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Abstract. We consider interaction densities of the form V(φ(x)\ where φ(x) is a scalar
boson field and F(α) is a bounded real continuous function. We define the cut-off inter-
action by VEtf = j V(φε(x)\ where φε(χ) is the momentum cut-off field. We prove that the

|x|<r

scattering operator Sεr{V) corresponding to the cut-off interaction exists, and we study the
behavior of the scattering operator as well as the Heisenberg picture fields, as the cut-off
is removed.

I. Introduction

In two earlier papers [2, 3] we studied self-interacting scalar Boson
fields with interaction densities of the form V(φ(x)\ where V(α) is a
bounded continuous real function. In Ref. [2] we proved that for the
corresponding cut-off interaction the asymptotic limits of the fields
existed. In Ref. [3] we proved that the Heisenberg picture fields existed
as weak limits of the Heisenberg picture fields corresponding to the cut-
off interactions. In Section 2 of this paper we prove that the Heisenberg
picture fields are trivial in the sense that they are free fields. In Section 3
we prove that the scattering operator S£r(V) corresponding to the cut-off
interaction exists, and we prove that the limit as ε tends to zero is 1 if r is
small and fixed.

II. The Heisenberg Picture Fields

Let J^ by the Fock space of a free scalar boson field φ(x). The field
operators are given in terms of the annihilation-creation operator α*
and α by

(2.1)
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For annihilation-creation operator we use the Lorentz invariant
commutation relations

O(p), a*(p')l = ω(p)-1 δ(p - v'), (2-2)

where ω(p) = (m2 + p2ψ. We assume that the mass m of the free field is
strictly positive. Let ffl = L2(R3, ω~ι(p)dp\ then #C carries in a natural
way an irreducible representation of the inhomogeneous Lorentz group.
Since #" is the direct sum of the symmetric tensor products of Jf, J^ also
carries a representation of the inhomogeneous Lorentz group. For
he$? we set α*(Λ) = J a*(p)h(p)dp, where α* stands for α* or α. Then
α*(/ι) are closed operators with domain containing Do, the domain of the
free energy operator Ho. Moreover a(h) and a*(h) are adjoint operators
with the same domain of definition, hence a*(h) + a(h) are self-adjoint
with domain containing Do. The commutation relations for a*(h) may be
written

[α(Λ),α*(0)] = (ft,0). (2-3)

Let g be in C$(R3), such that g ̂  0, #(x) = ^ ( - χ ) , J gf(x)dx = 1 and g
has support in the open sphere of radius 1 and center at the origin in R3.
Let gε(x) = ε~ιg(ε~ιx), then gε has support in the open sphere of radius ε,
and gE tends to Dirac's ^-distribution as ε tends to zero. Define now the
cut-off field operators by

(2.4)

By what is said above the annihilation-creation operators, we see that
φε(x) is a self-adjoint operator with domain containing Do, the domain
o f H 0 .

Let V(cή be a bounded continuous real function. Then V(φε(x)) is a
bounded self-adjoint operator, such that \\V(φε(x))\\ ̂ \\V\\ao = sup|F(α)|.

Since V{φε(x))=U(-x)V(φε(0))U(x), where U(x) is a strongly con-
tinuous unitary group, we see that V(φε(x)) is strongly continuous in x.
Therefore we may define

Vε,r= ί V{φε(x))dx,
\x\<r

where the integral is a strong integral. VEιr is then a bounded self-adjoint
operator, and we have the following ε-independent estimate for its norm.

iy^yr3flF|U. (2.5)

The cut-off energy operator is defined by
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Since Vε r is a bounded self-adjoint operator we get that Hεr is a self-
adjoint with the same domain D o as Ho.

Let h be real and in L2(R% we then define the free Heisenberg
picture field and the Heisenberg picture field for the cut-off interaction by

where φ(h) = J φ{x) h(x)dx. Since eitH° and eίtHε'r leave DQ invariant we
see that the operators defined above are self-adjoint operators with
domain containing Do.

