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Abstract. The Einstein field equations for a self-gravitating fluid that obeys an equation
of state of the form p = p(w), p the pressure and w the energy density may be derived from a
variational principle. The perturbations of the metric tensor and the fluid dynamic variables
satisfy equations which may be derived from a related variational principle, namely the
principle associated with the “second variation problem.” It is shown that the variational
principle given by Chandrasekhar from which a sufficient criterion may be obtained for
deciding when a self gravitating spherical gaseous mass is unstable against spherically
symmetric perturbations is that given by the “second variation problem”. It is further shown
that this criterion is equivalent to requiring that the integral entering into the second
variation be negative. The latter form of the criterion may be used in general situations.

1. Introduction

It is the purpose of this paper to apply the variational principle [1]
obeyed by self-gravitating fluids which satisfy an equation of state to the
discussion of the stability against radial perturbations of a spherically
symmetric distribution of such a fluid. We shall show that the variational
principle given by Chandrasekhar [2] for determining the stability of a
spherically symmetric self gravitating gaseous mass is given by the
“second variation problem” associated with the principle referred to above.

Such a result is to be expected for it is well knwon that the equations
satisfied by perturbations of solutions of the Euler equations of a varia-
tional principle are the Euler equations of another variational principle —
the second variation problem. The two variational problems are related
as follows: Let £ (¢*; ¢*,) be a scalar density formed from some scalar
or tensor fields ¢ and the derivatives of these fields with respect to the
coordinates in space time,

¢A_a¢f* p=1,234
BT oxM A=1,2,...,N.
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Then
I=f$(¢A;¢fu)d4x (L)

where the integral is carried out over an arbitrary four volume in space
time determines a variational principle in the following sense. We assume
that the ¢# are functions of the x* and a parameter e, thus

= (x;0).
Then I is also a function of e and we may require that
dl
I'oy=— =
O)=-7 .

for arbitrary

A [ do*
¢A<0)—< b )
We have

o || L5+

0L il a

(1.2)
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ro=[| feers S e
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o™
1A __
9= de
aZd)A 82¢A
AN —
(@)= ox*oe  dedx*’
On integrating the above expression for I'(e) by parts we obtain
0¥
I'(e) = jFA(e) o e)d*x + J( . <Z>'A> d*x. (1.3)
6¢,u N
where
0¥ A
=g~ (T, "

The second integral in Eq. (1.3) may be written as an integral over the
hypersurface bounding the four-volume of integration.

The requirement that I'(0) =0 for arbitrary ¢"*(0), in particular, for
those that vanish on the boundary of the region of integration then leads
to the Euler equations

¥ oY



General Relativistic Gaseous Masses 237

The equations satisfied by the difference between two “almost equal”
solutions of these equations, or the equations satisfied by perturbations
of solutions to these Euler equations are

dF
F,;(O)=< d;) =0
e=0

where F,(e) is given by Eq. (1.4). Thus

F4(0)
'\2$ Ry "23 o2y
[82¢A6¢B¢ 6¢A6¢8 d) <8¢A 6¢B d) AqﬁA aqu ¢ > :I -0
=0. (1.6)

Theseareaset of linear equations for the variables ¢ (0) whose coefficients
depend on the ¢*(x;0) and their derivatives. The ¢'#(0) are called the
perturbations and the ¢*(x;0), the unperturbed solutions.

Now it follows from Eq. (1.2) that

I"(e)= J Fy¢™ d*x + J Fy ¢ d*x + J ( S0 ¢"A> d*x
PL  aam, CL
+J|:‘6¢A5¢i¢ d) 8¢A8¢B¢ ¢B:]
or

"Zg 1A /B 262 14 /B 62 'A /B
+J{6¢Aa¢3¢ ¢ a¢Aa¢B ¢ ¢ &d)A '~¢)B¢ (,‘b ]
From Eq. (1.8) we have

(1.7)

':23 262 ﬁ2
I"(O):J [6;A6¢3¢A¢'3+6¢A a5, " Pt 6¢A$¢B "5'/{"’%}” )

when the ¢*(0) are such that F,(0) =0, that is the ¢*(0) are unperturbed
solutions of the Euler equations associated with I, and the ¢"4(0)=0,

on the boundary of the region of integration. If we now consider the
¢'* (not the ¢*) functions of x and a parameter f we may define

