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Abstract. In this paper we prove the existence of translation invariant ground states in
an infinite classical lattice system with hard core and give a characterization of their
support. Some examples are discussed.

1. Introduction

In the last years a great deal of effort has been spent on the investiga-
tion of equilibrium states of infinite systems in statistical mechanics,
classical and quantum lattice systems, and continuous systems of
particles with hard cores have been considered; their equilibrium states
at temperature T+0 have been investigated’. In a recent paper [2]
Ruelle has started the investigation of the zero temperature states, i.e.
the ground states, of the same systems. In this paper we shall study the
zero temperature case in a classical lattice system with hard core.

2. Definition of a Classical Lattice System with Hard Core

Consider the lattice Z’, v being a natural number and Z denoting the
set of all integers. Usually the configuration space for a classical lattice
system is taken to be K = {0, 1}*" which is compact, if we equip {0, 1}
with the discrete topology (Tychonov’s theorem). Each X € K may be
interpreted as the characteristic function of a unique set X CZ*. Con-
versely each X C7Z’ defines a unique X € K, its characteristic function.
Henceforth we will therefore identify the elements of K with the subsets
of Z'. If x € X, we will say that the site x is occupied in the configuration X.
In a natural way Z" acts as a transformation group 7T on K:

T@):X->T@X=X+a, XCZ, aclZ.

! For an account of this, see Ruelle [1] and the literature quoted therein.
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Now the Banachspace # of interactions is defined to consist of all real
functions @ on the finite subsets of Z* such that ¢(©) =0 and

(X +a)=D(X) forall aeZ” andall X CZ’ (X finite).(2.1)

o= ) 1e(X)|<oo. 2.2)
X230
Given @, we associate to each finite X € K the interaction energy
Up(X):= ), &(Y). 2.3
Due to (2.1) we have rvex
Up(X +a)=Up(X) forall aecZ’. 2.4
Let N(X) denote the number of points in X. Then
[Up(X) = N(X) ||@]] . 2.5

The linear subspace
By.={DPeB|IX (D) finite, d(Y)=0 for 0 YL X(P)}
of # is called the space of finite range interactions. If 0+ &, € %, we
define its range to be
Ao = U X.

X:®p(X)*#0,X50

Obviously 4, is finite and Oe 4, = — 4, ([1], Page 16). From now on
@, will be arbitrary but fixed. We shall give a definition of a hard core
determined by @,. This will amount to a specification of configurations
which are allowed in the theory:

Definition 2.1. A configuration X € K is called allowed, if ®,(Y)=0
for all finite Y< X.

Note that X is not supposed to be finite. Also the empty set is an
allowed configuration. Denote by K, the set of all allowed configurations.
Due to (2.1) and the definition we have the implications

XeKy=>X+aeK, forall aeZ’, (2.6)

YCXeK,=>YeK,. 2.7)
Furthermore we have the

Proposition 2.2. The set K, of all allowed configurations is compact.

Proof. Since K is metrizable and compact, it is sufficient to prove
sequential closedness. Now by definition X;— X for -0 if and only
if to each finite A CZ" there exists [(A) such that

Xind=XnA for 1zIl(4).
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Suppose in particular that X, € K, for all I. We have to show that X € K.
Let YC X be finite. Then we have

X 2XinY=YnX=Y for 1=ZY)

and hence ®,(Y) = 0, because X, € K,,.
Since Y £ X was arbitrary we have X € K, q.e.d.
The following remark will become important in the sequel: Let A and
A’ be disjoint sets (AnA")=0) and let X;, X, e K,, X; S A4, X, C A be
given. Then in general X; UX, ¢ K, but we have
XA *nX,)eKy .
f X,X,eKy, X,€4,X,CA1, '=0. (2.
A A X)UX, € K, i X, €Ky, X, CA, X, CAANA"=0. (2.8)
Here the map A— A" is defined as follows
AT :={xeA|(4o+a)nA+0 and (4y+a)A=>x¢(4,+ a)}.
Also we set
A" ={xeA|da,xe(ldy+a)L A}
so that
A”=A\AT.