Lemma 1. Let F(α) be a real function which is the Fourier transform
of an L ̂ function V(s). Then

,r= J V(φε(x))dx= J $dsV(s)eis+<<x\

and Fg>r converge weakly to zero as ε tends to zero.

Proof. Let Ω be the Fock vacuum. Then Ω is in the domain of
00 1

ea*(h) = £ (a*yήγ for n [n j ^ j o s e e this we have only to compute
n

the norm of £ —-(a*(h))nΩ, and the computation gives us \\ea*{h)Ω\\2

« = o n

= e l ih|'2, which is finite. Moreover the set of vectors ea*{h)Ω, with h real and
in Jf spends a dense set in 3F. This is easieast seen by taking the strong
derivative of ea*iHhί + '" +Snh^Ω with respect to s l 9..., sn at zero. By doing
so we get α * ^ ) . . . a*(hn)Ω, and these vectors we know spends a dense
set in ϊF for hu ..., hn real and in J*f. Since the strong partial derivative is
formed by taking a strong limit of linear combinations of vectors of the
form ea*{Sίhι+'"+Srnhrn)Ω, we conclude that the vectors ea*(h)Ω with h
real and in Jf7 spends a dense set.

The spectral theory gives us the identity

F ε > r = J dx\dsV{s)eisφΛx).
\x\^r

Since F is in Lu we get by Lebesgue's lemma on dominated con-
vergence that it is enough to prove that eιsφε(-x) converge weakly to zero
for almost all s and x. Using that eisφΛx) = U(~x)eisφε(0)U(x\ it is
enough to prove that eisφε(0) tends weakly to zero for almost all s. By
uniform boundedness it is therefore enough to prove that

(ea*{hι)Ω,eisφε(0)ea*ih2)Ω) (2.6)

converge to zero for almost all s when hλ and h2 are real and in Jf.
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From the definition of φε(0) we see that φε(0) = a(hε) + a*(ft£), where
hε==2~ί(2π)~^gε. The commutation relations then gives us

eisφε(O) __ ̂ -

Hence (2.6) is equal to

e~is2\\hEp^e-iSa(hε)ea*(hι)Q eisa(hε) eά*(h) Q\

Since hε as well as h1 and h2 are all real, we get that {hε, hx) and (hε, h2) are
both real. Therefore the absolute value of (2.6) is bounded by
e^s2^2 e{hίJl2\ It is easy to see that \hε\

2 tends to infinity as tends to zero,
and this gives us that (2.6) tends to zero for almost all 5. This proves the
lemma.

Lemma 2. Let V(a) be a real continuous function which tends to zero at
infinity. Then ,

J y Vetr= I V(φε(x))dx

converge weakly to zero as ε tends to zero.

Proof. It is well known that a real continuous function which tends to
zero at infinity may be uniformly approximated by the Fourier transform
of Li-functions. Hence for any δ>0 we can find a V(ot) which is the
Fourier transform of an Lx-function such that \\V — VW^ <δ. Let
K,r

 = ί V(φε(x))dx. From the spectral theory of self-adjoint operators
\x\<r

we know that \\V{φε(x))-V{φε(x))\\ ^ \\V-V\\ΰ0<δ. This gives us that
Wε,r ~ ε̂,rll = f ^ δ . Let \\ and ψ2 be vectors of unite length in IF. Then

By Lemma 1 the last term on the right hand side tends to zero as ε tends
to zero. This gives us that

Since δ is arbitrary the lemma is proved.

Theorem 1. Let F(α) be a continuous real function which tends to zero
at infinity. Then Vεr= J V(φε(x))dx converge strongly to zero as ε

tends to zero, for all values of r.

