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Abstract. The Einstein field equations for a self-gravitating fluid that obeys an equation
of state of the form p ~ p(w), p the pressure and w the energy density may be derived from a
variational principle. The perturbations of the metric tensor and the fluid dynamic variables
satisfy equations which may be derived from a related variational principle, namely the
principle associated with the "second variation problem." It is shown that the variational
principle given by Chandrasekhar from which a sufficient criterion may be obtained for
deciding when a self gravitating spherical gaseous mass is unstable against spherically
symmetric perturbations is that given by the "second variation problem". It is further shown
that this criterion is equivalent to requiring that the integral entering into the second
variation be negative. The latter form of the criterion may be used in general situations.

1. Introduction

It is the purpose of this paper to apply the variational principle [1]
obeyed by self-gravitating fluids which satisfy an equation of state to the
discussion of the stability against radial perturbations of a spherically
symmetric distribution of such a fluid. We shall show that the variational
principle given by Chandrasekhar [2] for determining the stability of a
spherically symmetric self gravitating gaseous mass is given by the
"second variation problem" associated with the principle referred to above.

Such a result is to be expected for it is well knwon that the equations
satisfied by perturbations of solutions of the Euler equations of a varia-
tional principle are the Euler equations of another variational principle -
the second variation problem. The two variational problems are related
as follows: Let J£(φA\ φA

μ) be a scalar density formed from some scalar
or tensor fields φA and the derivatives of these fields with respect to the
coordinates in space time,

^ μ=l,2,3,4
ψ'μ dxμ 4 = 1 , 2 , . . . , J V .
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φAμ)d*x (1.1)

where the integral is carried out over an arbitrary four volume in space
time determines a variational principle in the following sense. We assume
that the φA are functions of the xμ and a parameter e, thus

= 0

Then / is also a function of e and we may require that

dl

de

for arbitrary

'dφA'
Λ? = o

We have

Γ(e) =

Γ(e)-J

<no)=

S se , ,
«3(^

since
a0x

~fo~
d2φA

^'"' dxμde deδxμ '

On integrating the above expression for Γ(e) by parts we obtain

= FA(e)φ'A(e)d4x
K

φ'A d4x.

where

dφA

(1.2)

(1.3)

(1.4)

The second integral in Eq. (1.3) may be written as an integral over the
hypersurface bounding the four-volume of integration.

The requirement that Γ(0) = 0 for arbitrary φ'A(0), in particular, for
those that vanish on the boundary of the region of integration then leads
to the Euler equations

= 0. (1.5)
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The equations satisfied by the difference between two "almost equal"
solutions of these equations, or the equations satisfied by perturbations
of solutions to these Euler equations are

where FA(e) is given by Eq. (1.4). Thus

FA(o)
Γ d2^ d2^ ί d2

[_d2φAdφBΦ + dφAdφB

μ

Φ>» (dφA

μ8φB

= 0. (1.6)

Φ

These are a set of linear equations for the variables φ'A(0) whose coefficients
depend on the φA(x;0) and their derivatives. The φ'A(ty are called the
perturbations and the φA(x;Q), the unperturbed solutions.

Now it follows from Eq. (1.2) that

(1.7)

or

From Eq. (1.8) we have

when the 0^(0) are such that FA(0) = 0, that is the 0^(0) are unperturbed
solutions of the Euler equations associated with /, and the 0/M(0) = 0,
on the boundary of the region of integration. If we now consider the
φ'A (not the φA) functions of x and a parameter / we may define

J(/) = /"(0)

and examine the Euler equations resulting from the condition
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This is the "second variation problem." We find

-B-φ'Λδφ"
\μ Λμ

Hence for variations of the φ'A such that φ'A vanish on the boundary of
the region of integration, /"(O) takes on extreme values when the φ'A

satisfy the equations

the equations satisfied by the perturbations.
Thus the solutions φA of the Euler equations FA(φ) = ΰ, when con-

sidered as φA(x;Q) are such that /'(0) = 0, for φ'A which vanish on the
boundary of the region of integration, and the solutions φ'A of the equa-
tions F'A(φιφf) = Q, where the φA satisfy the Euler equations and are
coefficients in the linear differential equations, are such that /"(O) takes
on extreme values.