Roughly speaking A™ consists of all points in 4 which have at least the
distance 4, from the boundary of A. It is easy to prove that (2.8) holds.

3. Infinite Volume Limit of the Ground State Energy

The local minimum energy density for a given interaction @ is
obviously given by

g JoX)
E(®, A):= Xlgg,’} N

for finite A, therefore

Pl SE(@,4)=0. G.1)
E@, N)+E(Y,A)SE®+ Y, 4). (3.2)
E(@,A+a)=E(®,4); ael’. (3.3

If we combine (3.1) and (3.2) we get
|E(@, A)—E(Y, A)| < || — P (3.4)

We want to prove the existence of the thermodynamic limit of E(®, A)
if A tends to infinity in the sense of van Hove?2.

2 We say that a sequence {4} tends to infinity in the sense of van Hove (and we write
A—o0) if for every finite X SZ" N({x|x+ X S A}) N~!(A) tends to 1.

17*
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Let & be in %, having range 4 and let AnA’=0. Then we have

IN(AuA) E(®, AuA)— N(A) E(D, A) N(A )E(®D, A')|
= inf U¢(X1 vX;) - A {U¢(X1) + Up(X,)}

X1c4,X2¢4
X1uX2eKg X1 XzEKo

Xic /}g(fzgm Up(X; 0 X;) — XA 1nf {U¢(X1) + Up(X2)}
Xi1uX2eKo X1UX2EK0

+ Xic /}rg AUp(Xy) + Up(X3)} — {Uw(X1) + Up(X5)}] -
X;U)’(zel(o X1 XzeKo

The first term may obviously be estimated by ([1], Prop. 2.3.1):
sup  |Up(X; L X3) — Up(Xy) — Up (X))l
Xi1cA,Xc A
S sup  N(X, X)) |9l SN, A) |9l

Xi1€4,X,¢4

lIA

Here N(X, X') is defined to be the number of points aeZ” such that
Xnd+a)£0+X'n(d+a).

N(X, X') is obviously symmetric and monotone in both variables.
We turn to the estimate of the second term.
Due to (2.7) we have

. > .
xomf AUe(X)+ Uo(Xo)} 2 inf  AUe(X)) + Up(X5)}
X1uX2eKo X1,X2eKp

Now choose X, X,(X,, X, e K,, X; €4, X, C A') such that
inf ,{U¢(X1) + Up(X3)} = Utp()?l) + Uq)(X-z)-

X1€4,X:64
X1,X2eKp

We have according to (2.8)

and hence X, nANHuX,eK,, XuX,nA4")ekK,

we nf  AUs(X)+ Up(X)} = inf - {Up(Xy)+ Up(Xo)}
X1UXZEKO Xl,XzEKo

S Up(X;nA™) = Up(Xy)|

L Up(X N\ + NX\AT, X nA™) |12l

S(N(AT)+NA™, A7) ||| .
Analogously we get the estimate

S(NAT)+NA™, A2
Put
N(A, A): =N, A)+Min(N(A™)+ N(A~, A7), N(A'7)+ N(A'~, A'")).
(3.9
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We have therefore proved the
Proposition 3.1. Let & have finite range (P € B,) and let N(A, A') be
defined by (3.5) with AnA' =0. Then
IN(AUA)E(@, AuA")— N(A) E(®, A)— N(A') E(D, A)|

L

Since N (4, A’) has properties similar to N(4, A’)3, this gives, using
standard arguments ([1], Theorem 2.4.1)

Theorem 3.2. If @ € B, the following limit exists
E(®)= }im E(®, /)

for any sequence {A} which goes to infinity in the sense of van Hove.
Furthermore

(@ 12|l < E(®) <0; E(A®) = AE(®); LeR",

(B) |E(®)—E(P) =P — P,

(y) The function E(-) is concave on #: E(P)+ E(P)S E(P+ ¥P)=<0.

4. Ground States

Let ¥(K,) be the Banach space of continuous functions on K,. A
probability measure ¢ on K, is defined to be a linear form on %(K,)
such that

o(f)20 for f20; fe?(Ko)
e@=1.

