Disjointness of the KMS-States of Different Temperatures

MASAMICHI TAKESAKI

University of California, Los Angeles and Tôhoku University, Japan

Received November 3, 1969

Abstract. Disjointness of (KMS)-states of different temperatures is proved.

Let A be a C*-algebra with a one parameter automorphism group σ_t . A state φ of A is said to satisfy the Kubo-Martin-Schwinger (KMS) boundary condition for $\beta > 0$ if for every pair x, y in A there exists a function F(z) holomorphic in the strip: $0 < \text{Im} z < \beta$ with boundary values:

$$F(t) = \varphi(\sigma_t(x)y)$$
 and $F(t+i\beta) = \varphi(y\sigma_t(x))$. (1)

If we assume the boundedness of the relevant function F on the whole strip: $0 \leq \text{Im } z \leq \beta$, the condition (1) implies the σ_t -invariance of φ by Sturm's Theorem, as is shown by Winnink [11].

In quantum thermodynamics, the above β is given by $\beta = 1/kT$, where k is the Boltzmann constant and T is the absolute temperature of the system. Recently, a great deal of progress on the KMS boundary condition has been done by several physicists, for example, [1, 2, 4, 6, 7, and 11].

From the purely mathematical point of view, the author has shown recently in [9] that to every faithful normal state φ of a von Neumann algebra M there corresponds a unique one-parameter automorphism group σ_t^{φ} of M with respect to which φ satisfies the KMS boundary condition for $\beta = 1$. The proof is based on Tomita's theory [9, 10]. This σ_t^{φ} is called the *modular automorphism group* of M associated with φ .

Therefore, the following question naturally comes into consideration: How does the modular automorphism group σ_t^{φ} depend on a normal faithful state φ ? What changes will occur in the modular automorphism group σ_t^{φ} for different normal faithful states?

In this paper, we shall show the relation between σ_t^{φ} and σ_t^{ψ} for two normal faithful states φ and ψ commuting in the sense of [9: Definition 15.1], that is, when $\varphi + i\psi$ and $\varphi - i\psi$ have the same absolute

³ Commun. math Phys., Vol 17

value in the sense of the polar decomposition. As an application, it is shown that if M is of type III, and ψ satisfies the KMS condition with respect to the modular automorphism σ_t^{φ} associated with a faithful normal state φ for some β , then $\beta = 1$ and $\sigma_t^{\varphi} = \sigma_t^{\psi}$.

The relation of σ_t^{φ} and σ_t^{ψ} for general pair φ , ψ will be discussed in a separate paper.

Before going into the discussion, the author would like to express his thanks to Professor H. A. Dye for his kind hospitality at UCLA.

Let φ be a fixed normal faithful state of a von Neumann algebra M. Considering the cyclic representation of M induced by φ , we assume that M acts on a Hilbert space \mathscr{H} with a cyclic vector ξ_0 with $\varphi(x) = (x\xi_0|\xi_0), x \in M$. Put $\mathfrak{A} = M\xi_0$ and define a product and an involution in \mathfrak{A} as follows:

$$(x\xi_0)(y\xi_0) = xy\xi_0, \quad x, y \in M;$$

 $(x\xi_0)^* = x^*\xi_0, \quad x \in M.$

Then, with this structure \mathfrak{A} turns out to be a generalized Hilbert algebra as in [9: Theorem 12.1]. Let Δ be the modular operator of \mathfrak{A} . Then the modular automorphism group σ_t^{φ} is given by:

$$\sigma_t^{\varphi}(x) = \Delta^{it} x \Delta^{-it}, \quad x \in M, \ t \in \mathbf{R}.$$

Let \mathfrak{A}_0 be the modular Hilbert algebra contained in \mathfrak{A} , which is constructed in [9: Theorem 10.1]. In this situation, we shall use the notations and the terminology in [9].

Let M_{φ} denote the set of all $x \in M$ satisfying the equality: $x\varphi = \varphi x$, that is,

$$\varphi(xy) = \varphi(yx)$$
 for every $y \in M$.

Then M_{φ} is exactly the algebra of all fixed elements of σ_t^{φ} by [9: Lemma 15.8].