Proof. Since any real continuous function V(a) which tends to zero
at infinity, may be written as a difference V(a) = F + (α)— V~(a) of two
positive continuous functions which both tend to zero at infinity, we see
that Vε r = Vε\ - V~r, where V^ = j" V± {φ(x))dx. Hence it is sufficient

\x\<r
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to prove that VEtf tends strongly to zero for V(a) positive. But if V(a) is
positive then Vε r is a positive operator with a unique square root V*r.
Since \\V^r\p\\2 = {ψ,V^rψ) we get by Lemma 2 that V^r converge
strongly to zero as ε tends to zero. From (2.5) it follows that Vξr is a norm
bounded uniformly in ε. Hence Vε>r= V*r. Vε]r is the product of two
strongly convergent and uniformly bounded operators. Therefore we
conclude that Vε r converge strongly to the product of the limits which is
zero. This proves the theorem.

Since Do is the domain of Ho as well as Hεr we know that both eιtHε'r

and eίtHo leaves D o invariant. D o is a Hubert space with its natural norm
||(H0H-l)φ||. Since Vz>r is bounded this norm is equivalent to the norm
\\(HEtr + b)ψ\\ for b large enough. Therefore besides being unitary groups
on #", eitHε-r and eitHo are semigroups on Do. As semigroups on Do they
are strongly continuous in ί, and uniformly bounded in t. Moreover,
eιtHε>r as an operator on D o is uniformly bounded in t and ε. To see the
strong continuity let ψ be in D o , then

o + 1) (eίtH^ψ - ψ)\\ ̂  a \\{H,tT + b) {eitH-"ψ - ψ)\\

which tends to zero by the strong continuity of eitHε-r on #". The strong
continuity of eιtHo and the uniform boundedness in t of eιtHε'r and eιtHo

is proved in the same way. To see that eιtHε>r is uniformly bounded also
in ε let ψ be in Do. Then

+ l)eitH<"ψ\\ ^ a \\(Het, + b)eitH*"xp\\

Since V^r is bounded uniformly in ε we may choose a and b as well as a'
and V independent of ε, this shows that eιtHε>r is uniformly bounded
also in ε as an operator on Do.

Lemma 3. Let V(a) be a real continuous function which tends to zero at
infinity. Then eitHε'r converge strongly to eitHo both as operators on <F and
as operators on Do. Moreover both convergences are uniform on compact
intervals in t.

Proof. We have already seen that eitHε>r and eίtHo are strongly con-
tinuous semigroups on both Do and #", and they are uniformly bounded
both on Do and 3F with respect to ε and t. Therefore by the Trotter-Kato
semigroup theorem (see Ref. [6], Ch. XI, § 12) it is enough to prove that
{z — Hεr)~ι converge strongly both on D o and £F to (z — H0)~ι for at
least one z. Using that Fε>r is bounded we get for z nonreal or sufficiently
negative.

(z-H^y'-iz-HoΓ^iz-HJ-'V^z-HoΓ1. (2.7)



184 R. Hoegh-Krohn:

Since (z — Hzγ)~1 is bounded uniformly in ε, we get from Theorem 1 that
(z — Hεr)"1 — (z — H^y1 converge strongly to zero as an operator on #1
To see that it also converge strongly as an operator on D o, we apply
(Ho -f1) from the left in (2.7). Since Fe>r is bounded uniformly in we see
that (Ho +1) (z — Hε y 1 is bounded uniformly in ε. So again it follows
from Theorem 1 that (z — Hε r)~ί — (z — if o)" 1 converge strongly to zero
as an operator on Do.

Theorem 2. Let V{a) be a continuous real function which tends to zero
at infinity. Then for h in L2 and ψ in D o , we have that φε r>t{h)\p converge
strongly to φ^tyψ as ε tends to zero. Moreover, if F(α) has a bounded and
uniformly continuous derivative V'(a) and h is in L1nL2, then
Φε,r,t(h) — Φ^h) is a bounded operator which converge strongly to zero as ε
tends to zero.

Proof. Let ψ be in Do. Since Ho has a strictly positive mass m, we
know that φ(h) is a bounded linear map from Do to #". Lemma 3 then
gives us that eιtHε'rψ converge strongly to φ{h)ψ. For the moreover part
we shall need the following lemma which is the corollary 2 of Ref. [3].