J(NH)=1"(0)

and examine the Euler equations resulting from the condition

dJ
(d_f>f=o‘°-
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This is the “second variation problem.” We find
i’ ’ 62 ’ 7
6J:2JFA5¢Ad4x+2f<8¢A oo" ¢A5¢B> d*x

I A
+2J<6¢A6¢B o 5¢>

Hence for variations of the ¢'# such that ¢# vanish on the boundary of
the region of integration, I”(0) takes on extreme values when the ¢'4
satisfy the equations

Fy(0)=

the equations satisfied by the perturbations.

Thus the solutions ¢* of the Euler equations F,(¢) =0, when con-
sidered as ¢*(x;0) are such that I'(0) =0, for ¢** which vanish on the
boundary of the region of integration, and the solutions ¢4 of the equa-
tions F,(¢; ¢')=0, where the ¢* satisfy the Euler equations and are
coefficients in the linear differential equations, are such that I”(0) takes
on extreme values.

2. Comoving Coordinates
The Einstein field equations for a self-gravitating fluid are

R*—1g""R= —kT* 2.1)
where
™ =(w+p)v*u’ —g“'p, (2.2)

p is the pressure, w is the energy density, k is the Einstein constant of
gravitation and u* which is required to satisfy

uu uﬂ = 1 (23)

is the four-velocity of the fluid. We shall assume that an equation of
state exists, that is

p=pw). (2.4)

It has been shown in Ref. [1], that under this assumption, Egs. (2.1)
may be derived as the Euler equations of the variational principle based
on the integral

I=—[(R+2kp))/gd*x (2.5)

in which R is the scalar curvature of space-time and the pressure p is
regarded as a function of the g,,, the metric tensor of space-time.
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In deriving this result it was convenient to use comoving coordinates
in the family of space-times g,,(x;e) which arise in discussing such a
variational principle: We note that in applying the discussion of the
previous section to equations (2.1) to (2.5), we must interpret the ¢A as
representing the scalars w and p, the four-velocity vector u* and the
metric tensor g,,. T hus we are considering a one parameter family of
space-times with metrics g, (x; ¢)and in each of which thereisa congruence
of courves determined by the solutions of the ordinary differential
equation

dx*#
ds

=u*(x*; e) (2.6)

where the x** are the labels assigned to events in space-time in an

arbitrary coordinat¢ system. In this coordinate system the four-velocity

vector has componenis ¥ and The meuwic ©nsor ‘Pas COMPONRNLS Qﬁv-
We may write the solutions of Egs. (2.6) as

x* = x*(E ge)  (i=1,2,3) (2.7)
where
x* = x*(,0;e)

are required to be the parametric equations of a hypersurface X (e).
The four variables él, s which we shall denote as X", form a ComOVing
coordinate system in each of the space-times. Egs. (2.7) which may be
written more generally as
XH = xR (x; e) (2.8)
with
xt=¢,
. 2.9
X4=X4((§l, S), ( )

may be regarded as the transformation between the x* coordinate

system and a general comoving one which uses the x* as labels for events.
Eq. (2.6) is then to be understood as

ax*#

ds

=u**(x*(x; e); €) (2.10)

where in the partial differentiation the x are kept constant for when these
variables are fixed @ particular world-line is selected.
In the genera] comoving coordinate system we have the components
of the four velocity vector given by
ox* ox*

W) =ut ()~ = o

17*
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as follows from Egs. (2.10). Hence
o

V9ea

where g,, are the components of the metric tensor in the comoving
coordinate system. Egs. (2.11) are a consequence of Egs. (2.9) and (2.3).