Lemma 1. If $h \in M_{\varphi}$ is positive and invertible and ψ is defined by $\psi(x) = \varphi(xh), x \in M$, then σ_t^{ψ} is given by:

$$\sigma_t^{\varphi}(x) = \sigma_t^{\varphi}(h^{it}xh^{-it}), \quad x \in M, \ t \in \mathbf{R}.$$

Proof. Since h and Δ commute, h leaves \mathfrak{A}_0 invariant; in particular $h\xi_0$ is in \mathfrak{A}_0 . Take an $x \in M$ and an η in \mathfrak{A}_0 with $y = \pi(\eta) \in M$. Define a function $F(\alpha)$ by:

$$F(\alpha) = (\pi(\Delta^{-i\alpha}\eta)h\xi_0|h^{i\bar{\alpha}}x^*h^{-i\bar{\alpha}}\xi_0), \quad \alpha \in \mathbb{C}.$$

Then $F(\alpha)$ is analytic on the whole plane C. For each $t \in \mathbf{R}$, we have

$$\begin{split} F(t) &= \left(\pi (\Delta^{-it} \eta) h\xi_0 | h^{it} x^* h^{-it} \xi_0 \right) \\ &= \left(h^{it} x h^{-it} \Delta^{-it} y \Delta^{it} h\xi_0 | \xi_0 \right) \\ &= \left(h^{it} x h^{-it} \Delta^{-it} y h\xi_0 | \Delta^{-it} \xi_0 \right) \\ &= \left(\Delta^{it} h^{it} x h^{-it} \Delta^{-it} y h\xi_0 | \xi_0 \right); \\ F(t+i) &= \left(\pi (\Delta^{-i(t+i)} \eta) h\xi_0 | h^{i(t-i)} x^* h^{-i(t-i)} \xi_0 \right) \\ &= \left(\pi (\Delta^{-it+1} \eta) h\xi_0 | h^{it+1} x^* h^{-it-1} \xi_0 \right) \\ &= \left(\Delta^{-it+1} y \Delta^{it-1} h\xi_0 | h^{it+1} x^* h^{-it-1} \xi_0 \right) \\ &= \left(\Delta^{-it+1} y h\xi_0 | h^{it+1} x^* h^{-it-1} \xi_0 \right) \\ &= \left(\Delta^{-it+1} y h\xi_0 | h^{it+1} x^* h^{-it-1} \xi_0 \right) \\ &= \left(\Delta^{it+1} x^* h^{-it-1} \xi_0 | \Delta^{-it+1} y h\xi_0 \right) \\ &= \left(\Delta^{\frac{1}{2}} h^{it+1} x^* h^{-it-1} \xi_0 | \Delta^{-it-1} \Delta^{\frac{1}{2}} h y^* \xi_0 \right) \\ &= \left(h^{it-1} x h^{-it+1} \xi_0 | \Delta^{-it} h y^* \xi_0 \right) \\ &= \left(y h \Delta^{it} h^{it-1} x h^{-it} h^{-it} h\xi_0 | \xi_0 \right) . \end{split}$$

Hence we have

$$F(t) = \psi(\sigma_t^{\varphi}(h^{it}xh^{-it})y);$$

$$F(t+i) = \psi(y\sigma_t^{\varphi}(h^{it}xh^{it})).$$

For an arbitrary element $y \in M$, there exists a sequence $\{\eta_n\}$ in \mathfrak{A}_0 such that

$$y\xi_0 = \lim \pi(\eta_n)\xi_0 = \lim \eta_n;$$

$$y^*\xi_0 = \lim \pi(\eta_n)^*\xi_0 = \lim \eta_n^*;$$

$$yh\xi_0 = \lim \pi(\eta_n)h\xi_0;$$

$$y^*h\xi_0 = \lim \pi(\eta_n)^*h\xi_0.$$

Then we have a sequence $\{F_n\}$ of analytic functions defined by:

$$F_n(\alpha) = (\pi(\Delta^{-i\alpha}\eta_n)h\xi_0 \mid h^{i\bar{\alpha}}x^*h^{-i\bar{\alpha}}\xi_0)$$

= $(\Delta^{-i\alpha}\pi(\eta_n)h\xi_0 \mid h^{i\bar{\alpha}}x^*h^{-i\bar{\alpha}}\xi_0).$