Lemma 4. Let F(α) be a continuous bounded real function with a
bounded and uniformly continuous derivative F'(α). Then for h in Lγr\L2,
we have that

| |ψ., r > ί(Λ) - ψ'(Λ)| | g C ( | t | 3 + 1 ) | | 7 ' I L \\]χ\\,,

where C depends only on the mass m.

For the proof of this lemma we refer to Ref. [3]. From this lemma we
get that φε^jity — φ^h) is bounded uniformly in ε. We have already
proved that it converges strongly to zero on Do. Using now the uniform
boundedness and the fact that Do is dense in ^ we get that it converges
strongly to zero on all of #". This completes the proof of Theorem 2.

Remark. The assumption in Theorem 1 that V(ά) should tend to zero
at infinity was chosen mainly to get a convenient class of functions to
work with, and we may prove Theorem 1 for a larger class of bounded
continuous real functions. We see that the class of continuous functions
which are zero at infinity, arise as the uniform closure of the Fourier
transforms of Lγ-functions. The Lx-functions were introduced in
Lemma 1. But we see that Lemma 1 remains true if we assume that F(α)
is the Fourier transform of a bounded measure μ such that {0} has
μ-measure zero. From this we see that it is enough to assume in Theorem 1
that F(α) is in the uniform closure of the Fourier transforms of bounded
measures for which {0} is a null set. The almost periodic functions which
are orthogonal, in the sense of almost periodic functions, to the constant
function, belongs for instance to this class of functions.
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III. The Vacuum for the Cut-Off-Interaction

The discussion of the vacuum for the cut-off interaction in this section
is mainly an adaption of the discussion of the vacuum for the space cut-
off λφ4 interaction in two space time dimensions by Glimm and Jaffe [1].
The fact that F(α) is a bounded function leads to some minor changes
from Glimm and Jaffe's discussion.

Let J ^ be the subspace of Jti? consisting of functions which are
constant on each cube of length I in R3 and with center at the lattice
points (/«!, ln2, ln3) where wx = 0, ± 1 , ±2, .... Let J ^ be the orthogonal
complement of JfJ, and let 3FX and #J be the Fock spaces with J^ and
J ^ as one particle spaces. J^ and # ; are then in a natural way identified
with subspaces of J*\ Let Pι be the orthogonal projection onto # j . The
direct sum decomposition Jt = J ^ © J ^ gives us the tensor product
decomposition #" = # j ® # J . Relative to this tensor produce decomposi-
tion, the identification of J^ with a subspace in ̂  is given by J^®Ω / 5

where Ω is the Fock vacuum in βt; and similar for # j . From the defini-
tion of φε(x) we see that φε(x) = a*(hx) -f a(hx), where

We now define

J. (4.1)

Since Pι commutes with complex conjugation we see that φεJ(x) is
self-adjoint. It follows from (4.1) that relative to the decomposition

# / ; φεJ(x) takes the form

J l (4.2)

where φ{

ε}{x) is the restriction of φεJ(x) to SFV We now define

Vε,rJ= ί V(φεJ(x))dx. (4.3)

From (4.2) we get that

Vt,r.ι=Vl%®\ (4.4)

where again Vε

a

r

]j is the restriction of Vε rΛ to J^.
//0 is uniquely defined by its action as multiplication by ω(p) in the

one particle space #?. We define HQΛ as the operator we get by sub-
stituting ω, for where ωι = PιωPh i.e. the average of ω over the cubes.
We then see that HoΛ commutes with Pι and relative to the decomposition

β Hoj has the form

(4.5)
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where H§\ and H^] are the restrictions of Ho t to # j and to # j . We now
define

and we see that Hεr a are self-adjoint on Do.

Lemma 5. Let V(oc) — J eιasdμ(s\ where μ is a bounded measure, then
for z nonreal or sufficiently negative {z — HεrJ)~ι converge in norm to
(z — H^y1 as I tends to zero.