We shall be using a comoving coordinate system in each space-
time of the one parameter family of space-times with which we shall
be concerned. In a particular one of these the metric tensor in the comov-
ing coordinate system will be written as g,,(x; ¢). The tensor

ut =

(2.11)

guv(x; €)= -aag—g (2.12)
with x* kept constant will measure the change in the metric tensor
evaluated in the comoving coordinate system at an event labelled by the
coordinates x*, produced by a change in the parameter e. Similar state-
ments will apply to other tensor fields which depend on e. In particular
we shall have ,
u’“=~~1-u“—g~‘i47=—iu“g’ . (2.13)
2 Gaa 2 f
That is, the transformations given by Egs. (2.8) for various values of e,
produce comoving coordinates in each of the space-times associated with
that value of e.
We shall use the notation

a V*#
de
with x** kept constant, where the V** are the components of a vector

field in a general coordinate system using the labels x**. It is of interest
to determine the relation between V'* and V¥ To do this we define

P (x*; e) =

(2.14)

Exi =

. (2.15)

where x** is given as a function of x and ¢ by equations (2.8) and x*
is kept constant under the differentiation. Since

ox* o oxt

ox’ ox¥e e
must hold for all values of e, it follows from the differentiation of this
equation with respect to e keeping x* fixed that

i( 6x”>=_ Ox’  OE*H 2.16)

de \ Ox*¢ Ox** Ox*e
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and we have used the fact that

o [ ox* O
§<——) e (2.17)

ox¢ ) oxe
From the transformation law of vectors we have

ox"

Vi(x;e) = V*'(x*(x; e); e) FICTE

On differentiating this equation with respect to e, keeping x* fixed we find

ov* . ox* ¢ [ ox*
- *Q L Ry pEu )
4 <é’x*" e+ )é’x*” + ce <8x*“)

In virtue of Eq. (2.16) we may write this as

yu— e 4 g v OX (2.18)
4 ox*
where
L L I N (2.19)

and is of course the Lie derivative of the vector V*¥ with respect to £**.
It may be shown by similar arguments that for any tensor the operation
of taking the prime derivative of the tensor components differs from the
transform of taking the dot derivative by the appropriate Lie derivative
of the tensor.

In particular for a scalar we have

of*

Sfl(x;e)=f*+ W{*Q (2.20)

where

SH(xM )= f(x(x*;e);e).

3. The Equations 7**,, = 0

These equations are consequences of the Bianchi identities and the
Einstein field equations, Egs. (2.1). When Egs. (2.2) hold they may be
written as

wu'+w+pu, =0 (3.1)
and
w+pu*, ,u*=p h** (3.2)
where
h*=g"* —wu*. (3.3)
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When Eq. (2.4) holds, that is, when an equation of state exists, we may
define a thermodynamic variable o(w) by the equations

do _ _dvw (3.4)
o w+p
Eq. (3.1) then becomes
(u");u=0.

In the comoving coordinate system we then have

V=90 =)ga f(x) i=123 (3.5

where f is a function of x!, x%, x* but not of x*. Eq. (3.5) is the integrated
form of the equation of conservation of o.

It has been shown in [ 1], that Egs. (3.2) may also be integrated in the
comoving coordinate system to give

Jaa=€?, (3.6)
gai =€ Ci(x)  0,j=1,2,3 (3.7
where
(S 3.8
¢ w+p (38)

Thus in this coordinate system we have

ut=e"? 5k (3.9
and
u, =e* C,(x) (3.10)
with
Cu = g,;4/944 .

In particular we have C, =1 and C, functions of the variables x' alone.
The three functions C;(x) are simply related to the vorticity and hence
to the rotation as may be seen by evaluating the vector

= v uu

l/:‘g v%a,t
in the comoving coordinate system.
When
C,.—C;;=0

i Jj Jii
that is, when

Ci=vy,;
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and the flow is irrotational, we may find a transformation of the form
Xt =x*,
® =% (x),

which preserves the comoving character of the coordinate system and in
which the metric tensor is such g,; =0.

The subsequent discussion will be carried out ina comoving coordinate
system for in this system we shall be able to make immediate use of the
integrals obtained above. We may reformulate the discussion to apply
to an arbitrary coordinate system by using the discussion of the preceding
section. We observe that Egs. (3.4), (3.8), and (3.6) enable us to express
the pressure p as a function of g,, in the comoving coordinate system.