Such a linear form is automatically continuous. For fe%(K,) set
f.X)=f(X—a)(aeZ) so that f,e¥(K,). Furthermore define the
translate g, of ¢ by ¢,(f) = o(f). Evidently g, is a probability measure
if g is.

Definition 4.1. Given ® € #, a probability measure ¢ on K is defined
to be a ground state, if for all sequences {A} which tend to infinity in the
sense of van Hove

lim su

1
Jm sup W@(U¢,A+)=E(¢) @.1)

where Uy, 4(X) = Up(X N A), A finite.
3 Note that jim N(A)"*NA7)=0,

lim N(A)"' N(4~, 4%)=0.
A- w0
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Notice that Uy 4 € €(K).
Obviously g,(@a€Z’) is a ground state if ¢ is one. More generally the

convex hull K(g) of the translates of a ground state ¢ consists of ground
states. Finally we have the

Lemma 4.2. The weakly closed convex hull K(o) of the translates of a
ground state ¢ consists of ground states.

Proof. Let g € K(g). Since

E(®, A)=E@®, A+a) < Up, 444X 4.2)

- N(A)

for all X € K, and all a e Z'’ and since g is a probability measure we have

E(®, 4) = N(A) 0WUs, 4+ (@€D). 4.3)

Therefore due to Theorem 3.2 we only have to show the following: Given
&> 0 then for all sufficiently large A (i.e. for A—o0) and all aeZ’

N(A) —~0Up 41 SE(®) +e. 4.4)

We know indeed that for all sufficiently large A and all a eZ® we have

1

WQ(Uq),AJra) SE®)+e.

Therefore if ¢’ =) A;- 0,,€ K(0) we have

1 , _ 1
WQ (U<D,A+a) = ;li —N(A) Q(U¢,A+a+bi)

< E@®)+¢.

This yields (4.4) when o' — ¢ weakly and Lemma 4.2 is proved.

Obviously the set K(g) is invariant under translations, so once the
existence of a ground state is established, Lemma 4.2 and a standard
fixed point theorem (see e.g. [3], Page 645) show the existence of a
translation invariant ground state.

We turn to the existence proof of a ground state and a characterization
of translation invariant ground states. We will find that configurations
belonging to the support of a translation invariant ground state are
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contained in a set which may be obtained from a local variational
principle applied to a certain interaction energy density. More precisely
define for finite 4 CZ" and X € K|,

G (X):= Z ?(Y), @4.5)
. Y:YCX
YnA+o
HA(X):=X,.XIir/11f_X\AGA(X’)= Y-ill;lgA G(Yu(X\4). (46)
gl Yu(X\4)eKo
Fy(X):=G,(X)—H,(X) 20, 4.7
Fi={XeKy|FX)=0}. 4.8)
We may write
G,(X)= ) WX (4.9)
Y:YCZY
YnA#*0
where
_Je(y) if YCX,
TY(X)'_{O if YEX.

Since ¥y € 4(K,) and the r.h.s. of (4.9) is uniformly convergent (by (2.1)
and (2.2)), we have G, € (K ). Indeed, if we write the norm on €(K,) as

/1= sup |f(X)]
XeKo

we have
MGl Y TN Y (@)
Y:YCZV Y:YCZY
YnA+0 YnA+0
SN Pl <.

Also H, e %(K,). This is a consequence of the following remarks: If
X —X, then YU(X\A)— Yu(X,\4) for all YC A and if X is so close
to X, that

XA+ 4y =Xon(A+4,)
then the conditions
YuX\W)eK, and Yu(X,\4)eK,

are equivalent if Y C A. H,(X) is therefore continuous at X, as the lower
envelope of a finite family of continuous functions at X,,.

Thus also F,=G,—H,e%(K,) and %, is a closed and hence
compact set.
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Obviously %, is not empty:
Let X C A, X € K, be such that E(®, A) = V(IA—) Up(X),then X € Z#,.