Proof. Since Hε r and Hεrl has the same domain of definition we get

Hε rj is bounded below uniformly in /, therefore it is enough to prove
that {Hεr j — Hε r) (z — Hε r ) - 1 tends to zero in norm. Since Fε>r is bounded
this is the same as proving that (HεrΛ — HEr) (z — Hoy

x tends to zero in
norm. That \\(HO>1 — Ho) (z — HQ)'1 || tends to zero follows from a direct
computation with ω and ωι (see Ref. 1). To see that {VεrJ — Vε r) (z — HQ)'1

tends to zero in norm we have

^ j dx j d\μ\ (s) \\(eisφ^ix) - eίsφAx)) (z - Ho)"1 \\
\x\<r

= j dxjd\μ\{s)\\(eisφ^x)"ΦM)-ί){z-Hoy
1\\.

\x\<r

However

e . .(*,.,(x,-*.(»,) _ J =

 e —J- (φεJ(χ) - φε(χ)) .
Ψε,l\X) ~ Ψε\X)

e i < x — l . .
Since is a uniformly bounded function on the real axis we there-

α
fore get

WiV^j-VJiz-H.Γ'WSC j dxWiΦΛxi-φMUz-Ho)-^
|x|£r

where we have used the well known estimate

\\a*(h)ψ\\S — \\h\\\\(H0 + ί)ψ\\ .
m

Since \\Pιhx — hx\\ converge to zero the lemma is proved.

Corollary 1. Let F(α) be in the uniform closure of the Fourier transform
of bounded measures, then for z non-real or sufficiently negative
(z — Hεrj)~1 converge in norm to (z — Hεi)~^ as I tends to zero.
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Proof. Since V(a) may be uniformly approximated by a Fourier
transform V(cή of a bounded measure, we get that Vε>rJ is approximated
in norm by Vε>rfl uniformly in /. But this gives us that (z — Hεrj)"1 is
approximated in norm by {z — Hεrf])~1 uniformly in I. The norm con-
vergence of (z — Hεrj)'1 then follows from the norm convergence of
(z — Hεrj)~ι. This proves the corollary.

From (4.4) and (4.5) we get that relative to the decomposition
β we have

(4.6)

where H(

ε]lj is the restriction of HεrΛ to J^. We now define a vacuum
of a semi-bounded operator H as a normalized eigenvector of H with
eigenvalue equal to the lower spectral bound of H. Since H(Q\ has a
compact resolvent and Vε>rJ is bounded we see that Hfl t has a compact
resolvent and therefore a vacuum Ωεr Λ. Since H{Q\ is positive we get
from (4.6) that Ωε/%/ is also a vacuum for Hεr Λ. We now have the following
theorem.

Theorem 3. Let V(oc) be in the uniform closure of the Fourier transform
of bounded measures. Then both Hεrj and Hεr have unique vacuums
Ωε rj and Ωεr. Moreover with the phases determined by (Ω, Ωε rl)> 0 and
(Ω,Ωεr)>0 where Ω is the Fock vaccum, we have that ΩεrJ converge
strongly to Ωεr as I tends to zero.

Proof. The proof of the corresponding thing in Glimm and Jaffe [1]
goes in two steps. First they prove that any sequence ΩεrJn has a sub-
sequence Ωεrln which converge to a vacuum Ωεr of Hεr. We see from
their proof that once we have Corollary 1 and formula (4.6) then this
part of their proof can be carried over. Their second step is to prove
that Ωε rj and Ωεr are unique. This part is done with the help of the
theory of positive ergodie kernels and carries over point by point to our
case; apart from some simplifications due to the fact that F(α) is bounded.
For the details we refer to Ref. [1]. This proves Theorem 3.

We shall now be interested in what happens to the vacuum Ωεr as ε
tends to zero. In view of Theorem 1 we would expect it to converge to the
Fock vacuum Ω, if it converges at all.

Theorem 4. Let V(a) be a continuous real function which tends to zero
at infinity. If τhV\^^C, where C is positive and depends only on the mass
m; then with the phases determined as in Theorem 3, Ωεr converge strongly
to Ω as ε tends to zero.