2. Comoving Coordinates

The Einstein field equations for a self-gravitating fluid are

Rμv-^gμvR = -kTμv (2.1)
where

Tμv = (vv + p) uμuv - gμvp , (2.2)

p is the pressure, vv is the energy density, k is the Einstein constant of
gravitation and uμ which is required to satisfy

uμuμ = l (2.3)

is the four-velocity of the fluid. We shall assume that an equation of
state exists, that is

P = p(w). (2.4)

It has been shown in Ref. [1], that under this assumption, Eqs. (2.1)
may be derived as the Euler equations of the variational principle based
on the integral

/ = - $(R + 2kp}}/gd4x (2.5)

in which R is the scalar curvature of space-time and the pressure p is
regarded as a function of the gμv, the metric tensor of space-time.
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In deriving this result it was convenient to use comoving coordinates
in the family of splice-times gμv(x\e) which arise hi discussing such a
variational principle- We note that in applying the discussion of the
previous section to equations (2.1) to (2.5), we must interpret the φA as
representing the sc^lars w and p, the four-velocity vector uμ and the
metric tensor g v. Thus we are considering a one parameter family of
space-times with metrics 0μ v(* ί e} and ίn eacn of which there is a congruence
of courves determined by the solutions of the ordinary differential

equation

v.

9ds

where the x*μ are the labels assigned to events in space-time in an
arbitrary coordinate system. In this coordinate system the four-velocity
vector lias components u^ and ΐne metric tensor "n^ ^oτrφon^rίis g*

We may write tfce solutions of Eqs. (2.6) as

x*μ^x*μ(ξ\s;e) (z = l,2,3) (2.7)

where
x*g = x*At(£ί,0;e)

are required to be the parametric equations of a hypersurface Σ(e).
The four variables £'*, s which we shall denote as xμ, form a comoving
coordinate system in each of the space-times. Eqs. (2.7) which may be
written more generally as

x*μ = x*μ(x;e) (2-8)

with
xl = ^1

ς ' (2.9)
X4 = X4(ξU),

may be regarded as the transformation between the x* coordinate
system and a general comoving one which uses the xμ as labels for events.
Eq. (2.6) is then to be understood as

*>ί(x*(χ e} e) (2.10)
CS

where in the partial differentiation the xl are kept constant for when these
variables are fixed a particular world-line is selected.

In the general comoving coordinate system we have the components
of the four velocity vector given by
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as follows from Eqs. (2.10). Hence

(2.11)
y 944

where gμv are the components of the metric tensor in the comoving
coordinate system. Eqs. (2.11) are a consequence of Eqs. (2.9) and (2.3).

We shall be using a comoving coordinate system in each space-
time of the one parameter family of space-times with which we shall
be concerned. In a particular one of these the metric tensor in the comov-
ing coordinate system will be written as #μv(x; e). The tensor

A n

(2.12)σ u v\ ' / Λ 'μ ce

with xμ kept constant will measure the change in the metric tensor
evaluated in the comoving coordinate system at an event labelled by the
coordinates xμ, produced by a change in the parameter e. Similar state-
ments will apply to other tensor fields which depend on e. In particular
we shall have

1 ' 1
,/μ _ μ 9 44 _ „ , σ τ (j 1 o\
Li — I/I — II UfTτii ίi . 1>6.J-~} |

2 #44 2

That is, the transformations given by Eqs. (2.8) for various values of e,
produce comoving coordinates in each of the space-times associated with
that value of e.

We shall use the notation

F*μ(x*;έ>H —;r- (2 14)ce

with x*μ kept constant, where the F*μ are the components of a vector
field in a general coordinate system using the labels x*μ. It is of interest
to determine the relation between V'μ and Fμ. To do this we define

?*μ- δx* n i^ς — —3— (z.isj
ce

where x*μ is given as a function of x and e by equations (2.8) and xμ

is kept constant under the differentiation. Since

<3x*μ dxv

dxv dx*ρ ~ ρ

must hold for all values of e, it follows from the differentiation of this
equation with respect to e keeping xμ fixed that