Remark now that if A'2 4 and X'\4 = X\4
Gy (X)— G (X")
= Y &(Y)— Y &(Y)

Y:YSX,YnA'*0 Y:YCX',YnA'*+0
= 2 o(Y) - ) o(Y)
Y:YSEX,YnA*0 Y:YS X', YnAd*0

= G4(X)— G,4(X).
Since X'\4 = X\4 implies X'\A' = X\A" we immediately get

Fyp(X)2 Fy(X)20
and hence
F.CF, for A24. 4.10)
This proves
Lemma 4.3. Let %, be defined by (4.8). Then {F,} stiniteczr IS @
decreasingly filtered system of nonempty compact sets. )

Theorem 4.4. The set # = (| %, is nonempty and compact. F is
Afinite S ZV
translation invariant.

Proof. The first part of the theorem is a consequence of Lemma 4.3
and a general theorem in topology (see e.g. [4]). The second part is a
consequence of the following equalities

G, (X)=G4,,(X+a); H,X)=H, ,,(X+a) forall aeZ’
since &(X + a) = @(X). This gives
Fhra=Fyta
and therefore

g;= ﬂ eg;A= m g'-A-Hz: '9‘"4+a=5“-+a
Afinite € ZV Afinite ¢ Zv : Afinite C ZV

q.ed.

Definition 4.5. A probability measure with support in & is called a
strict ground state.

The following theorem shows that this definition is meaningful.
Theorem 4.6. Every strict ground state is a ground state.
Before we turn to the proof of this theorem let us first remark that

UpgXnA)=G,(XNnA), XekK,.
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Therefore due to the continuity of G, we expect the following chain of
approximate equalities for XesF

N(A) Up(XnA) = N(A) G,(XnA)~—— N(A) G,(X)
1 1
= N a0~ i HalX 0 4) = B@, )

which should hold for large A.
The following lemma will therefore be useful:

Lemma 4.7. Given ¢>0 for all sufficiently large A

[
N(A) —— |G (X)) - Up(XnA)| = R 4.11)

1

Ny T -E@ 1)< 5 4.12)

uniformly for all X € K,,.
Proof of Lemma4.7. Choose A such that

Y lew)< .
W:W>0
weA

Also for arbitrary finite sets A, A’ define the following sets
A~ (A):={xeA|Fael’,xe(A' +a) L A}
AT (A):= A\A~(A)).
Note that we have
At =A4%(4,), A" =4"(4,)-

* and A~ where defined in Section 2.

Now
|G4(X) — Up(X n )| = Y 2(Y)
Y:YnA+0,YCX
Y\4%0
< ) Y lemi+ Y ) o).
xed~- (A Y:Yex xeA* (A Y:Yax
Y\4+0 Y\A4%0

The first term may be estimated by
N(4™ (D) |12
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and if A is sufficiently large we have

N~ DN )< g

In the second term by definition Y is not contained in any translate of A.

Therefore the second term may be estimated by N (A*(/I))-Z— which is

smaller than N(A) %’ Combining all estimates, (4.11) is proved.
To prove (4.12), suppose first

1

N H 4(X) = E(®, 1)

then due to the definitions and (4.11)

1 1
Ny 10| = sup o

for all sufficiently large A.
Next suppose

E(®, 4)— [G4(X) = Up(X nA)| =

7

1

E(®,A) < N(A)

H,(X).

Choose Y < A, Ye K, such that ——— Ug4(Y) = E(®, A). Since

N(A)

w1
N(A) [Up(Y)— Up(Y N 4 )l__N(A)

V:vey
VAA~+0

&
< Z
]l < 5

> cb(V)‘

(4.13)
SNUA)
N(4)

for all sufficiently large A, (4.11) and (4.13) give

1 1
N(A) B =Fy N(A)
< 1
T~ N@)

E@, M) —— G4(YnAT)U(X\A))

Up(Y AT+ % < E(®, A) + g

proving (4.12) and hence Lemma 4.7.
Proof of Theorem4.6. If X € & we have G,(X)= H4(X) for all 4 and
hence combination of (4.11) and (4.12) gives