Observing that

$$\lim \Delta^{\frac{1}{2}} \pi(\eta_n) h \xi_0 = \lim J S \pi(\eta_n) h \xi_0$$
$$= \lim J h \pi(\eta_n)^* \xi_0$$
$$= J h y^* \xi_0,$$

3*

we have

$$\lim (1 + \Delta^{\frac{1}{2}}) \pi(\eta_n) h \xi_0 = y h \xi_0 + J h y^* \xi_0.$$

Since $|| \Delta^t (1 + \Delta)^{-1} || \leq 1$ for $0 \leq t \leq \frac{1}{2}$, we have

$$\lim \Delta^t \pi(\eta_n) h \xi_0 = \Delta^t y h \xi_0$$

uniformly for $0 \le t \le \frac{1}{2}$. Since $\Delta^{-i\alpha} = \Delta^{-is} \Delta^t$, where $\alpha = s + it$, $s, t \in \mathbf{R}$, the sequence $\{F_n(\alpha)\}$ converges uniformly to a function $F^1(\alpha)$ in the lower half strip: $0 \le \operatorname{Im} \alpha \le \frac{1}{2}$, which is defined by

$$F^{1}(\alpha) = (\Delta^{-i\alpha} y h \xi_{0} | h^{i\overline{\alpha}} x^{*} h^{-i\overline{\alpha}} \xi_{0}), \quad 0 \leq \operatorname{Im} \alpha \leq \frac{1}{2};$$

hence $F^1(\alpha)$ is holomorphic in and continuous on the lower half strip.

Now, we shall consider the upper half strip: $\frac{1}{2} \leq \text{Im} \alpha \leq 1$. If $\frac{1}{2} \leq \text{Im} \alpha \leq 1$, then we have

$$\begin{split} F_n(\alpha) &= \left(\Delta^{-i\alpha} \pi(\eta_n) h \xi_0 \mid h^{i\bar{\alpha}} x^* h^{-i\bar{\alpha}} \xi_0 \right) \\ &= \left(J h^{i\bar{\alpha}} x^* h^{-i\bar{\alpha}} \xi_0 \mid J \Delta^{-i\alpha} \pi(\eta_n) h \xi_0 \right) \\ &= \left(J h^{i\bar{\alpha}} x^* h^{-i\bar{\alpha}} \xi_0 \mid \Delta^{-i\bar{\alpha}} J \pi(\eta_n) h \xi_0 \right) \\ &= \left(\Delta^{\frac{1}{2}} S h^{i\bar{\alpha}} x^* h^{-i\bar{\alpha}} \xi_0 \mid \Delta^{-i\bar{\alpha}} \Delta^{\frac{1}{2}} S \pi(\eta_n) h \xi_0 \right) \\ &= \left(\Delta^{\frac{1}{2}} h^{i\alpha} x h^{-i\alpha} \xi_0 \mid \Delta^{\frac{1}{2} - i\bar{\alpha}} h \pi(\eta_n)^* \xi_0 \right) \\ &= \left(h^{i\alpha} x h^{-i\alpha} \xi_0 \mid \Delta^{1 - i\bar{\alpha}} h \pi(\eta_n)^* \xi_0 \right). \end{split}$$

By the same reason as for the lower half strip, $F_n(\alpha)$ converges uniformly to a function $F^2(\alpha)$ on the upper half strip: $\frac{1}{2} \leq \text{Im} \alpha \leq 1$, which is defined by:

$$F^{2}(\alpha) = (h^{i\alpha}xh^{-i\alpha}\xi_{0} \mid \Delta^{1-i\overline{\alpha}}hy^{*}\xi_{0}), \quad \frac{1}{2} \leq \operatorname{Im} \alpha \leq 1;$$

hence $F^2(\alpha)$ is holomorphic in and continuous on the upper half strip. The functions $F^1(\alpha)$ and $F^2(\alpha)$ coincide on the line: $\operatorname{Im} \alpha = \frac{1}{2}$; so they define a function F holomorphic in and continuous on the strip: $0 \leq \operatorname{Im} \alpha \leq 1$.