4. The Variational Principle

We now turn to a discussion of the integral defined by Eq. (2.5), namely

I=—[(R+2kp))/—gd*x. (4.1)

We shall evaluate I(e) and its derivatives with respect to e by using the
comoving coordinate systems discussed above. We shall also use the
fact that in such a coordinate system Egs. (3.4), (3.6), and (3.8) obtain.
Hence

1 4. 1
P=—wp) ¢ = —(whp) 5 D = —(wtp) s ghuu. (42)
2 Gaa 2
Since B
V-9V =3%V~-99"9y.. 43)
R'= =R g, +¢" R, (44)
and
R, =Tt =T,%)., 4.5)
where
Fc,r?: %glﬂ(g;g;rﬁ_gég;a—‘g;t;g)’ (46)

it follows that
I'(e)=+ [ (R ~%g"R+kT"))/~gg,,d*x

— [V =g A.,d*x

M=gmi (I, 6 = 1Y)

where

or ‘
=g g~ 9" 9" Gyuye 4.7
and T*" is given by Eq. (2.2).
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Hence Eqgs. (2.1) are the Euler equations determined by the require-
ment that I'(0) = 0 for arbitrary g;,, which vanish on the boundary of the
region of integration. Further we have

r'O)=+ [(G*+kT™) )/ ~gg,, d*x— [ [}/ —g(19),,] d*x (4.8)

where
Guv=Ruv_%guvR

and the prime denotes the derivative with respect to e in the comoving
coordinate system. The g,,,(x, 0) which enter into the integral are required
to satisfy Eqgs. (2.1). The first integral in the right hand side of Eq. (4.8)
is quadratic in g,,, and its derivatives.

The extreme values of I”(0) are attained for the g,, which satisfy
the linear equations

G* kT =0, (4.9)

the perturbed Einstein equations. The explicit form of G** may be
calculated from the results given above. The calculation of T"*¥ in the
comoving coordinate system involves the evaluation of u™*, v’ and w’
as is evident from Egs. (2.2). We have already discussed the evaluation
of the first two quantities. We shall make an additional assumption
which will aid in the evaluation of the fluid quantity w'. Namely we shall
assume that the perturbations in the fluid motion are adiabatic. That is,
if the entropy of a given element of the unperturbed motion is S then for
this element in the perturbed motion the entropy is still S or in other
words S'=0.

For a general fluid motion the pressure p may be expressed as a
function of the energy density w and the entropy S. Hence in general

we have
() . [P\ o
r= () e (56) 8
or
op
/ 2.7 o S/
p aw+(8s>w
where

is the ratio of the velocity of sound to the special theory of relativity
velocity of light. Our assumption then implies that

p=otw. (4.10)
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It should be noted that the assumption that an equation of state
exists for the unperturbed flow means that we are assuming that

p(0)=p(w, S;0)=p(w).

op _
<as>e:0_o.

Hence the derivatives of w with respect to the coordinates for e=0
can be related to those of p. Thus

(p(0),, = a*(W(0)),,, - (4.11)

That, is

5. The Spherically Symmetric Case
In a spherically symmetric space-time we may write the line element as

ds? = e di* — e dr? — e dQ? (5.1)
where
dQ*=d0? +sin*0 dx?, (5.2)

¢, y and u are functions of r, t and a parameter e and these are comoving
coordinates for each value of the parameter e. It then follows [3] that
the non-vanishing components of G*, are

R
- <R3 - 7) =l + 20 p) — ¢ P QRu,, + 317 = 2u,p,) + e

-2
-2
=€~2¢[%+Hrr+#3+1P12~1P:¢¢+#1(IP:—¢:)]
—e [y + 45+ O = D0, + (D —w,)]
RY=2e"2[p, — p b, — 190 + e 11,
Ri==2""[up — b, — 1,0, + et

where the subscripts r and t denote the derivatives with respect to these
variables.
The Einstein equations become

e Q2+ 3pf =2 p) — e P+ 2p,9,) + e

R 53
_<Rg__2_> (53)

—F,=(R{~ 1 R)+kw=0,
—F,=(Ri—%3R)—kp =0, (5.4)
—F,=R3—-3R)—kp =0,
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and
Ri=0. (5.5)

The four Egs. (5.4) and (5.5), are not all independent in view of the Bianchi
identities. It may be shown that the solution of these equations is deter-
mined by the solution of Eq. (5.5) and F,,=0 for a range of values of ¢
and of F,=0 for t=0.

