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Abstract. A family of self-adjoint Hamiltonians with a separable potential leading
towards a contact potential (zero range) is analyzed by tools of functional analysis. It is
shown that the family of time evolution operators e~~ιHt converges strongly (for all t) though
the family of Hamiltonians does not converge even weakly. In the case of three dimensions
a renormalization procedure is discussed and a correspondence between the renormalized
coupling constant and the self-adjoint extensions of the free Hamiltonian is established.

Introduction

The object which we are going to analyze is a one parameter family of
Hamiltonians {H(μ)}μeί0Λ] = {T+V(μ)}μe[0Λ] where V(μ) denotes a
separable potential. We want to give a precise mathematical meaning to
the statement, that for μ->0 H(μ) "converges" towards a Hamilton with
a contact potential. Furthermore the process of renormalization is a very
delicate one from the mathematical point of view and should therefore
be studied carefully in the simplest possible case. The detailed study is
also necessary as it serves as preparation for the treatment of the problem
in the framework of second quantization (to be published in a sub-
sequent paper). We enclose our system in a box of finite length L and
assume periodic boundary conditions; the spectra of H(μ) will therefore
be purely discrete for all μ. At first we treat the one-dimensional case
which already shows some of the relevant features and study then the
case of three dimensions. Our units are h = 2m = l; for simplicity we
assume 2π/L = l, our momenta are therefore k = n, n integer or
k = (nu n2, n3) nt integer, i = 1,2, 3 resp. We use the notation -^ and -• for
weak and strong convergence resp.

1. The One-Dimensional Case

We consider a one-parameter family of separable potentials

{V(β)}μe[Ό,i] which approach (in an intuitive sense to be specified) a

contact potentials as μ->0. In momentum space this is expressed by

V(β)nm ~ λσ*(μ) σm(μ) with σn(μ)->l Vn as μ->0 .
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We assume that the σn(μ) are continuously differentiable in μ e [0,1],

that they are bounded by one, |σπ(μ)| ^ 1 Vn, Vμ and that

One may always have in mind the particular form σn(μ) = , 2 2

Putting g — n2 and introducing the two-dimensional vectors σg(μ)

= (σn(μ), σ_n(μ)) we obtain a very convenient basis (especially in the three-

dimensional case), |g, μ>, in which the Schroedinger-equation has two

classes of solutions: those which are orthogonal to the σg(μ)\/g(ξ>A) and

those which point in the direction of σ^(μ)1 (for each g separately). In the

following we shall concentrate only on the latter (ξ>s). Defining

σg(μ)ΞΞ\σg(μ)\ = V/Σ \σn(μ)\2 Mg = square of an integer

= 0 V#Φ square κ>

with

|/2 g = square φθ

limσa(μ) = ]/Nq = 1 q = 0 (2)

0 g Φ square

the Schroedinger-equation reads as

{g-E)φE(g,μ) + λσg(μ) £ σg,(μ)φE(g',μ) = 0; (3)

its solutions (belonging to the second class) have the explicit form

where £ is a solution of

For the matrix elements of H(μ) we obtain in this basis (g = square)

H(μ)gg' - gδgg. + λσg(μ) σg.(μ) ^ ^ ^ gδgg. + λ)/NgNg. (6)

and, by complex integration, for the resolvent

" • + * ° > M ° ' M _n. (7)h
z-g D{z, μ)(z-g)(z-g)

1 These directions depend on μ in general; it is only for the symmetric potential, i.e.
σn{μ) = σ_π(μ) Vn, that the direction is independent of μVg. Since each element \g, μ) of
the basis is an element of a finite dimensional subspace, \g, μ) is continuous in the strong ίγ

topology for all μ e [0, 1] and Mg.
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As we shall see H(0) is not defined on |g>; by H(0)gg, we rather denote
]Γ <g ' |£>£<£ |#> and with this definition we have: (g\Hψ}

EespecH{0)

g'

We now state some properties concerning the eigenvalues and eigen-

functions.

Proposition 1.1. As functions of μ the eigenvalues E = E(μ) are con-
tinuously differentiable in [0,1].

Proof. Since D E(E,μ) = λ f /Jff 1.2 ΦQVμ and since D (E,μ)

exists we can apply the implicite function theorem.