For each $t \in \mathbf{R}$, we have

$$\begin{split} F(t) &= (\Delta^{-it}yh\xi_0 \mid h^{it}x^*h^{-it}\xi_0) \\ &= (h^{it}xh^{-it}\Delta^{-it}yh\xi_0 \mid \Delta^{-it}\xi_0) \\ &= (\Delta^{it}h^{it}xh^{-it}\Delta^{-it}yh\xi_0 \mid \xi_0) \\ &= \psi(\sigma_t^{\varphi}(h^{it}xh^{-it})y); \\ F(t+i) &= (h^{i(t+i)}xh^{-i(t+i)}\xi_0 \mid \Delta^{1-i(t-i)}hy^*\xi_0) \\ &= (y\Delta^{it}h^{it}xh^{-it}\Delta^{-it}h\xi_0 \mid \xi_0) \\ &= \psi(y\sigma_t^{\varphi}(h^{it}xh^{-it})). \end{split}$$

Thus, the one parameter automorphism group: $x \in M \to \sigma_i^{\varphi}(h^{it}xh^{-it})$, $t \in \mathbf{R}$, is actually the modular automorphism group associated with ψ . This completes the proof.

Remark. If σ_t is the modular automorphism group associated with a normal faithful state φ , then for each $x, y \in M$, the function $F(\alpha)$ on the strip: $0 \leq \text{Im} \alpha \leq 1$ satisfying condition (1) is bounded.

In fact, as seen above, $F(\alpha)$ is given by:

$$F(\alpha) = (\Delta^{-i\alpha} y \xi_0 | x^* \xi_0) \quad \text{if} \quad 0 \leq \operatorname{Im} \alpha \leq \frac{1}{2};$$
$$= (x \xi_0 | \Delta^{1-i\overline{\alpha}} y^* \xi_0) \quad \text{if} \quad \frac{1}{2} \leq \operatorname{Im} \alpha \leq 1.$$

Hence we have, for $s \in \mathbf{R}$ and $0 \leq t \leq \frac{1}{2}$,

$$|F(s+it)| \le ||\Delta^{t} y \xi_{0}|| ||x^{*} \xi_{0}||;$$

for $s \in \mathbf{R}$ and $\frac{1}{2} \leq t \leq 1$, we have

$$|F(s+it)| \leq ||x\xi_0|| || \Delta^{1-t} y^* \xi_0||.$$

Since $y\xi_0$ and $y^*\xi_0$ are both in $\mathscr{D}(\Delta^{\frac{1}{2}})$, we have

$$\sup \{ \| \Delta^{t} y \xi_{0} \| : 0 \le t \le \frac{1}{2} \} < +\infty ;$$
$$\sup \{ \| \Delta^{1-t} y^{*} \xi_{0} \| : \frac{1}{2} \le t \le 1 \} < +\infty ,$$

so that $F(\alpha)$ is bounded.

Therefore, we can estimate the behavior of $F(\alpha)$ in the strip: $0 \leq \text{Im} \alpha \leq 1$ by Phragmen-Lindelöf theorem.

Theorem 2. If ψ is a σ_t^{φ} -invariant, normal, faithful state of M, then there exists a non-singular positive self-adjoint operator h affiliated with M_{φ} such that

$$\sigma_t^{\psi}(x) = \sigma_t(h^{it}xh^{-it}).$$

Proof. By [9: Theorem 15.2], there exists a positive self-adjoint operator k affiliated with M_{φ} such that

$$\psi(x) = (xk\xi_0 | k\xi_0), \quad x \in M.$$

Since the range projection of k is the support projection of ψ , k has dense range; hence it is non-singular. Let

$$k=\int_0^\infty \lambda de(\lambda)$$

be the spectral decomposition of k. Then all projections $\{e(\lambda)\}$ are in M_{ω} . Put n

$$k_n = e(1/n) + \int_{1/n} \lambda de(\lambda) + (1 - e(n));$$

$$\psi_n(x) = \varphi(k_n x k_n) = \varphi(x k_n^2), \quad n = 1, 2, \dots$$

M. Takesaki:

Since $k_n \xi_0$ converges strongly to $k \xi_0$, ψ_n converges to ψ with respect to the norm topology in M_* . Put $h_n = k_n^2$. Then by Lemma 1, the modular automorphism group σ_t^n of ψ_n is given by:

$$\sigma_t^n(x) = \sigma_t^{\varphi}(h_n^{it} x h_n^{-it}), \quad x \in M, \ t \in \mathbf{R}.$$