The unperturbed solution we shall consider will be assumed to be
static, that is ¢, y and u will be assumed to be functions of r alone. In
that case it is no restriction to take

u=logr.
Eg. (5.5) is identically satisfied and Egs. (5.4) reduce to

%>=—km (5.6)

e [ A O o] R

It is a consequence of these equations that

272 (h, + ) = k(w+p)r. (57)
It is a further consequence of Egs. (5.6) that
(w+p) §,=—p,. (58)

The last equation also follows from the equation of state assumption.

The equations satisfied by the perturbations, ¢’, 3’ and u’ are obtained
by differentiating Egs. (5.4) and (5.5) with respect to e and setting e =0.
We then obtain from Eq. (5.5) and the last of (5.4) the equation

! !’ 1 ’ 1 !
oo =t by = — i+ — 1y =0 (5.9)

where now ¢, is determined by Egs. (5.6). The solution of Eq. (5.9)
is given by

Y =y =e?(e”?ry), (5.10)
where

o =1'(r,0)

and we have chosen our comoving coordinates so that

Uo =, 0)=0. (5.11)
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This can always be achieved by a coordinate from transformation
involving r alone.

The function ¢’ may be evaluated by using the integral of the field
equations given by Eq. (3.5) which holds for all values of e. That equation
may be written as

geV T =g evot2ho (5.12)
where now the subscript zero on f(r,t, ¢) is defined by
fo=1(r0;5e).

On differentiating Eq. (5.12) with respect to e, setting e =0 and using
Egs. (3.4), (4.10), and (5.11) we obtain

a P — oty = Bu +ru — ¢, i) (5.13)
or
o 2P — gty =r"2 et ue?), (5.14)

where o is the velocity of sound in the unperturbed fluid, ¢ is given as
above and ¢j, is ¢'(r, 0) for e =0.

Thus ¢’ and ' are determined in terms of y'. This function may be
determined by solving the equation

F,=0.

The quantities ¢’ and v’ enter into this equation but may be eliminated
by means of Egs. (5.10) and (5.14). We shall discuss this equation in the
next section

When the field equations, Egs. (5.4) and (5.5) are applied to a problem
in which there exists a hypersurface in space-time across which the stress-
energy tensor is discontinuous, the equations must be supplemented by
conditions satisfied by the metric tensor, its derivatives and the stress
energy tensor on this hypersurface. Thus for the problem we wish to
consider, namely that of a gas occupying a limited region of space-
time and bounded by a vacuum there exists the hypersurface X defined by

r=r,

where #, is the constant comoving coordinate of the boundary element
of the material.

It is well known (cf. [4]) that the conditions referred to above become
in this case

p(rba t)=0

and that ¢, p, and u are continuous across the hypersurface X. In addition
all first derivatives of these quantities except p, must be continuous
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across X. These conditions must hold for the perturbed as well as for
the unperturbed equations. Hence we must have

p(ry, )= —[W+p)¢'],-,,=0. (5.15)

In veiw of Eq. (5.14) this condition becomes a boundary condition on the
function .

Another condition is the requirement that for the perturbed and the
unperturbed solutions the function

R=et=r=0

at the origin. This function is the analogue of the Eulerian coordinate
of an element of the fluid which has the Lagrange coordinate r. Hence
we must have

R=e'y=ru=0 (5.16)
at the origin.
Egs. (5.15) and (5.16) provide boundary conditions for the second
order partial differential equation F,, = 0.
We close this section with a discussion of the implication of the Bianchi
identities.

If we define
— Kt =R; — 36" R+kTH,,
these identities are

l —
K, = ﬁ(\/—g KY),,— Kg If,=0.

They hold for all values of e. If the above equations are differentiated

with respect to e and then evaluated for e =0, and if it is assumed that

K* (x;0)=0, it follows that

e (/=g K", = K", [, =0 17
g

otuv

where now g,,, = g,,,(x; 0) is the unperturbed metric, and I'¢, is determined
from this metric and this metric satisfies the field equations.

