρ, T, 0 + ) < CE[α°(ρ, T) + ̂ αρ2] (4.1)

i.e. the free energy is less than that given by the vdWM theory.

To prove this theorem we need only show that there is one value of
ρ where (4.1) holds. Let us put

A - i α - i K m i n > 0 (4.2)
and

° iKminρ
2. (4.3)

Since φ is continuous, it follows from the conditions of Theorem 2 that
CEφ < φ in some set of intervals. Let ρM be the mid-point of one such
interval, chosen so that CEφ = φ at the ends of the interval. We shall
prove that

CE(MEφ + λρ2)<CE(φ + λρ2) for ρ = ρM, (4.4)

which, together with Theorem 1, proves that (4.1) holds for ρ = ρM.
To provt (4,4) we note that

CE(MEφ + λρ2) g MEφ + λρ2 , (4.5)

and hence from Lemma 2

+ λρ2

M for ρ = ρM . (4.6)
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To proceed further we need

Lemma 6. With the definitions (4.2 and 3)

CEφ + λρ2 < CE(φ + λρ2) (4.7)

for all values of ρ where CEφ(ρ) < φ(ρ).

Proof. From Lemma 5 we have

CEφ ^ CE{φ + λρ2) - λρ2 . (4.8)

Let A be some interval in which CEφ < φ, and let C1 ... Cn be the sub-
intervals (if any) of A in which CE(φ + λρ2) < φ -b λρ2. Taking the
convex envelope over Cι (defined as in (3.7)) of both sides of (4.8) gives

CEφ S CE\CE{φ + λρ2) - V ]
(4.9)

2 2

where the equality holds (see Lemma 4) because CE(φ -f λρ2) is linear
for ρ e Cι. From the graph of —λρ2 it is apparent that

CE{-λρ2)< -λρ2 for ρ e C , (4.10)
σ

n

which, together with (4.9), shows that (4.7) holds in each C. In A- £ C

we have, by the definitions of A and C\

CEφ + λρ2<φ + λρ2 = CE(φ + λρ2). (4.11)

Thus (4.7) holds in A, and hence in any interval in which CEφ < φ,
which proves Lemma 6.

Since ρ M belongs to the set of values of ρ in which CEφ < φ, it follows
that (4.7) holds for ρ = ρM. Combining the result with (4.6) gives (4.4),
which proves Theorem 2.

Our next result is

Theorem 3. Under the conditions of Theorem 2, the set of values of
ρ in which (4.1) holds includes (a) those intervals where α°(ρ, T) + | α ρ 2

differs from its convex envelope, and also (b) those intervals where
a°(ρ, T) + i K m i n ρ 2 differs from its mid-point envelope.

By Lemma 3, the intervals (b) contain those intervals where
α° + ̂ m i n ρ 2 is strictly concave. We note that if α ̂  0 then α° + ^αρ 2

is convex, so that only intervals of type (b) can occur. If α < 0 the intervals
(a) are easier to find (because convex envelopes are easier to calculate
than mid-point envelopes), but if |Km i n | > 2 |α| then the intervals (b) give
a stronger result.
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To prove Theorem 3 we refer to (4.2 and 3). Since φ is continuous
but not convex, we have MEφ < φ in some set of intervals M± ... Mp of
values of ρ (i.e. the intervals (b)), and CE(φ + λρ2)<φ + λρ2 in some
(possibly empty) set of intervals Cί ... Cq (i.e. the intervals (a)). These
intervals are open and, since 0 :§ ρ rg ρc, are bounded. We shall prove that

CE(MEφ + λρ2) < CE(φ + λρ2) 1 2 )

if ρ lies in any of the intervals Mx ... Mp or Cί ... Cq.

This together with Theorem 1 implies Theorem 3.
To prove (4.12), we note that the set of all M's and C's can be covered

by a set of (possibly intersecting) intervals Bί ... Br each of which is of
one of the following types:

(i) The union of an Mι? not contained in any C, with all the C's that
intersect it.

(ii) A Cj that contains all the M's it intersects.
If an interval B is of type (i) we divide it into two parts: the part which

is not in any C, and the C's. The first part is by definition a subset of an
Mt but not of any C, and in it we therefore have MEφ < φ and CE(φ + λρ2)
= φ + λρ2, which gives

CE(MEφ + λρ2) ^ MEφ + λρ2

<φ + λρ2 (4.13)

The second part is a union of sets Cj. Choosing one such C ; , we define
for the given Mf,

..JMEφ + λQCEiφ + λQ) for ρ e M . - C , ,

[0 otherwise.