Proof. r^WVW^^C implies that | |F f i > r | | ^ ~ ^ - C . Since the eigenvalue

of Ho corresponding to the eigenvector Ω, is separated from the rest of
the spectrum by a distance equal to m, we know by the theory of regular
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perturbation that there is an interval / C <0, m> such that the spectrum
of the operators H = H0 + V with | | F | | ^ C, do not intersect / (see
Theorem 4.10, Ch. V, Ref. [5]). Moreover C depends only on m; and
to the left of 7, H has a single eigenvalue which depends analytic on V.

If we now choose C = —— C we see that zero is a stable eigenvalue
4π

under the perturbation Hεr = Ho + VεjΓ. Stable eigenvalues is here used
in the sense of Kato (see § 1.4, Ch. VIII, Ref. [5]). Since Vε r is uniformly
bounded and tends strongly to zero as ε tends to zero by Theorem 1, we
find that Hεr converge to Ho in the generalized strong sense of Kato and
therefore the theory of asymptotic perturbation applies (Ch. VIII,
Ref. [5]). Since zero is a stable eigenvalue we therefore get that the
projection onto Ωε r converge in norm to the projection onto Ω. Hence
Ωε r(Ωεn Ω) converge strongly to Ω, and since the phases are determined
as in Theorem 3 this gives us that Ωεr converge strongly to Ω. This
proves the theorem.

IV. The Asymptotic Fields and the Scattering Operator for the Cut-Off
Interaction

Throughout this section we shall assume that V(a) is differentiable
with a bounded and uniformly continuous derivative F'(α). In Ref. [2],
we discussed the asymptotic fields for the cut-off interaction, and we
begin this section by stating some of the results obtained in Ref. [2]. The
assumption on V{a) in Ref. [2] was that it was the Fourier transform of
a bounded measure with a bounded first order moment. However,
using the Lemma 1 of Ref. [3] it is easy to see that the results of Ref. [2]
holds if we assume that V(ot) has a bounded and uniformly continuous
derivative F'(α).

The interaction picture annihilation-creation operators corre-
sponding to the cut-off interaction is defined by

a*(h) = e-itH*''eitHoa*(h)e~itHoeitH*>r (5.1)

where h is in Jf. Let D± be the domain of H5, which is also the domain of
{Hεr + bγ. Then cή{h) is a closed operator with domain containing D±
(see Ref. [2]). Since

eitHΌa\h)e~ίtHo = a*(h±t), (5.2)

where + goes with α* and — with a and ht(p) = eUωip)h(p), we may write
(5.1) as

α*(Λ) - e-itH<"a*(h±t)eitH<"-. (5.3)

The following three theorems are proved in Section 3 of Ref. [2].
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Theorem 5. Let h be in Jή? and φ in D±. Then a*(h)φ converge strongly
to a%(h)φ as t tends to ±00. The asymptotic limit operators a\(h) are
closed operators with domain containing D±, and a%(h) is a bounded linear
map from J f into the Banach space of bounded linear maps from Dx_ into
ϊF. Moreover a±(h) and a%(h) are adjoints.

Theorem 6. Let h and g be in jf. Then a% (h) maps Do into the domain
of a\(g\ and a\(g) a%(h) is a bounded linear map from Jtif ® ffl into the
Banach space of bounded linear maps from Do into # ! Moreover a\{h)
satisfy the same commutation relations on Do as do a*(h) on Ho. Hεr and
a\{h) satisfy the same commutation relations as do Ho and α#(/z), in the
sense that on D±

eίtH^a±(h)e-ίtH^ = a±(h_t),

eitHε'ra%{h)e-itH^ = a*±{h_t).