«μ
(2.16)

de dx*e



General Relativistic Gaseous Masses 241

and we have used the fact that

" . (2.17)
δe \ dxρ ) dxρ

From the transformation law of vectors we have

On differentiating this equation with respect to e, keeping xμ fixed we find

, μ _ / < 3 F * v . \ dxμ ^ d ί dxμ

Vμ=\dx**~ J<3x* v +V *l^\dx**

In virtue of Eq. (2.16) we may write this as

v" iv»+<r y*n dx" (2my ^ •=. \^y ^ -\-cZ?p* V J (^Z.loj

where
O? T/*v τ/#v K*Q ίί^ίV T/#ρ (Ί 1QA

~Zξ* Y ~ V ρS S ρ K V^ 1^/

and is of course the Lie derivative of the vector F*v with respect to ξ*μ.
It may be shown by similar arguments that for any tensor the operation
of taking the prime derivative of the tensor components differs from the
transform of taking the dot derivative by the appropriate Lie derivative
of the tensor.

In particular for a scalar we have

/•'(v . £ ) _ _ / * . I £*(? (2 20)
./ V > / J p γρ* '

where
/*(x";e) = /(χ(x*;e);e).

3. The Equations Γ" v. v = 0

These equations are consequences of the Bianchi identities and the
Einstein field equations, Eqs. (2.1). When Eqs. (2.2) hold they may be
written as

w v u
v -f (w + p)uμ.μ = 0 (3.1)

and
(w + p)uλ.vu

v = p vh
vλ (3.2)

where
hvλ = gvλ-uvuλ. (3.3)
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When Eq. (2.4) holds, that is, when an equation of state exists, we may
define a thermodynamic variable σ(w) by the equations

dσ d™
σ w-f p

Eq. (3.1) then becomes

(σuμ);μ = Q.

In the comoving coordinate system we then have

]/^σ = ]/g^f(xi) i = l,2,3 (3.5)

where / is a function of x1, x2, x3 but not of x4. Eq. (3.5) is the integrated
form of the equation of conservation of σ.

It has been shown in [1], that Eqs. (3.2) may also be integrated in the
comoving coordinate system to give

#44 = e2*, (3.6)

gu-e^Cfci) U=l,2,3 (3.7)
where

(3.8)

Thus in this coordinate system we have

uμ = e-φδ'i (3.9)
and

uμ = e*Cμ(xl) (3.10)
with

In particular we have C4 = 1 and Cx functions of the variables x1 alone.
The three functions Ct(x) are simply related to the vorticity and hence

to the rotation as may be seen by evaluating the vector

-9

in the comoving coordinate system.
When

r —C —0
^i,j ^J,ι~Ό

that is, when
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and the flow is irrotational, we may find a transformation of the form

which preserves the comoving character of the coordinate system and in
which the metric tensor is such 04ί = 0.

The subsequent discussion will be carried out in a comoving coordinate
system for in this system we shall be able to make immediate use of the
integrals obtained above. We may reformulate the discussion to apply
to an arbitrary coordinate system by using the discussion of the preceding
section. We observe that Eqs. (3.4), (3.8), and (3.6) enable us to express
the pressure p as a function of g44 in the comoving coordinate system.

4. The Variational Principle

We now turn to a discussion of the integral defined by Eq. (2.5), namely

x. (4.1)

We shall evaluate I(e) and its derivatives with respect to e by using the
comoving coordinate systems discussed above. We shall also use the
fact that in such a coordinate system Eqs. (3.4), (3.6), and (3.8) obtain.
Hence

p '=_( w + p)0':=_(w + p)li*t = _(w + p)JL0; t U<V. (4.2)
Z 044 Z

Since

R'=-R"g'στ + g"R'στ, (4.4)
and

R'στ = (Γ£δi-Γ&λ (4.5)
where

Γά^τg^teaKr + g'w-g'w), (4.6)
it follows that

where

or
λλ = (gλρgστ-gλτgσQ)g'στιρ (4.7)

and Tμv is given by Eq. (2.2).
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Hence Eqs. (2.1) are the Euler equations determined by the require-
ment that /'(O) = 0 for arbitrary g'μv which vanish on the boundary of the
region of integration. Further we have

I" (0) = + j (G'"v + k T'μv)}/-g g'μv d4x - J []/-g(λ*).J d4x (4.8)

where

and the prime denotes the derivative with respect to e in the comoving
coordinate system. The gμv(x, 0) which enter into the integral are required
to satisfy Eqs. (2.1). The first integral in the right hand side of Eq. (4.8)
is quadratic in g'μv and its derivatives.