Put $h = k^2$ and $\sigma'_t(x) = \sigma^{\varphi}_t(h^{it}xh^{-it})$, $x \in M$, $t \in \mathbb{R}$. Take a pair x, y in M. For each n, there exists a function $F_n(z)$ holomorphic in the strip: $0 \leq \text{Im} z \leq 1$ with boundary values:

$$F_n(t) = \psi_n(\sigma_t^n(x)y);$$

$$F_n(t+i) = \psi_n(y\sigma_t^n(x)).$$

Consider functions f and g on R defined by:

$$f(t) = \psi(\sigma'_t(x)y) = (\sigma^{\varphi}_t(h^{it}xh^{-it})yk\xi_0|k\xi_0);$$

$$g(t) = \psi(y\sigma'_t(x)) = (y\sigma_t(h^{it}xh^{-it})k\xi_0|k\xi_0).$$

Since h_n^{it} converges strongly to h^{it} as $n \to \infty$ and the product operation is strongly continuous on the bounded part of M as a function of two variables, $h_n^{it} x h_n^{-it}$ converges strongly to $h^{it} x h^{-it}$ as $n \to \infty$. Then we have

$$\begin{split} |F_{n}(t) - f(t)| &= |(\Delta^{it} h_{n}^{it} x h_{n}^{-it} \Delta^{-it} y k_{n} \xi_{0} | k_{n} \xi_{0}) - (\Delta^{it} h^{it} x h^{-it} \Delta^{-it} y k \xi_{0} | k \xi_{0})| \\ &= |(h_{n}^{it} x h_{n}^{-it} \Delta^{-it} y k_{n} \xi_{0} | k_{n} \xi_{0}) - (h^{it} x h^{-it} \Delta^{-it} y k \xi_{0} | k \xi_{0})| \\ &\leq |(h_{n}^{it} x h_{n}^{-it} \Delta^{-it} y k_{n} \xi_{0} | (k_{n} - k) \xi_{0})| \\ &+ |(\{h_{n}^{it} x h_{n}^{-it} \Delta^{-it} y k_{n} - h^{it} x h^{-it} \Delta^{-it} x \} \xi_{0} | k \xi_{0})| \\ &\leq ||x|| ||y|| ||k_{n} \xi_{0}|| ||(k_{n} - k) \xi_{0}|| + ||h_{n}^{it} x h_{n}^{-it} \Delta^{-it} y (k_{n} - k) \xi_{0}|| ||k \xi_{0}|| \\ &+ ||(h_{n}^{it} x h_{n}^{-it} - h^{it} x h^{-it}) \Delta^{-it} y k \xi_{0}|| ||k \xi_{0}|| ; \end{split}$$

hence $F_n(t)$ converges to f(t) for each $t \in \mathbf{R}$. Similarly $F_n(t+i)$ converges to g(t) for each $t \in \mathbf{R}$. The sequence $\{F_n(z)\}$ is uniformly bounded on the boundary of the strip: $0 \leq \text{Im } z \leq 1$, so that it is uniformly bounded on the strip. Let Φ be a C^{∞} -function on \mathbf{R} with compact support. Then it's Fourier transform $\hat{\Phi}$:

$$\hat{\Phi}(t) = \int_{-\infty}^{\infty} \exp(-ist) \Phi(s) ds$$

is a C^{∞} -function of rapidly decreasing, which is extended to a entire function on the whole plane C. Then we have

$$\int_{-\infty}^{\infty} \hat{\Phi}(t) F_n(t) dt = \int_{-\infty}^{\infty} \hat{\Phi}(t+i) F_n(t+i) dt$$

for n = 1, 2, ... Hence by Lebesgue's convergence theorem, we have

$$\int_{-\infty}^{\infty} \hat{\Phi}(t) \, \psi(\sigma'_t(x)y) dt = \int_{-\infty}^{\infty} \hat{\Phi}(t+i) \, \psi(y \sigma'_t(x)) dt \, ,$$

which is equivalent to the KMS-boundary condition (1) for $\beta = 1$, see for example [1]. Therefore, σ'_t is the modular automorphism group associated with ψ .