The structure of D(E, μ) = 0 shows that there is exactly one solution
E(μ) between two succeeding n2 and (n +1) 2 for all n and all μ e [0,1]
and that E(μ) never coincides with a pole g of D. If λ < 0 there also exists
exactly one solution E < 0. The eigenvalues belonging to eigenfunctions
of the second class are therefore non degenerate. They are furthermore
orthogonal and complete (μ fixed). As a consequence we see explicitly
that H(μ) is self-adjoint for all μe [0, 1].

Proposition 1.2.\φE{μ)y^-\φE{0)} for all φE of class § s .

Proof. We have

where

\ΦE(0,μ)l = |/

κE =

i λ

D,E(E

Max ,

,μ)

1
D

σg

\g-

λ

(μ)

μ)

]/%

i ) l = " l g ~ m

g-E{0)
g-E(μ) '

this maximum exists, since everything is continuous in μ and D E(E, μ)
as well as g — E(μ) are bounded against zero. Since

QO ΛT

Σ g

converges,

exists and

also

\\φE(μ)\\

thus

00

0 = 0

%\β- £(0)|

oo j y

μ = £

9 =o lί/-£(0)|
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We can now draw two important conclusions:
a) the family of ^-norms {||φ£(iU)||<ri}Aie[Of 13 is (uniformly) bounded

and
oo

b) theseries £ ]/^%\φE(g,μ)\ converge uniformly in μ, i.e. Vε> 03 N(ε)
9 = 0

(independently of μ) with

Σ ]/ΓNβ\ΦEte,μ)\<ε Vμe[0,l].
g^N(ε)

We have

_ y

+ Σ ]/Ng\ΦE(g,μ)-ΦE(g,θ)\

^ Σ VrNg\ΦE(9,μ)-φE(9,0)\

+ 2 ~~

the second term on the right hand side can be made arbitrarily small by
choosing N large enough (independently of μ), while the first term can
be made arbitrarily small by choosing μ close enough to zero. Thus

Since the strong ^-topology is finer than the strong /2-toPol°gy> Λ-con-
vergence implies ^-convergence. We remark that according to a general
theorem [1] conditions a) and b) are equivalent to saying that the family
of vectors

forms a relatively compact set in the strong ίγ -topology. We shall have
to use this fact lateron. As a trivial byproduct of Proposition 3 we find
that the eigenfunctions ψE(x, μ) in x-space are uniformly convergent in x.

Considering the respective domains of definition T)(T) and T)(μ) of
the Hamiltonians H f r e e = Tand H(μ\ μ Φ 0, we see that they are identical
for all μ e (0,1] since the potential V(μ) is a bounded operator Vμ Φ 0.
On the other hand — disregarding the functions of class § ^ since these are
not effected by the potential and thus appear trivially in T)(0) - we have

g=0

This follows from the conditions ||(i/(0) - T)φ | | / 2 <oo and \\Tφ\\h<oo
for any φ of X) (remember that φ(g) = O by definition if g Φ square of an
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integer). Due to the first condition we have H(0)/T) — Γ/X), since for
any φ e £>

Σ H(0)gβ. φ{gr) = gφ{g) + λ Σ V^ Φig') - gφig)
9' 9'

Thus our limit operator H(0) is an extension of T restricted to £), which
is dense in § s . We shall come back to this question in the three-dimen-
sional case.

We are now going to give a precise mathematical meaning to the
intuitive statement that "the operators V(μ) converge towards the
(5-potential". One can certainly not speak of a weak convergence of
V(μ)^λδ since on the common domain of definition λδ is zero. The
same trouble appears with H(μ): neither H(μ\ μφO, nor H(0) are
essentially self-adjoint on their common dense domain £> and it makes
no sense to speak of the convergence of a family of operators towards a
limit if this limit does not possess a unique self-adjoint extension. We
therefore define the "convergence" in a different way by proving the

Theorem A. Let {Λ(μ)}μe[Ol] be a family of uniformly bounded normal
operators on ί2 with a point-spectrum (i.e. they can be represented as
A(β) = strong ΣaiiώPίiμXΣPiiίή — U where the eigenvalues a^μ) are

uniformly bounded in i and μ and the Pf(μ) are the projection-operators).
We assume that the αf(μ) are continuous in μVί and that the projectors
Piiμ) are strongly continuous in μVf. (For our purpose we may replace the
assumption on the P/s by assuming strong continuity of the eigenfunctions
\Uμ) of A(μ\ since Pf(μ) - |ί, μ> <ί, μ\.) Then the map A : [0, 1]
~^{A(μ)}μe[Oί] is strongly continuous in μ. (Here "strongly" always
means the strong topology of bounded operators on the ί2 )