1 3
N(A) U, 1+a(X) — E(D, A)| = —8
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for all sufficiently large A uniformly for all X € & and aeZ’. Here we
used the translation invariance of & Choosing A so large that

|E@, A)~ E@)| <
yields
1
[y Uoare0—E@) <.
If ¢ has support in & this gives in particular

1
—— (U, —E@®) =
Ny @Usard— E@)| <
for all sufficiently large A uniformly for all a € Z, i.e. g is a ground state
and Theorem 4.6 is proved.
Conversely we have

Theorem 4.8. Every translation invariant ground state is a strict ground
state.

Proof. First we assume @ to have finite range 4 in order to make the
essential argument more transparent. The extension of the proof to the
general case is easy.

Define for any natural number n

A,={xeZ’'|—n<x;=nji=1..v}

so that
N(,)=@2n)".
Since
F ={XeKy|F.(X)=0 forall neZ"}
we have

K\F= U {Xekolr,mz )

n,me Z*

Now assume that the translation invariant ground state g is not a strict
ground state.
Then ¢(Ky\%) >0 and there exist p and g such that

1
0(8)=0a>0; é”={XeK0|FAP(X)g ;}

Roughly speaking our aim is to change sufficiently many X € suppg in
such a way that we obtain configurations X’ which have a strictly lower
energy density. Now choose reZ" so large that

4,2 A, +(404,)
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and let T, be the following subgroup of the translation group

T,={T(@eTla=2r-t, tel"}.
Put
A,(@)=T@A4, =A,+a; T@eT,

A@=T@A,=A4,+a; T(@eT,.

Then A,(a) € 4,(a) and {4,(@)}rcr, 15 @ covering of Z” by disjoint
subsets.
Let y, be the characteristic function of & and set

X6, X) = xs(T(—a)X); T(a)eT,.

Consider g4 ,(X) for fixed X € K, as a function of a. Assume g; (j=1 ... 1)
are such that y, ,(X) =1. Then by definition of & there exist

Y)J{ g Ap(aj) g Ar(aj)
such that Y{u(X\4,(a)) € K, and

1 ;
Gapp(X) 2 ra G4, @p (Y4 V(X \4,(g)) -
In particular
1
GAp(ai) (X) g ? + HAp(aj)(X) *

Moreover if we put

Al = U 40@): Alla)= U 4a),

Yx({a}) = g Yiu(Xn(4,({ah\4,({a}))

j=1
it is easy to see that

Yy({a})u(X\4,({a}) € K,

and that
t
G4 ap(X) 2 E + GA,((a))(Yx({a})U(X\Ar({a}))) ’
t
2 — + Hyq)(X).
More generally set 1
Al = U A,2r-a)
aedy,
such that

N(47) = N(4,) N(4,) = 2r)’ N(4,) .
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Then for all X € K,
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4.14)

(4.15)

(4.16)

1 1
. X
N(An) A,-( )— q(2r)v N(A_n) a;ﬂﬂ Xé° 2r- a( )
1
+ = N H,(X).
Now due to (4.11) we have
)—0G <<
N(/l”) lo( qu) o( A)l__ 4
for all sufficiently large n. Since ¢ is a ground state we therefore have
1
nl< 2
| N 2 —E@, 47 2
Also (4.12) implies
1 €
- — n< _-
N )~ E@, 45 < 5

If we combine (4.14), (4.15) and (4.16) we get
0=o(xs)=e@2r)-q
for n = n(e). We have put
no__ 1 Z
Xg_—N(A") . X&,2r-a-

edAn

Now we use the translation invariance of ¢ which gives

o(xz) = o(xg) =a>0.

This, however, contradicts (4.17) if we choose ¢<a(2r)™¥-gq
Theorem 4.8 is proved, if @ € %,. Now let @ € # be arbitrary.

