
Commun. math. Phys. 14, 205—234 (1969)

Existence of Phase Transitions
for Quantum Lattice Systems

J. GlNIBRE

Laboratoire de Physique Theorique et Hautes Energies, Orsay, France*

Received July 7, 1969

Abstract. We prove that the following lattice systems:
(1) anisotropic Heisenberg model,
(2) Ising model with transverse magnetic field,
(3) quantum lattice gas with hard cores extending over nearest neighbours,

exhibit phase transitions if the temperature is sufficiently low and the transverse (or kinetic)
part of the interaction sufficiently small.

1. Introduction

The existence of a phase transition at sufficiently low temperature
has been proved for a variety of Ising models with attractive interactions
[1-7] on v-dimensional cubic lattices (v ̂  2). The argument goes back
to Peierls [1]. It can be described in the lattice gas language, and rests
on the following ingredients:

(1) Probability estimate. With each configuration on the lattice, one
associates a family of closed polygonal or polyhedral contours. Let G be
such a contour, and g the area of its boundary. One first proves that the
probability of occurrence of a given G is bounded by

P(G)gexp[-/?fl0] (1.1)

where β is the inverse temperature and a some positive constant.
(2) Entropy estimate. The number of possible shapes of G for a given

g is bounded by 39~v.
(3) Density estimate. For a given g, the volume enclosed in G is

bounded by (g/2 v)v/v-1, corresponding to the worst possible shape, which
is a cube.

From these estimates and general arguments, one deduces the
existence of at least two equilibrium states corresponding to the same
temperature and chemical potential (or magnetic field), with densities
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Q ^ ί?o < i and ί?' = 1 ~~ £o > i> where

(1.2)

The sum runs over all even integers #^2v, and the RHS obviously
becomes less than 1/2 for /? sufficiently large. The transition thereby
obtained is of first order.

More recently [5], Dobrushin has extended the proof to the case of
the Ising model with repulsive interaction, and to lattice gas models with
extended hard cores. No claim is made concerning the order of the
transition.

In the present paper, we extend the proof to a number of quantum
lattice systems in vg: 2 dimensions, obtained by adding to the classical
Hamiltonian either a transverse (i.e. kinetic) interaction term, or a trans-
verse magnetic field. More precisely, we prove that if the temperature is
sufficiently low and the admixture of transverse terms sufficiently small,
the latter do not destroy the longitudinal spontaneous magnetization (or
sub-lattice magnetization) which arises in the corresponding classical
system. The proof requires one more step, which precedes the previous
ones:

(0) Using Trotter's formula, one reduces the problem of dealing with
non commuting operators to a geometrical problem of the same type as
the classical one, at the expense of increasing the dimension from v to

(v + 1).
In Section 2, we give a general characterization of phase transitions

which makes clear what has to be proved. In Section 3, we describe the
models which we consider, we apply Trotter's formula [8] to reduce the
problem to one of the classical type, and introduce the geometrical
definitions needed for the proofs. We then consider specific models
(Sections 4 to 8) in the following order, which is that of increasing
difficulty:

(1) Quantum system with extended hard cores,
(2) Anisotropic Heisenberg ferromagnet,
(3) System with extended hard core and transverse magnetic field,
(4 a) Ising ferromagnet with transverse magnetic field,
(4b) Ising antiferromagnet with transverse magnetic field,
(5) Anisotropic Heisenberg antiferromagnet.
If the dimension is v = 2, it is known [9] that:

(a) the anisotropic Heisenberg model does not exhibit transverse
spontaneous magnetization.

(b) the isotropic Heisenberg model does not exhibit spontaneous
magnetization.
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Our proof in the corresponding case lies far outside of the reach of
these results, since we are looking for longitudinal magnetization with
only a small admixture of transverse interaction.