Proof. Since the A{μ) are bounded operators it is sufficient to show
the strong convergence on a dense set which may be generated by the
finite linear combinations of some basis vectors. Taking the eigen-
functions (i, μ) of A{μ) as complete and orthonormal basis we obtain by
explicit calculation

+ Σhi(μ',μ)\<k,μ'\i,μ>\2

fcΦί

with
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The first term goes to zero since αf(μ) is continuous and

is bounded. In the sum we have \bik(μ\ μ)\ ̂  KVμ, μ', Vi, k and the sum
itself converges to zero due to the following argument: as continuous
image of the compact set [0,1] the set {|ί, μ>}μe[0,i] is also compact
and thus

converges uniformly in μ according to the theorem mentioned in the
proof of Proposition 1.2; thus the rest of the series becomes arbitrarily
small (independently of μ), while each of the first finitely many terms
tends to zero since <fc, μ'|ί, μ>->0 for k + i. Hence A(μ')-+A(μ) for
μ'^μ e [0,1]. Applying this result to our problem we have the

Corollary. For each continuous and bounded function /, f(H(μ))
-^f(H(0)). This holds especially for the time-evolution operator e~ίtH{μ)

and the resolvent .
z-H(μ)

Proof.
f(H(μ)) = strong £ f(E(μ)) \φE(μ)} (φE(μ)\

EespecH(μ)

with E(μ) continuous and \φE{μ)} strongly continuous VΈespec//(μ)
and Vμ e [0,1] according to Propositions 1 and 2.

We can therefore say that H(μ) converges towards H(0) in the sense
that every continuous and bounded function of H(μ) converges strongly.
If we define

H(0) = "lim"H(μ) = strong £ lim E(μ) \imPE(μ) (10)

then

H(0)g, = ("\πn"H(μ))gg, = ^ £(0) φ*(g9 0) φE(g\ 0) = ]im(H(μ)βg,) (11)
E

2. The Three-Dimensional Case

Starting with the decomposition of the Hubert space we now have
for the free case, λ = 0, an N -̂fold degeneracy for each eigenvalue
E = n2 = g where Ng = number of different possibilities of decomposing
the non-negative integer g into a sum of three squares of integers (zeroes
and permutations included) i.e. Ng is the number of points with integer
coordinates on a sphere with integer radius g. Thus Ng = 0 for all
g = 4a(Sb + 7) [2], a, b ^ 0, integer. We again introduce the g-basis as
in Section 1 and concentrate on ξ>s(μ) = closed linear span of the \g, μ>
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for fixed μ. For μφO eigenfunctions, eigenvalue equation and matrix
elements are formally the same as in the one-dimensional case, see
Eqs. (4), (5), (6), and (7). Going now to the limit μ->0 we encounter the
difficulty that

is not defined since

9

does not converge. Nevertheless we can show:

Proposition 2.1.
a) lim EJμ) = g and in addition if λ < 0 lim Eb(μ) = — oo

μ->0 " μ-*0

b) strong lim φE (μ) = |#> (= free solution) and if λ < 0 weak
μ-*0 9

lim 0£b(μ) = 0, where g Φ 4fl(8 fe + 7).
μ->0

Eg(μ) denotes the unique solution of D(E, μ) = 0 between ^ and the
next possible integer g'.

Proof, a) From

we have

1 [ 1 σ].(μ) σg
σ].(μ) σ2

g.{μ)

g - Eg(μ) σ2

g(μ) { λ 0 £ < g g' - Eg(μ) Jtg g' - Eg{μ)

As μ—•() the first sum remains bounded while the second sum diverges to
+ oo therefore

1

9 ~
• — 0 0

i.e. Eg(μ)lg. If λ<0 then for any x < 0 there 3μo>0=>Vμ 0 < μ ^ μ o

D(x, μ) < 0 and thus the unique solution of the eigenfunction moves
arbitrarily far to the left.