We now evaluate Egs. (5.17) for the case considered above, when
the unperturbed metric is spherically symmetric and static and the
perturbed metric depends on time but is still spherically symmetric.
In that case Egs. (5.17) reduce to two equations corresponding to v=4
and v=1. These are

r*e¥(Fy), —(e*r* R'}), =0 (5.18)
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and
PR, + (2 e? F)), e~ ¢ — 2r F, =0 (5.19)
respectively.
Hence when R';=(R’}),=0 as is the case when Eq. (5.10) holds,
Eq. (5.18) becomes
Fy(r, 1) = Fi(r, 0) (5.20)

and Eq. (5.19) becomes
2rF,=(r*e*F)),e”?. (5.21)
The first of these equations implies that the equation F;=0 is only a

restriction on the functions ¢ and yy. It may be verified that on sub-
stituting Egs. (5.10) into the expression for F; one obtains

, 2 _ ' k ’
——F¢=“r7(7”e 2% o), + ‘&T(W""P)(ﬁo:o- (5.22)

6. The Equation F|,=0

Theequation F;, = Ois derived by differentiating the second of Egs. (5.4)
into which Egs. (5.3) have been substituted setting e =0, and making
use of the values of the unperturbed solution. One then obtains

, IV R i | [ Y
szz[e 2¢ﬂ”"‘[1,€ 2w<7+¢r>—7_76 Zw(l)r

(6.1)

r

+e vy <L2 + %qb,)il —k(w+p)¢'=0

when Egs. (5.10) and (5.14) are used to express ' and ¢’ in terms of y/,
one finds that

re?¥(w+p)

. 4 1
2 F‘;:elw 2¢(W+p)f,,+—r"p,§——‘p,2€

w—+p

2
—e VT2 [83‘“"——(W J:f)a (e“”rzé)r] (6.2)
1 2
+ke*¥(w+p)pé +w<3<72 + ;rzb,) —e VeV ),
where
E=ru . (6.3)

The equation F;, = 0 where F,, is given by equation (6.2), has a boundary
conditions Egs. (5.15) and (5.16). It is the equation given in [3] for the
case of the radial perturbations of a self gravitating fluid when the equa-
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tion of state was such that the fluid was isentropic. In that case o =g,
the rest mass density of the fluid. When ¢g =y, =0, the equation is the
same as the equation given by Chandrasekhar [2] as may be seen by
writing

(w+p oa®=yp,

and thus defining p. This definition of y is that given by Chandrasekhar
as may be verified by writing

w=N(1 +u(p, N))

where u is the internal energy. If one then computes (0p/0w), and re-
members that

|
TdS—du+pd<-ﬁ>

one verifies that the definition of y given above is that used by
Chandrasekhar.

7. The Evaluation of I (0)

In this section we shall use the results obtained above to express
I"(0) in terms of ', yy, and ¢y. We begin by observing that when I
is defined by Eq. (4.1) and when the perturbed and unperturbed metrics
are of the form given by Eq. (5.1), then it is sufficient for the purpose of
calculating I'(e) and I”(e) to evaluate I(e) in the coordinate system in
which Eq. (5.1) holds.

Thus we have

S H@ = — [ {eP e TR 4 20, ) — OV R + 2
i
(7.1)
T hpe? V2 (T4 )) 4 (Ve TO),) ) dr dt
Hence

—83;1'(e)= — [ {e? ¥t 2M(E, ¢ + F,p' +2F, 1) drdt—S(e) (12)

where F,, F,, and F, are defined by Egs. (5.4) and (5.3) and

S(e)= {[(4,— B,)drdt (7.3)
with
A=e P2 Qu 4 ) + W w, + 20 1+ 20+ ) s (7.4)

B=e? "V (—y'Qu, + @) + &', + 20 1, + 20, + ). (7.5
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The integration in Egs. (7.1) to (7.3) may be taken to be the region
bounded by the inequalities

0sr£0 0=Zt=Zt,. (7.6)

Across the boundary
r=r,. (1.7)

There is a discontinuity in the stress energy tensor. The pressure p
must be continuous at p =r, but the energy density w need not be. The
requirement that
1
—I'(0)=0
V)
for arbitrary ¢', ', and p’ which vanish together with their derivatives
on the boundary of the region given by the inequalities (7.6) and such
that y', ¢, ' and ¢, and u, may take on arbitrary values on the interior
boundary given by Eq. (7.6) leads to the field Egs. (5.4) and the boundary
conditions discussed in Section 5 (cf. [4]).