The extreme values of /"(O) are attained for the g'μv which satisfy
the linear equations

Gfμv + kTfμv = Q9 (4.9)

the perturbed Einstein equations. The explicit form of G'μv may be
calculated from the results given above. The calculation of T'μv in the
comoving coordinate system involves the evaluation of u'μ, v' and w'
as is evident from Eqs. (2.2). We have already discussed the evaluation
of the first two quantities. We shall make an additional assumption
which will aid in the evaluation of the fluid quantity w'. Namely we shall
assume that the perturbations in the fluid motion are adiabatic. That is,
if the entropy of a given element of the unperturbed motion is S then for
this element in the perturbed motion the entropy is still S or in other
words S' = 0.

For a general fluid motion the pressure p may be expressed as a
function of the energy density w and the entropy S. Hence in general
we have

or

where

is the ratio of the velocity of sound to the special theory of relativity
velocity of light. Our assumption then implies that

p' = OL2\vf. (4.10)
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It should be noted that the assumption that an equation of state
exists for the unperturbed flow means that we are assuming that

That, is

Hence the derivatives of w with respect to the coordinates for e = Q
can be related to those of p. Thus

= α2(w(0))>μ. (4.11)

5. The Spherically Symmetric Case

In a spherically symmetric space-time we may write the line element as

ds2 = e2φdt2-e2{fdr2-e2ftdΩ2 (5.1)
where

(5.2)

φ, ψ and μ are functions of r, ί and a parameter e and these are comoving
coordinates for each value of the parameter e. It then follows [3] that
the non-vanishing components of G"v are

= e~2φίψt, + μ,, + μ,2 + v? -Ψ,Φ, + μ,(ψ, - ΦJ]
-e-2φ[φrr + μrr + μ2 + φ2-φrΨr + μr(φr~

ί = 2e~2φ\_μrt - μtφr- μrψt + μ,μr~]

where the subscripts r and ί denote the derivatives with respect to these
variables.

The Einstein equations become

(5.4)
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and
(5.5)

The four Eqs. (5.4) and (5.5), are not all independent in view of the Bianchi
identities. It may be shown that the solution of these equations is deter-
mined by the solution of Eq. (5.5) and F^ = 0 for a range of values of t
and of Fφ = 0 for t = 0.

The unperturbed solution we shall consider will be assumed to be
static, that is φ, ψ and μ will be assumed to be functions of r alone. In
that case it is no restriction to take

μ = logr .

Eq. (5.5) is identically satisfied and Eqs. (5.4) reduce to

1 o / l 2 \
-ϊ- - e'2ψ ( -V + — φr } = - kp, (5.6)
r2 \r2 r J

-2 Γ 2 1 Ί
[̂  r r + r r V r + r V r J ~

It is a consequence of these equations that

It is a further consequence of Eqs. (5.6) that

r = - A (5 8)

The last equation also follows from the equation of state assumption.
The equations satisfied by the perturbations, φ\ ψ' and μ' are obtained

by differentiating Eqs. (5.4) and (5.5) with respect to e and setting e = 0.
We then obtain from Eq. (5.5) and the last of (5.4) the equation

μf

rt-μrtΦr-—ψft+—μrt = Q (5 9)

where now φr is determined by Eqs. (5.6). The solution of Eq. (5.9)
is given by

(5.10)
where

φό - ι//(r, 0)

and we have chosen our comoving coordinates so that

ύ = μ'(r,Q) = 0. (5.11)
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This can always be achieved by a coordinate from transformation
involving r alone.

The function φf may be evaluated by using the integral of the field
equations given by Eq. (3.5) which holds for all values of e. That equation
may be written as

σe

φ + 2μ = σ0e
ψo + 2μo (5.12)

where now the subscript zero on /(r, ί, e) is defined by

On differentiating Eq. (5.12) with respect to e, setting z — 0 and using
Eqs. (3.4), (4.10), and (5.11) we obtain

oΓ V - αό2φό = (3μ' + r μ'r - φr r μ'} (5.13)
or

*-2φ'-*o2ΦΌ = r-2e*(r3μ'e-φ)r (5.14)

where α is the velocity of sound in the unperturbed fluid, φ is given as
above and φ'Q is φ'(r, 0) for e = 0.