With the notations as above choose r so large that
(i) Ar ; A-p + AO:
i Y |eMi<c,

YnA,+0
YAZ\A, %0

4.17)

~1 and

where ¢ >0 will be fixed in a moment. Since @ € 4, it is always possible
to satisfy these conditions. Repeating the above arguments it is easy to

see that (4.14) is replaced by

N (A”) 2r' N,
1
+ = N H 4(X).

ae Ay,

1 1 1
G (X )_—{ 4c} T er2raX)

(4.14)
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Taking ¢ = (8¢q) ™1, we obtain (4.14) with g replaced by q' = 2q. Thus the
arguments proceed as before.

Corollary 4.9. The translation invariant ground states form a weakly
closed convex set.

5. Examples

In this section we want to discuss some examples which may be of
interest. By definition K, depends on the hard core potential &, and #
depends in addition on @. We have # CK,C K. K, =K if $,=0,
F =K, if ®=0. Let us denote by ¢ the set of all invariant ground
states. ¢ is a weakly closed, nonempty convex set. We will be concerned
with the following points:

o) The number of elements in Z.

B) The number of linearly independent elements in 4.

y) Existence of elements in ¢ with nontrivial mean entropy.

The mean entropy of a translation invariant probability measure g
is defined to be

1

s(@) = lim — N Y, o4(X)logo,(X),

Xc4a
where {0,( )} 4finite c zv 1 the system of density distributions associated
with g (see e.g. [1], Page 169). We always have 0 < s(g) < log2.

Now quite generally we may say the following, If X € # and X +0,
X +7Z’ then & consists of at least two elements, for if x € X, y ¢ X then
X+X'=X+y—xe%. The simplest case is of course & =P,=0
such that # = K, = K. Clearly the number of linearly independent
elements in ¢ is infinite. Also there exist invariant ground states with
nonzero mean entropy. Indeed

1
Qﬁ)(X)=—2T(,W; XcAa

defines a system of density distributions such that the corresponding
oW e ¥ satisfies s(o'V) = log2. If we put 0'@(f) = f(Z"), then o is also
in ¢ and s(0'”) = 0. Since s(-) is affine on % ([1], Page 183), the linear
combination

¥ =0V +(1 -0 Osasl

has mean entropy s(¢®)=alog2, ie. s(-) maps % onto the interval
[0,10g2]. Let us turn to more complicated examples. If @,({x})
=A+0(x €2, then clearly K, consists only of the empty set, so we will
assume A = 0 henceforth. Also we will assume @(X) =0 if N(X) = 2. Set
®({x}) = u (= chemical potential). If u>0 then & consists only of the
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empty set. If u =0, then & = K, as remarked above. In case u<0 the
problem of finding # will be called the problem of close packing. Now
take

1 if X={x,y}, x,ynearest neighbours.
Bo(X) = boxy
0 else
Put
X, = {x el x; even} ,
i=1
Xo —_—{xEZV Z x,- Odd},
i=1
so that

Ko=F(u=0={XCZ'|XCX, or XCX,},
Fu<0)={X,, Xo}.

For ;<0 clearly ¢ consists of only one element

1 1

Q(Z) — _2__5Xe+ ? 6X

ie.
o) = 31X+ 3 [(Xo).

This is the ground state of the classical antiferromagnet and s(o*) =0.
0@ also gives an example of spontaneous breakdown of symmetry*: If
we consider the subgroup T, of T consisting of all even translations

v
Y a even}
i=1

then ¢ decomposes into two extremal T,-invariant probability
measures, whereas o itself is an extremal T-invariant probability

measure. If u =0 define o® by
NX,n4) 1
, N(A) " ONXen )
X —
M=\ N A 1
N(A) : 2N(Xor\A)
0 else
such that suppe® C Z (u = 0) and s(¢®) = 1log2. Again it is easy to see
that %(u = 0) is mapped onto [0, 11og2] by s(-).