We also have
%1”(0): — ([ (Fy¢' + Fyy +2F,p) e** 1 dr dt — 5'(0)

where ¢, p and u are evaluated for e =0 and these functions satisfy the
unperturbed equations. In view of Egs. (5.10), (5.7), and (6.3) we have
e? VP F oy =e? vty F, + (e? VIR EF),
Hl

—e? vyl <T e *(e?r*F)), + %rez"’k(w +p)F;> .

On using Eq. (5.21) we obtain
TV (F oy + 2F, ) =e? v r? <tp§) F,— %relwk(w +p)Fé))
+(e R, .

This equation holds for all values of r, however for r=r, w=p=0 and
for r <r, we may use Eq. (6.2). Hence we have

L O)=d+d 42 (7.8)
8n
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where
ty rp
2
J=k [(w+p)r2e3w-¢¢én+e3¢+“’%(w-¢«:)&
00 A . (7.9)
2 0ty g2 k 2y o . 2 dt
+rie?tve < e wtpp+-—-p, wip ﬂdr
ty oo
J=- j Jrze“‘“[Fé,(gﬁ’wLFww;,] drdt
. (7.10)
2 +y ’ 1 2 2 + ’
+k r2e?tv Epy —r—2~+—r~¢r —r2E(e? v y),| drdt
0 0
and
r= —j j (e“’*‘*’rzéF[p),drdt—S’(O)
00 (7.11)

t1 ry

— | [ (kEe** v (w+p)at(e”?r?¢),), drdt
D0

with F; given in terms of i/, y" and ¢’ by Eq. (6.1).

If the functions ¢’, ' and & are to be such that I'(0)=0, that is if
they and their derivatives are to vanish on the exterior boundaries, and
if the boundary conditions on & are to hold at r =r, and r =0 we must
have

~1—I”(0)=J (7.12)
87

where J is given by Eq. (7.9).
The Euler equations of the variational principle

L sroy=s7=0 (7.13)
8n
is the equation
re?¥(w+
—%ﬂ F,=0 (7.14)

where the explicit form of this equation is given by equation (6.2). This
equation is equivalent to F;, =0 and the variational principle defined
by Eqgs. (7.13) and (7.9) was of course to be expected in view of the general
discussion given in the introduction.
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8. The Stability Criterion

The variational principle defined by Egs. (7.13) and (7.9) may be
refated to that given by Chandrasekhar in [2] by observing that if one
writes

¢=sin(ot+a){(r) (8.1)
we have
«LI”(0)=J=§ sin® (gt +a) .7 dt (8.2)
87 0
where
F=[ e ) Edr + 4, (8.3)
0
where

ry

—_ " +y y ip_r__# 1

2
+etIte(y 4 p) -967 (re"”f)f] dr.
r

The variational problem
07 =0 (8.5)

has as its Euler equation, Eq. (7.14) with ¢ given by Eq. (8.3). The functions
{(r) satisfying this Euler equation, that is the extremal { (r) = {,(r) are such
that

J1=0.

Chandrasekhar has pointed out (cf. [2]) that the variational problem
given by Eq. (8.4) expresses a minimum principle for the determination
of the lowest value of ¢ and that a sufficient condition for the dynamical
instability of a mass is that ¢, =0 for some “trial function” & which
satisfies the required boundary conditions.

However, if such a trial function exists we shall have # <0 and in
view of Eq. (8.2), for this trial function

L roy<o. (8.6)
8
Thus the sufficient condition for instability used by Chandrasekhar is
equivalent to the condition that there exists a trial function such that
the inequality (8.6) holds. The latter criterion may be applied to discussion
of the stability of general solutions of the Einstein field equations. We
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need not restrict ourselves to a static unperturbed solution and consider
perturbations of such solutions which depend on the then defined time
coordinate in a exponential manner.
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