Theorem 7. Let Φ be an eigenvector of Hεr. Then for any h iin

For the proof of these theorems see Ref. [2].
In Section 4 of Ref. [2] we show that any vector that is annihilated by

a + (h) for all h in J^ is in the domain of a% (hj for all /i1 ?..., hn in Jf and
all n. Since the vacuum Ωε r is an eigenvector of H£ r we get by Theorem 5.3
that it is in the domain of a%(h^ ... a%(hn). Let 3F± be the smallest closed
subspace of $F containing all vectors of the form α* (/H) ... a%(hn)Ωεr.
Due to the commutation relations for a%{h\ we see that # + are Fock
spaces with annihilation-creation operators a\ and vacuum Ωεr. By
regarding 3F± as Fock spaces in this way we get a natural identification
of the asymptotic Fock spaces # + with the free Fock space 8F given by
the "wave" operators W±, where W± are defined by

W±a*(hx)... άUhJΩ^aKhJ ... a%(hn)Ωε,r. (5.4)

Due to the commutation relations for a\ we get that W± are isometric
from 3F onto # + , We have already seen that the vacuum Ωεγ is unique.
It is therefore natural to identify a ? . ^ ) . . . Ωεr with an outgoing (in-
coming) ^-particle state with momentum distribution given by hu ..., hn,
for the cut-off interaction.

The scattering amplitude for the cut-off interaction for m incoming
particles with momentum distribution hu ..., hm; and n outgoing particles
with momentum distribution gu ...,gn is then given by

. (5.5)
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By (5.4) we get that this is equal to

(W+ α * ^ i ) ••• a * ( 0 j « > W- a*(hι) ••• a*(hm)Ω) ( 5 6 )

= (a*(0i) ^ W a W+ W_ a%iK)... Λ*(hJD)

Hence we get that the scattering operator for the cut-off interaction is

given by
S = W* W_ . (5.7)

Since W± are isometrics in F we see that | |5| | S 1, and that S is unitary
if and only if ^+ ~ #L. Let Eεr be the eigenvalue of Ωεr. From the
commutation relations for a*± and Hεr we get from (5.4) that

and this together with (5.7) gives us that

H0S = SH0. (5.9)

We shall now be interested in what happens with S if we keep F(α) and

r fixed but let ε tend to zero.

Lemma 6.Let h be in 3/e. Then Fε ?, leaves the domain of a*{h) invariant and

where C depends only on r and on IK'I^. Moreover

where the integral is taken in the strong sense.

For the proof of this lemma see Section 3, Ref. [2]. In Ref. [2] we
assume that V{a) is the Fourier transform of a bounded measure with a
bounded first order moment. The technique for the proof when F(α) has
a bounded uniformly continuous derivative F'(α) is to be found in the
proof of Lemma 1, Ref. [3].

Let J^o be the set of functions in J f which has compact support and
is zero in a neighborhood of zero. Let h be in jf0. From Lemma 6 we
then see that \\la*{h±s\ Vε^ converge to zero faster than any inverse
power in \s\, and the convergence is uniform in ε. From Lemma 6 we also
get that

\\a\{h)-aξ(h)\\ύ] Wίa*(h±slVεJ\\ds.
t

Hence for any δ>0 we may choose t so large that \\a\{h)-a*{h)\\ < δ ,
and this choice of t may be done independently of ε.
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Lemma 7. Assume also that F(α) tends to zero at infinity. Then for
h in«#o, a%{h) — a*(h) is norm bounded uniformly in ε and converge strongly
to zero as ε tends to zero.

Proof. The uniform norm boundedness follows from Lemma 6. To
prove the strong convergence write

a\(h) - a*(h) = (a%(h) - α»(ft)) + (α?(Λ) - a\h)).

We have already seen that the first term can be made smaller than δ and
the choice of t does not depend on ε. By Lemma 3 the last term tends
strongly to zero on Do. Hence we get that a\{h) — a*(h) converge strongly
to zero on Do. The uniform boundedness then gives us strong con-
vergence on all of 3F. This proves the lemma.

Theorem 8. Let F(α) be a differentiable real function which tends to
zero at infinity, and assume that F'(α) is bounded and uniformly continuous.
If r31| Flloo g C, where C is the constant of Theorem 4, then the scattering
operator S converges weakly to 1 as ε tends to zero.