Then for ρ e Mt — Cj we have

CE{MEφ + λρ2) < MEφ + λρ2

= CE(φ + λρ2)+ψ

and for all other ρ, we have ψ = 0 and CE(MEφ + λρ2) :§ CE(φ + λρ2).
This gives

CE(MEφ + λρ2) ^ CE(φ + λρ2) + ψ for all ρ . (4.16)

Taking the convex envelope over Cj, the closure of Cj, of both sides
of (4.16) gives

CE{MEφ + λρ2) g CE[CE{φ + λρ2) + xp]
c (4.17)

Q
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M;

CEψίρ] Ψίρ)

Fig. 2. Illustration of (4 19)

where the equality holds (see Lemma 4) because CE(φ + λρ2) is linear
for ρ G Cj. But one (or possibly both) of the end points ρ of Cj lies in Mf

so that, from (4.14)

ψ(ρ') = MEφ{ρ') + λρ>2 - ψ{ρ') - λρ'2 < 0, (4.18)

since MEφ < φ in Mt. It follows (see Fig. 2) that

CEψ(ρ)<0 for ρeCj. (4.19)

This together with (4.17) gives

CE{MEφ + λρ2)<CE{φ + λρ2) for ρeCj9 (4.20)

which, together with (4.13), completes the proof of (4.12) for intervals B
of type (i).

Each interval B of type (ii) is a Cj and must contain at least one Mt.
This is because, from Lemma 3, the function φ is convex outside the
Mi's, and hence so is φ + λρ2. But φ + λρ2 cannot be convex throughout
a Cp so that no Cj can lie entirely outside the set of M/s. Choosing any

j , we define
2 λρ2) for ρ = ρM ,

[O otherwise, ( ' }

where ρM is the point of the given M, at which MEφ = C £ φ (see Lemma 2).
We then have for ρ = ρM

CE(MEφ + λρ2) ̂  MEφ + λρ2 = CE(φ + λρ2) + 0 ,

and for ρ φ ρM

CE(MEφ + V ) ^ C£(<P + V ) = C£(<P + V ) + θ ,

so that

CE(MEφ + λρ2)^CE(φ + λρ2) + θ for all ρ . (4.22)

Taking the convex envelope over Cj of both sides gives

CE(MEφ + λρ2) ̂  CE[_CE(φ + λρ2) + 0]
c (4.23)
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where the equality holds (see Lemma 4) because CE(φ + λρ2) is linear
for ρeCj. But from Lemmas 2 and 6 we have

λρ2<CE(φ + λρ2) for ρ =* ρM , (4.24)

and hence θ(ρM) < 0. Since ρM e Mt C Cj9 it follows (see Fig. 3) that

CEΘ(ρ)<0 for ρ e C . . (4.25)

Together with (4.20) this gives

ρ2)<CE{φ + λρ2) for ρeC,.. (4.26)

This completes the proof of (4.12) for intervals B of type (ii), and therefore
of Theorem 3.

Fig. 3. Illustration of (4 25)

2-phαse f lu id

Fig. 4. Thermodynamic behaviour as determined by iCmin and α. This includes the results

(a) and (b) of Section I and the theorems of Section IV. Note that iCmin ^ α by definition
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It should be noted that for the class of Kac potentials such that
2α ^ K m i n < α we have proved neither adherence to nor deviation from
the generalized varί der Waals-Maxwell theory (see Fig. 4). We cannot
prove deviation because our new upper bound (2.12) coincides with that
of LP (1.5) in this case. To prove this coincidence we use Lemma 5 to
obtain, for λ^O (i.e. Kmin ^ 2°0

= ME{φ + λρ2-λρ2)

^ ME(φ + λρ2) + ME(~λρ2)

i.e.
MEφ + λρ2 ^ ME{φ + λρ2). (4.27)

Taking the convex envelope of both sides and noting, from Lemma 1,
that CEMEf = CEffoΐ any / gives, for λ <; 0,

CE(MEφ + λρ2) ^ CE{φ + λρ2) (4.28)

But, since MEφ ^ φ, the left side of (4.28) does not exceed its right side,
so that (4.28) is in fact an equality. QED.

V. The Bounds of Lebowitz and Penrose

In Section II we showed that the LP upper bound CE{a° + ^o
on α(ρ,0 + ) follows almost trivially from our variational formula (1.2).
We now show that the LP lower bound, given by (1.5), which they
obtained by a rather lengthy argument, also follows readily from the
variational formula-

To obtain the lower bound we need

Lemma 7. For any function f(ρ) defined on [0, ρc]»

(5.1)

ttvαt Uve ivJ&QvoJ* exists (αv is iαjuvXe) foX all w e ^ and all

ρ G [0, ρc]. .45 before, Γ is the unit cell of n.