Corollary 3. If M is of type III, then there is no normal state of M satisfying the KMS-boundary condition with respect to σ_t^{φ} for $\beta \neq 1$.

Proof. Suppose ψ is a normal state of M satisfying the KMSboundary condition with respect to σ_t^{φ} for $\beta \neq 1$. By [9: Theorem 13.3], the support projection e of ψ is central. Considering eM, we may assume that ψ is faithful. Since ψ is σ_t^{φ} -invariant, we can apply Theorem 2 to ψ . Namely, there exists a positive self-adjoint operator h affiliated with M_{φ} such that the modular automorphism group σ_t^{ψ} associated with ψ is given by: $\sigma_t^{\psi}(x) = \sigma_t^{\varphi}(h^{it}xh^{-it})$. On the other hand, by the assumption for ψ , $\sigma_{\beta t}^{\varphi}$ is the modular automorphism group associated with ψ . Therefore, by the unicity of the modular automorphism group [9: Theorem 13.2] we have

$$\sigma_t^{\varphi}(h^{it}xh^{-it}) = \sigma_{\beta t}^{\varphi}(x), \quad x \in M, \ t \in \mathbf{R};$$
$$h^{it}xh^{-it} = \sigma_{(\beta-1)t}^{\varphi}(x), \quad x \in M, \ t \in \mathbf{R}.$$

Therefore, we have

$$\sigma_t^{\varphi}(x) = h^{it/(\beta-1)} x h^{-it/(\beta-1)}$$

hence the modular automorphism group σ_t^{φ} is inner, which means by [9: Theorem 14.1] that *M* is semi-finite. This is a contradiction.

Corollary 4. If a normal state ψ satisfies the KMS-boundary condition with respect to σ_t^{φ} for $\beta = 1$, then there exists a positive self-adjoint operator k affiliated with the center Z of M such that

$$\psi(x) = (xk\xi_0 | k\xi_0), \quad x \in M.$$

In particular, if M is a factor, then $\varphi = \psi$.

Proof. As in Corollary 3, we may assume that ψ is faithful. As in the proof of Theorem 2, ψ has the form: $\psi(x) = (xk\xi_0 | k\xi_0), x \in M$; and the modular automorphism group σ_t^{ψ} associated with ψ is given by $\sigma_t^{\psi}(x) = \sigma_t^{\varphi}(k^{2it}xk^{-2it})$. On the other hand, by the assumption on ψ and by the unicity of the modular automorphism group [9: Theorem 13.2] we have $\sigma_t^{\varphi}(x) = \sigma_t^{\varphi}(k^{2it}xk^{-2it})$; hence k^{2it} belongs to Z for every $t \in \mathbf{R}$, which completes the proof.

Now, let A be a C*-algebra with a one parameter automorphism group σ_t , $t \in \mathbf{R}$. In the following σ_t will be fixed and let a β -(KMS)-state of A be a state of A satisfying the KMS-boundary condition with respect to σ_t for β . Let K_{β} denote the set of all β -(KMS)-states of A. Put $K = \bigcup_{\beta>0} K_{\beta}$. Clearly each K_{β} is convex. If we assume the continuity of the map: $t \rightarrow \sigma_t(x), x \in A$, in the norm topology in A, then it is easily seen that K_{β} is compact. Therefore, by Corollary 4, K_{β} is a Choquet simplex in the sense of [8]. But if we do not assume the continuity for σ_t , then we can not expect compactness for K_{β} . In fact, K_{β} has no extremal point in many cases (see [5]).

Theorem 5. In the above situation, let φ and ψ be a β -(KMS) state and a γ -(KMS) state of A respectively. Suppose one of the cyclic representations π_{φ} and π_{ψ} induced by φ and ψ is of type III. Then if $\beta \neq \gamma$, then π_{φ} and π_{ψ} are disjoint.