Proof. From Theorem 4 we get that Ωε r converge strongly to Ω as ε
tends to zero. Let h be in J^o. From Lemma 7 we then see that a*(h)Ωε r

converge strongly to a*(h)Ω, since

a*±{h)ΩSt, - a*(h)Ω = (a*(h) - a{h))Ω^r + a*(h) ( ί \ , - Ω).

In the same way we see that for h1,...,hn in J f0aXQiJ ... a%(hn)Ωε r

= W±a*(h1)... a*(hn)Ω converge strongly to a*(hx)... a*(hn)Ω. Hence
W± converge strongly to 1 on a dense subset. Since W+ are isometries
we conclude that they converge strongly to 1 on #". It follows then from
(5.7) that S converges weakly to 1. This proves the theorem.

Remark. From the definition of the scattering operator we see that
if Vί (α) — F 2 (α) = constant then the cut-off interaction corresponding
to Vx (α) and F 2 (α) has the same scattering operator. This fact of course
extends the validity of Theorem 8 somewhat.

V. Removal of the Cut-Off, and the Scattering Operators for Scalar Fields

In the last section we proved that the scattering operator Sε r(V)
existed for the cut-off interaction J V(φε(x))dx, under the assumption

\x\<r

that F(α) has a bounded and uniformly continuous derivative V'(a).
Since ||Sε>l.(F)|| ^ 1 for all β, r and F, we may use the fact that the unit
ball in J* is weakly compact to construct a scattering operator Sεr(F)
for a larger class of cut-off interactions j F(φε(x))dx.
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Let F(α) be any continuous function of α, and let Fn(α) be a sequence
of functions with bounded and uniformly continuous derivatives such
that Vn(oή converge pointwise to F(a). We know that such a sequence
always exists. Since ||Sεfr(Vn)\\ ^ 1 there is a subsequence Vm(a) such that
Sε,r(Vm) converges weakly to an operator Sεr(F). Sεr(F) may not be
unique since it may depend on the sequence Vn(cή and on the subsequence
Vm(μ) we choose. But from (5.9) we will always have that Sε r (F) commutes
with Ho, and since the unit ball is weakly closed we have also that

Having constructed in this way for each ε and r and Sε r(F), we may
again use weak compactness to select sequences εn tending to zero and
rn tending to infinity such that SEn rn(F) converge weakly to a limit S(F).
S(F) will commute with Ho and ||S(F)|| rg 1. It is natural to interpret
S(F) constructed in this way as the relativistic scattering operator cor-
responding to the interaction density F(φ(x)). It is probable from what
we have seen in the previous sections that S(F) is the identity of F(α) is
bounded and tend to zero at infinity even though we have not been able
to prove this.

A more general class of scattering operator are obtained by using
renormalized interaction densities. A renormalized interaction density
is given by a family of continuous functions Fε(α). As the scattering
operator for the renormalized interaction we take a weak limit point of
Sεr(Fε) as ε tends to zero and r to infinity. As an example consider the
φ 4 theory. Here

Fε(ot) = α o (ε)α 4 + α 1 (ε)α 3 + a2(ε)oc2 + a3(ε)<xx

where αf(ε) will be functions depending on ε. A weak limit point of
Sεr(FE) as ε tends to zero and r to infinity is then a scattering operator
for the φ 4 theory.

We may also introduce the set £f of all local relativistic scattering
operators in the following way. Let <fεγ be the weak closure of the set
{Sέtf(V); ε ^ ε , r^r and V real with a bounded and uniformly con-
tinuous derivative}. We then define

^ = Π f i , Γ ^ f Γ , (6.1)

6f is then a closed non-empty subset of the unit ball of operators in #1
Due to (5.9) all the elements in <f commutes with Ho. An element S in
9* is a local relativistic scattering operator corresponding to a generalized
renormalization scheme, in the sense that S would be a weak limit point
of a sequence SEn rn(VSn'rn), where the functions Fε' r(α) may depend in an
arbitrary manner on ε and r. It is natural to identify the set 9> with the set
of all local relativistic scattering operators for scalar fields.
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