b) Convergence of each component and boundedness of the norm
imply weak convergence of a sequence in ίP; weak convergence and
convergence of the norm imply strong convergence in ί2 [3]. Since we
have

it suffices to show that



344 M. Breitenecker and H. R. Griimm:

For qφq' D F(Ea, μ)-+cc and , g is bounded; for q = q'
" " ' 9-Eg(μ) - -

D E(Eg,μ)(g — Eg(μ))2-+ λσg(0) = λNg. A similar argument for λ<0
shows that (g' \ φEb(μf) —>OVgr'. By application of Theorem A we conclude
that for every bounded and continuous function / / ( i f (μ))->/(T). If we
repeat the construction of "lim'Ή(μ) according to Eq. (10) we end up
with the free Hamiltonian T. but the analogue of Eq. (11) is wrong. In
order to obtain a physically non-trivial limit we have to make λ dependent
on μ in such a way that a certain function of λ and μ remain finite. We
rewrite D(£, μ) as

>μ) (12)
^ g>o 9\9

with

) Σ
g>0 9

for μ sufficiently close to zero and

Thus for μ Φ 0 D(£, μ) = 0 is equivalent to DR{E, μ) = 0, which we call
the renormalized eigenvalue equation. It has the advantage that for
fixed λR the limit μ->0 exists. By a similar argument on the analytic
structure as in the one-dimensional case we find exactly one solution
Ef between two succeeding allowed values of g; in addition we obtain
independently of the sign of λ a unique solution £f < 0. We can repeat the
argument of Proposition 1.1 and find that ER(μ) is continuous in [0,1].
Straightforward calculation shows that

(E,μ) = λR/D%(E,μ). (14)

Replacing in Eq. (4) A, D and E by the renormalized quantities λR, DR

and ER resp., we obtain the renormalized eigenvectors ψf«(μ) which are
strongly continuous in μ e [0,1] their completeness and orthogonality
(for fixed μ) can be shown in analogy to the one-dimensional case.

We emphasize that in distinction to the one-dimensional case
\φE(μ)> φ /ι and the corresponding eigenfunctions in x-space will not
converge uniformly. Expressing λ in terms of λR yields

g>0 9

We now define a renormalized Hamiltonian HR(μ\ μφO, by HR(μ)
= H(μ; λ = λ(λR, μ)) and apply again Theorem A to obtain
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with
HR(0) = "lim"tf*(μ) = strong £ UmER(μ) UmPER(μ). (17)

ER

Trying to find the analogue of Eq. (11) we run into even worse troubles
than in the unrenormalized case. From Eq. (15) we get Λ->—0 for
μ->0, λR fixed and thus

lim{H(μ)gg.)=Tgg. = gδg,;

on the other hand HR(0) is certainly different from T, because ER(0) Φ g.
Assuming the existence of the matrix elements of HR(0) in the g-basis an
attempt to calculate them will lead to a contradiction: formally we have

fτR(

with CR denoting a circle of radius R around the origin. The limit is
independent of g and g' and calling it C^ we have the following possi-
bilities :

a) Co, = 0; t n e n HR{0) = T which is explicitly wrong.
b) C ^ φ O ; then HR(0) would not be defined on its own eigen-

functions φR

R; in fact £ HR(0)gg, φRκ(gf) diverges for all g.
g'

We conclude therefore that CM does not exist and the integral diverges.

Hence —^—— is not bounded for |z|—>oc. However, if we calculate the

matrix elements of i

we have two more powers of z in the denominator and we obtain a finite
result which coincides with lim(Res(z;μ)^).

3. Extensions of Hf r e e

We are now interested in the domain of HR(0). The analysis is more
complicated than one would expect since we have for HR(0) no tractable
matrix representation at our disposal. We derive that HR(0) is well
defined on the class of vectors \g9h} = ]/Wh\gy — ]/Ng\h}, (gφh, both
sum of three squares) and coincides with T on them:

R Z 2πi c [ d Z DR(z) (g' - z ) [ g - z h - :
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and the limit is zero due to sufficiently many powers of z in the denomina-
tor; in fact we have the same asymptotic behaviour as in the completeness
relation. The same is true also for the finite linear span of the \g, K). As
self-adjoint operators both HR(0) and T are closed and we can extend
their equality to a domain D similar to the one-dimensional case: ipeT)
iff Σ]/ϊfy/>(0) = O and £ # 2 l v % ) | 2 <oo. T/D = HR{0)/T) is a closed