Proof. Denoting the left side of (5.1) by g(ρ) we have, since ρe#(ρ),
the inequality g{ρ) ό /(ρ). But, by an argument like the proof of Lemma 3
in Ref. [4], we deduce that g(ρ) is convex, and hence g{ρ)^CEf(ρ).
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Now putting h(ρ) = CEf(ρ) we have, since f(ρ) ̂  h(ρ),

1

inf -

inf h

r
(5.2)

\n /

where the second inequality follows [5] from the fact that h(ρ) is convex.
This completes the proof of Lemma 7.

Now following LP we express K as the sum of two functions K+ and
K~ chosen so that their Fourier transforms K + and K' satisfy for all p

K+(p)^0 and K-(p)^K-(0) = Kmln. (5.3)

From (2.3), we can write / = 1+ + /" , where

/ » = Σ ^±(p)l«(p)l2- (5-4)
pεFj-

Then from (5.3) we have

/ + ^K + (0) |«(0) | 2 = ( α - X m i n ) ρ 2 , (5.5)

in$dyn(y). (5.6)
peVΓ I1 \ Γ

Adding these and substituting in (1.2 and 3) gives

inf - L j ^y{α°[n(y)] + iXm i nn(y)2} + i ( α - K m i n )ρ 2 , (5.7)
«() |Γ| f

which, on application of Lemma 7, gives the desired lower bound in (1.5).
We have been unable to improve on this lower bound for general
functions K.

VI. Discussion

Our main results are (i) Theorem 1 which gives an upper bound
(2.12) on the free energy of particle systems in the van der Waals limit,
and (ii) the Theorems 2 and 3, deduced from Theorem 1, which, for the
class of Kac potentials such that Xm i n < 0 and Xm i n < 2α, give conditions
under which the free energy differs from its generalized van der Waals-
Maxwell form C£[α° + ̂ αρ 2 ] . For Ising magnets, the same conditions
imply deviation from the Weiss theory of ferro-magnetism.
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We have proved that the non-uniform periodic density (2.1) gives, in
some cases, a lower value of the free energy functional G(n) than does a
uniform density ρ or a two-phase mixture of uniform phases. This does
not strictly prove that the minimal density is periodic since it is possible
that a non-periodic function n (an almost periodic function, for example)
could give a lower value of G(n) than all periodic functions n. On the
other hand, suppose that the infimum in (1.2) is attained for some
ft*e^(ρ) (which, by the definition of ^(ρ), makes rc* periodic): then it
follows that, in the above cases, rc* is not almost everywhere equal to ρ.
The system could then be described as spatially ordered. For Ising
magnets, such ordering represents an antiferromagnetic state. It is there-
fore important, for the work, to find conditions under which the infimum
is attained.

Conditions (c) and (d) of Section I show that the vdWM theory holds
for all K if T is high or ρ is low. The vdWM theory implies fluid states:
consequently, systems with spatially ordered states have a "melting
transition" in which the spatial ordering disappears. The values of φ
and T for which this transition occurs, and the nature of the transition,
particularly its order, have yet to be found.

As pointed out in Section II, functions n of the form (2.1) give the best
upper bound when K(po) = Xm i n. This leads us to the conjecture that,
if the system is one-dimensional, and K{p) has a pronounced minimum
a t P = Po> Λen the minimal function n* (if it exists) has a period of
approximately l/p0. It would be interesting to determine the truth or
falsity of this conjecture, and to examine, in general, the unit cell of rc*.

For the class of Kac potentials satisfying 2 α ^ X m i n < α , we can
prove neither adherence to nor deviation from the van der Waals-
Maxwell theory. We expect that deviation occurs, but to prove this
would demand a stronger upper bound than (2.12). Such a bound, if it
exists, could be obtained by a better choice of n than (2.1).

It would be interesting if, in the one-dimensional case, one could find
a function K in the class K m i n < 0 , i £ m i n < 2 α for which the thermo-
dynamic functions and the density rc* could be calculated explicitly. It
may be possible to perform such a calculation using the variational
formula (1.2). A possible alternative approach is the method of Kac,
Uhlenbeck, and Hemmer [1].

We have been able to solve many of these problems for a cell model
which is closely related to the present model. For this cell model the free
energy can be calculated exactly and spatial ordering can be shown to
occur. We hope to present this in a future publication.
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