4 For an account of this cf. again Ruelle [1] and the literature quoted therein.

T,= {T(a)e T

if XCX,nA

if XCX,naA
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More generally let

Lif X=0xp:Y x—yl=1
i=1

0 else

QO(X)={

(1 212, 1 fixed).
For 7 = v we have the example just discussed, so we will assume 7 <v.
Then

F (<0
={XgZ”|Elge {0,137 Y x;=g(X;4q..-X,) (mod2)c>xeX}
i=1

and
Fu=0=K,={XCZ'|IX' e F(u<0): X< X"}

so configurations belonging to % (u<0) show antiferromagnetic be-
haviour in direction of the first ¢ axes, whereas we have statistical be-
haviour in the remaining v —t directions. Therefore s(g) =0 for all
0€%(u<0). Indeed it is easy to see that for any g € ¥(u<0)

N{X S 4,]04,(X)>0}) < 23m7°

since we have randomness only in v — 7 directions. Also

t
— Y a;loga; <logt
i=1

for arbitrary
t

;20 with Y a;=1,
i=1
so we get

1 @ny"
N xngn 04,(X) loges,(X) < =5
Letting n tend to infinity proves the statement.

As a last example we will show that there exists a nontrivial hard core
potential such that the corresponding problem of close packing gives
invariant ground states with nonzero mean entropy. Indeed such an
example is provided by the dimer problem: To fill a checker-board
completely with dominos. This problem has been solved exactly [ 5]. Since
the nonoverlap of the dominos becomes a hard-core condition, it is
tempting to look whether this problem falls into the the general category
of problems that have been considered here. With a slight modification
this is indeed possible. We have to find a hard-core potential ¢, which
imitates the hard-core condition of the dimer problem. Of course we

log?2
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have v=2. @, is a combination of a two-body potential and a four-
body potential:

Loif X={xpy}:lx;—nl=Ix;—y,l=1,
) 1 2 4 .
Do(X)=11 if X ={x',x% x> x*} 3 Yoy Ixi—xk=10
0 else. =1 k=t
Then % (u < 0) contains a translation invariant set % (u < 0) where each

configuration is a union of bits containing three sites linearly ordered.
Locally each X € # (u<0) is of the form

X « X X X . X . X . %
X X X
X X X - X .+ X . X . X
. X e .
% X x v % % x A~ shape of a domino o
R ( X denotes an occupied site)
X X X X X X X
X X X X
X « X - X X X . X X X

Since by definition combinations such as e.g.

X
X . X X X
X

are not permitted for X € # (u<0), it is easy to see that F (u<0) is
properly contained in & (u<0). Apart from the translation group,
which is larger in this formulation, F (u<0) just gives all solutions of
the problem of close packing for the infinite dimer problem. Put

N, = number of X C A, such that X = Yn A for some YeZ (u<0).
Now for a rectangular n Xm checker-board the number of ways of
filling it with Ln-m dimers is asymptotically equal to o™, with

2
o = exp —2—nG— =1.791... (G=0.915... = Catalans number). Therefore it

is easy to see that for large N
. Ny~a °
so if we set 4

1
oP(X)=1 N,
0 else

if X=YnA forsome Ye%(u<0)

18 Commun. math. Phys., Vol. 16
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we get s(e@) = 9i G. Again it is easy to see that s(-) maps the set of
T

all invariant probability measures with support in & (1 <0) onto the

interval |0, —2— G].
97

Acknowledgements. 1t is a great pleasure to thank Prof. D. Ruelle for proposing this
problem and for suggesting various improvements in the proofs. A discussion with Prof.
M. Fierz has been very helpful.

Literature

. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969.

2. — Commun. math. Phys. 11, 339 (1969).

3. Kantorovich, L. V., Akilov, G. P.: Functional analysis in normed spaces. New York:
Pergamon 1964,

4. Bourbaki, N.: Topologie general. Paris: Hermann 1961.

5. Fisher, M. E.: Phys. Rev. 124, 1664 (1961).

Temperley, H. N. V.: Phil. Mag. 6, 1061 (1961).

Kasteleyn, P. W.: Physica 27, 1209 (1961).

Fisher, M. E., Stephenson, J.: Phys. Rev. 132, 1411 (1963).

—_

R. Schrader

Physics Department

Harvard University
Cambridge, Mass. 02138, USA