Proof. Let \mathscr{H} and \mathscr{K} be the representation spaces of π_{φ} and π_{ψ} respectively. Let M and N be the von Neumann algebras generated by $\pi_{\varphi}(A)$ and $\pi_{\psi}(A)$ respectively. Suppose π_{φ} and π_{ψ} are not disjoint. Then there exist a central projection p in M and a central projection q in N and an isomorphism π of Mp onto Nq such that $\pi(\pi_{\varphi}(x)p) = \pi_{\psi}(x)q$, $x \in A$. Let $\xi_{\varphi} \in \mathscr{H}$ and $\xi_{\psi} \in \mathscr{H}$ denote the cyclic vectors corresponding to φ and ψ respectively. Then it is not too hard to see that the states of A defined by

$$\begin{split} \varphi_1(x) &= \frac{1}{\|p\xi_{\varphi}\|^2} \left(\pi_{\varphi}(x) p\xi_{\varphi} | p\xi_{\varphi} \right); \\ \psi_1(x) &= \frac{1}{\|q\xi_{\psi}\|^2} \left(\pi_{\psi}(x) q\xi_{\psi} | q\xi_{\psi} \right), \quad x \in A , \end{split}$$

are β -(KMS) and γ -(KMS) respectively and that the cyclic representations π_{φ_1} and π_{ψ_1} induced by φ_1 and ψ_1 are quasi-equivalent. Therefore, we may assume that π_{φ} and π_{ψ} are quasi-equivalent. Let π be an isomorphism of M onto N such that $\pi \circ \pi_{\varphi} = \pi_{\psi}$. By [9: Theorem 13.3], there exist one parameter automorphism groups σ_t^M of M and σ_t^N of N such that

$$\pi_{\varphi}(\sigma_t(x)) = \sigma_t^M \pi_{\varphi}(x);$$

$$\pi_{\psi}(\sigma_t(x)) = \sigma_t^N \pi_{\varphi}(x), \quad x \in A.$$
(*)

Furthermore, the normal states $\tilde{\varphi}$ of M and $\tilde{\psi}$ of N defined by

$$\tilde{\varphi}(x) = (x\xi_{\varphi} | \xi_{\varphi}), \ x \in M; \qquad \tilde{\psi}(x) = (x\xi_{\psi} | \xi_{\psi}), \ x \in N,$$

are both β -(KMS) and γ -(KMS) with respect to σ_t^M and σ_t^N respectively. Define a normal state $\tilde{\psi}_1$ of M by $\tilde{\psi}_1(x) = (\pi(x)\xi_w|\xi_w), x \in M$. Then $\tilde{\psi}_1$ is a γ -(KMS) state of M with respect to the one parameter automorphism group $\pi^{-1} \sigma_t^N \pi$. But equality (*) shows that $\pi^{-1} \sigma_t^N \pi = \sigma_t^M$. Hence the one parameter automorphism group σ_t^M of M admits a β -(KMS) state $\tilde{\varphi}$ and a γ -(KMS) state $\tilde{\psi}_1$ simultaneously for different β and γ . Then by Corollary 3 M is not of type III. This completes the proof.

References

- 1. Araki, H.: Multiple time analyticity of a quantum statistical state satisfying the KMS boundary condition. To appear.
- 2. Miyata, H.: On KMS boundary condition. To appear.
- Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien. Paris: Gauthier-Villars 2é edition 1969.
- 4. Haag, R., Hugenholtz, N. M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967).
- 5. Hugenholtz, N. M., Takesaki, M., Winnink, M.: Local normality of the KMS-states in quantum statistical mechanics. In preparation.
- Wieringa, J. D.: On locally normal states in quantum statistical mechanics. Commun. Math. Phys. 11, 183–197 (1969).
- Kastler, D., Pool, J. C. T., Thue Poulsen, E.: Quasi-unitary algebras attached to temperature states in statistical mechanics — a comment on the work of Haag, Hugenholtz and Winnink. Commun. Math. Phys. 12, 175–192 (1969).
- 8. Phelps, R.: Lectures on Choquet's theorem. Princeton: von Nostrand 1966.
- 9. Takesaki, M.: Tomita's theory of modular Hilbert algebras and its applications. To appear.
- 10. Tomita, M.: Standard forms of von Neumann algebras. The Vth Functional Analysis Symposium of the Math. Soc. of Japan, Sendai, 1967.
- 11. Winnink, M.: Algebraic aspects of the Kubo-Martin-Schwinger condition. Cargèse Lecture Notes, 1969.

M. Takesaki Department of Mathematics University of California Los Angeles, California 90024, USA