Thus φ' and ιp' are determined in terms of μ'. This function may be
determined by solving the equation

The quantities φ' and ιp' enter into this equation but may be eliminated
by means of Eqs. (5.10) and (5.14). We shall discuss this equation in the
next section

When the field equations, Eqs. (5.4) and (5.5) are applied to a problem
in which there exists a hypersurface in space-time across which the stress-
energy tensor is discontinuous, the equations must be supplemented by
conditions satisfied by the metric tensor, its derivatives and the stress
energy tensor on this hypersurface. Thus for the problem we wish to
consider, namely that of a gas occupying a limited region of space-
time and bounded by a vacuum there exists the hypersurface Σ defined by

where rb is the constant comoving coordinate of the boundary element
of the material.

It is well known (cf. [4]) that the conditions referred to above become
in this case

and that φ, ψ, and μ are continuous across the hypersurface Σ. In addition
all first derivatives of these quantities except ιpr must be continuous
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across Σ. These conditions must hold for the perturbed as well as for
the unperturbed equations. Hence we must have

p'(rb,ί)=-[(w + p)^]Γ = Γb = 0. (5.15)

In veiw of Eq. (5.14) this condition becomes a boundary condition on the
function μ '.

Another condition is the requirement that for the perturbed and the
unperturbed solutions the function

at the origin. This function is the analogue of the Eulerian coordinate
of an element of the fluid which has the Lagrange coordinate r. Hence
we must have

= rμ' = 0 (5.16)

at the origin.
Eqs. (5.15) and (5.16) provide boundary conditions for the second

order partial differential equation Fv, — 0.
We close this section with a discussion of the implication of the Bianchi

identities.
If we define

these identities are

v μ y^ v , μ

They hold for all values of e. If the above equations are differentiated
with respect to e and then evaluated for e = 0, and if it is assumed that
Kμ

v(χ 0) - 0, it follows that

V-9

where now gμv = gμv(x;0) is the unperturbed metric, and Γ^v is determined
from this metric and this metric satisfies the field equations.

We now evaluate Eqs. (5.17) for the case considered above, when
the unperturbed metric is spherically symmetric and static and the
perturbed metric depends on time but is still spherically symmetric.
In that case Eqs. (5.17) reduce to two equations corresponding to v = 4
and v = 1. These are
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and
0 (5.19)

respectively.
Hence when #'4 = (R'l)t = 0 as is the case when Eq. (5.10) holds,

Eq. (5.18) becomes
F;(r,ί) = *φ(r,0) (5.20)

and Eq. (5.19) becomes

(5.21)

The first of these equations implies that the equation Fφ = 0 is only a
restriction on the functions φ'0 and ψ'0. It may be verified that on sub-
stituting Eqs. (5.10) into the expression for F^ one obtains

-^Φ=Λ(™~2>ό)r+ A-(w + /Mό = 0. (5.22)

6. The Equation F^ = 0

The equation F^ = 0 is derived by differentiating the second of Eqs. (5.4)
into which Eqs. (5.3) have been substituted setting e = Q, and making
use of the values of the unperturbed solution. One then obtains

when Eqs. (5.10) and (5.14) are used to express ψ' and φ' in terms of μ,
one finds that

where
ξ = rμ'. (6.3)

The equation F^ = 0 where F^ is given by equation (6.2), has a boundary
conditions Eqs. (5.15) and (5.16). It is the equation given in [3] for the
case of the radial perturbations of a self gravitating fluid when the equa-
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tion of state was such that the fluid was isentropic. In that case σ = ρ,
the rest mass density of the fluid. When φ'Q = ψ'Q = 0, the equation is the
same as the equation given by Chandrasekhar [2] as may be seen by
writing

(w + p)α2 =yp ,

and thus defining γ. This definition of γ is that given by Chandrasekhar
as may be verified by writing

where u is the internal energy. If one then computes (dp/dw)β and re-
members that

one verifies that the definition of y given above is that used by
Chandrasekhar.