9 9

symmetric operator and its defect indices are (1,1): φ 1 to all (HR(0) — il)ψ,

1/77"
ipeD, iff φ(q) = ic——^-. Because HR(0) is self-adjoint it must be con-

ig +1
tained in the set of all possible self-adjoint extensions of T/D. Applying
the standard technique (Smirnov loc. cit.) we first determine the adjoint
operator

with C o chosen (uniquely) such that | |(T/D)*|φ>|| <oo the domain of
definition of (T/D)* consists exactly of all φ for which a C o exists. The
kernel of (T/D)* is the one-dimensional subspace generated by |0>.
Looking now for solutions of (T/D)*21 φ} = 0 we find a one-parameter
family of subspaces generated by the vectors \φθ} : φ(0) = cosθ,

/ΓI/ΛΓ
φ(g) = 1—J- sinfl, g φ 0, 0 ̂  0 < π. The action of (T/D)* on |φ> is given

by (Γ/D)*|0> = -sinθ|O>eker(Γ/D)*. Adjoining to the previous
domain D the one-dimensional subspace generated by \φθ} for a fixed θ
we obtain a self-adjoint extension of T/D = i/K(0)/D and every self-
adjoint extension (especially HR(0) itself) can be represented in this
form. A relation between λR and θ is given by the condition that HR(0)
is defined on its explicitly known eigenvectors: we have ψ = φR{λR)
— cφθ e D for some c; condition £ g2 \ψ\2 < oo yields c = l/sin0 whereas

, 9

condition Σ VNgψ{g) = 0 implies

-l/£κ-cotθ+ X Ng{l/g-ER-l/g) = 0.
9>0

By comparison with Eq. (12) we thus obtain λR = — tanθ. The value
0 = π/2 has a precise mathematical meaning: going to the limit 2Λ—KX)
in the renormalized eigenvalue equation we arrive again at the well-
defined expression

E

 9>o g(g-E)

from which we can obtain eigenvalues and eigenvectors as for finite λR.
For λR[0 the eigenstate with a corresponding energy ER < 0 vanishes
weakly and ER -> — oo. The extension for 0 = 0 is just the free Hamil-
tonian T
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4. Conclusions

Collecting all results of the preceding sections we can say:

The limit of a family of separable potentials can only be understood
in the sense of Theorem A, i.e. we have convergence of the eigenvalues
and strong convergence of the corresponding eigenvectors. The usual
separation of H into the sum of T and the potential ceases to be meaning-
ful in the limit: though H(0) is a self-adjoint operator the (5-potential
operator V(0) is defined only on those elements of the Hubert space
which actually do not "feel" this potential, i.e. which vanish at its location
we can express this by saying that V(0) is a restriction of the zero operator
and has therefore only the zero operator as its unique self-adjoint
extensions - but this extension does certainly not lead to H(0). While in
the one-dimensional case H(0) generates a non-trivial situation, the
situation in three dimensions is quite different. Keeping λ fixed the
",4-limit" of H(μ) is the free Hamiltonian, but the limit of the matrix
elements does not define a meaningful self-adjoint operator. In order
to obtain a non-trivial limit we renormalize the coupling constant, i.e.
we establish a functional dependence between λ and μ as both go to
zero, each functional dependence being defined by a particular value of
λR. For fixed λR we arrive at HR(0) by taking again the "^4-limit" of
HR(μ). We obtain different limits because the eigenvalues as functions
of λ and μ are not jointly continuous at the point λ = μ = 0. As we
discussed, this operator cannot be represented in the #-basis as its matrix
elements in the g-basis do not exist on the other hand the matrix elements
of HR(μ) tend to the free matrix elements and we see again that the
"^4-limit" and taking the matrix elements do not commute. The process
of renormalization can be understood within the framework of operator
extensions: Restricting HR(0) to the common domain for all values of
λR (including λR — 0) we arrive at a symmetric operator with defect
indices (1,1) which is the same for all λR. We label the self-adjoint ex-
tensions of this operator by the parameter θ and obtain finally a bijection
between θ and λR. In comparison with the well-known Lee-model [5]
our model shows two individual features: due to the linearity of the
relation between λ and λR the coupling constant remains real in every
case and there is no need for the introduction of an indefinite metric. On
the other hand, as we have shown explicitely, the matrix elements of
HR(0) in the free basis do not exist and there is no way of writing an
explicit Schroedinger-equation in momentum-space as in the paper by
Haag-Luzzatto. However their two conditions for the domain of the
Hamiltonian correspond to our equations which establish the relation
between the renormalized coupling constant and the extension para-
meter.
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Remark. After finishing this paper we became acquainted with a
paper by F. A. Berezin and L. D. Faddejev where the authors study
operator extensions in L2(— oo, +00) [4].
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