7. The Evaluation of Γ(0)

In this section we shall use the results obtained above to express
/"(O) in terms of μ', ψr

Q, and φ'Q. We begin by observing that when /
is defined by Eq. (4.1) and when the perturbed and unperturbed metrics
are of the form given by Eq. (5.1), then it is sufficient for the purpose of
calculating Γ(e) and I"(e) to evaluate I(e) in the coordinate system in
which Eq. (5.1) holds.

Thus we have

Hence

(7.1)
dr dt .

(7.2)

where Fφ, Fψ, and Fμ are defined by Eqs. (5.4) and (5.3) and

(7.3)

with

(7.4)

. (7.5)
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The integration in Eqs. (7.1) to (7.3) may be taken to be the region
bounded by the inequalities

O^r^oo 0 ̂  ί g *! . (7.6)

Across the boundary
r = rb. (7.7)

There is a discontinuity in the stress energy tensor. The pressure p
must be continuous at p = rb but the energy density w need not be. The
requirement that

for arbitrary φ', t//, and μ' which vanish together with their derivatives
on the boundary of the region given by the inequalities (7.6) and such
that ψ', φ', μ' and φ'r and μ'r may take on arbitrary values on the interior
boundary given by Eq. (7.6) leads to the field Eqs. (5.4) and the boundary
conditions discussed in Section 5 (cf. [4]).

We also have

-̂ - /"(O) = - j j (Fφφ' + F^ψ' + 2F'μμ') eφ+"r2 dr at - S'(0)
oπ

where φ, ψ and μ are evaluated for e — 0 and these functions satisfy the
unperturbed equations. In view of Eqs. (5.10), (5.7), and (6.3) we have

On using Eq. (5.21) we obtain

This equation holds for all values of r, however for r ̂  rb w = p = 0 and
for r g rb we may use Eq. (6.2). Hence we have

-^-/"(OHJ + Λ + Σ (7.8)
8π 1 ^ J
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where

J = k

o o

~pr -- — pAldrdt
r w + p )]

(?9)

(7.10)
v '

+ /c + ̂ φ 0~ + -φ -r2i(e*+"^) rfr A

0 0

and
ί 1 OO

ίi rb

0 0

with Fy given in terms of μ', ψ' and φ' by Eq. (6.1).
If the functions φ', ψf and ξ are to be such that Γ(0) = 0, that is if

they and their derivatives are to vanish on the exterior boundaries, and
if the boundary conditions on ξ are to hold at r = rb and r = 0 we must
have

Γ(0) = J (7.12)
8π

where J is given by Eq. (7.9).
The Euler equations of the variational principle

-δΓ(0) = δJ = 0 (7.13)
8π

is the equation

where the explicit form of this equation is given by equation (6.2). This
equation is equivalent to F'ψ = 0 and the variational principle defined
by Eqs. (7.13) and (7.9) was of course to be expected in view of the general
discussion given in the introduction.
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8. The Stability Criterion

The variational principle defined by Eqs. (7.13) and (7.9) may be
related to that given by Chandrasekhar in [2J by observing that if one
writes

a)ζ(r) (8.1)

we have

t (8.2)
o

where

/ = ]* -σ2e3v-*r2(w + p)ξ2dr + j?ί (8.3)
o

where

(8.4)

The variational problem

<5/ = 0 (8.5)

has as its Euler equation, Eq. (7.14) with ξ given by Eq, (8.3). The functions
C(r) satisfying this Euler equation, that is the extremal ζ(r) = ζe(r) are such
that

/KJ=0.

Chandrasekhar has pointed out (cf. [2]) that the variational problem
given by Eq. (8.4) expresses a minimum principle for the determination
of the lowest value of σ2 and that a sufficient condition for the dynamical
instability of a mass is that /Ί = 0 for some "trial function" ξ which
satisfies the required boundary conditions.

However, if such a trial function exists we shall have / <; 0 and in
view of Eq. (8.2), for this trial function

(8.6)
8π

Thus the sufficient condition for instability used by Chandrasekhar is
equivalent to the condition that there exists a trial function such that
the inequality (8.6) holds. The latter criterion may be applied to discussion
of the stability of general solutions of the Einstein field equations. We
18 Commun. math. Phys., Vol 15
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need not restrict ourselves to a static unperturbed solution and consider
perturbations of such solutions which depend on the then defined time
coordinate in a exponential manner.
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