2. Characterization of a Phase Transition

Consider a quantum system in a box A with volume V. Let HΛ be the
hamiltonian and AΛ a physical observable. We take β = 1 and disregard
all the problems associated with unbounded operators, which are
irrelevant for our purpose. Consider the quantity:

pA(<*)= V~l LogTrexpE-H^ + αPMJ . (2.1)

Then pΛ(ά) is a convex function of α, as follows from the explicit expression
of its second derivative, or from an argument of Peierls (see, for instance,
Ref. [11]). Suppose that when A becomes infinite in a suitable sense, the
following limit exists:

p(α)= limpΛα). (2.2)
Λ-+OO

In practice, AΛ will be the magnetization, or the sublattice magnetization.
For all the systems we shall consider, the limit (2.2) will exist. The
function p(α) is then a convex function of α. Let pl(α) and p+(α) be the
left and right derivatives at α. (p_(α) ̂  p+(α)) If P-(α) = P+(α)> then:

p-(a) = P'+(OL) = lim β'(α) . (2.3)
Λ-^OO

We shall say that the system exhibits a phase transition if for suitably
chosen AΛ, one obtains p+(0) — pl(0)>0. The physical interpretation is
clear. We now give a sufficient condition for the existence of a phase
transition in this sense. We shall use the following result:

Lemma 1. Let HΛ and AΛ be such that the limit (2.2) exists. Suppose
that for each A, there is defined a projection operator PΛ in the Hubert
space associated with A, satisfying the following property: let:

PP»= V-1 LogTrP^expK-^ + αFXJPJ (2.4)

and suppose that when A becomes infinite:

(a) pPΛ(0)-+p(0) (2.5)

(b) ΊS<^>P^λ (2.6)
A— *• oo

where λ is some real number, and <.>Pyl is the expectation value taken
with the density matrix PΛ exp ( — PΛ HΛ).

Then:
pl(0)^A. (2.7)
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Proof. Let α>0;

= O - O
l '

Now pp(α) is a convex function of α and an increasing function of P.
Therefore the second term in the RHS of (2.8) is less than (AΛyPΛ9 and
the third term is negative. Therefore:

- PA( - «) ̂  PΛO) - Ppj0) + α<^yl>Pyl . (2.9)

Taking the limit Λ-> oo, we obtain:

(2.10)

Taking the limit α-»0, we obtain (2.7).
We can now formulate a sufficient condition for the existence of a

phase transition:

Lemma 2. Lei //^ and AΛ be as above. Suppose that for each A, there
are defined two projectors PΛ and QA, such that for some real numbers
λ and μ (λ<μ):

(a) lim ppJO) = lim Pαι(0) = p(0) (2.1 1)
Λ— * oo Λ-* oo

(b) lΉ <^>P, ̂  λ < μ ̂  lim (AΛyQΛ (2.12)

Then the system exhibits a phase transition in the previous sense.

Proof. From Lemma 1, we obtain

(2.13)

which proves Lemma 2.
In practice, PΛ and QΛ will be taken from the classical proof in an

obvious way, (2.11) will also be obvious, and we shall concentrate on
proving (2.12).

3. The Models, Trotter's Formula and the Contours

We shall consider several quantum lattice systems, for which we shall
use both the magnetic and lattice gas language. (See Ref. [10] for the
correspondence between the two of them.) The configuration space of
the system is a v-dimensional cubic lattice (v^2). With each site r is
associated a 2-dimensional vector space. Let σ?'y>z be the Pauli matrices
acting on this space. In the lattice gas language, σ* =^(σf ±iσj') are
the creation and annihilation operators for a particle on site r, and
the number of particles is nr = σf σ~ =(l + σz

r)/2. A convenient basis
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in this space consists of the eigenvectors of nr (resp. of),
corresponding to the eigenvalues 1 and 0 (resp. 1 and — 1) and describing
occupation or emptiness (resp. spin up or down). The system is enclosed
in a cubic box A of volume V. The hamiltonian H is the sum of two terms:

a longitudinal term U (potential energy term), taken over from the
corresponding classical problem. At this stage, the only relevant property
of U is that it is diagonal in the occupation number representation.

a transverse term K (kinetic energy term).
We refer to the various models by the numbers given in the introduc-

tion. K is then chosen as follows:
For the models (1), (2) and (5):

where Σ' means that the sum is restricted to the nearest neighbours,
and Σ" tnat it *s restricted to the next-to-nearest-neighbours. One
should be careful that, if one defines the distance between two lattice
points by: v

|r-s|=Σ|rβ-s.| (3.2)
α = l

then Σ" refers to pairs of points at a distance |r — s| = 2 (and not v, if
v > 2). This choice will emerge as the most natural one in the following
section.

Under the unitary transformation f] σz

r, where the product runs
ir

over every other site of the lattice, U is invariant, a changes sign and b
is invariant. It is therefore no restriction to take α^O. We also impose
b ̂  0, which, however, is a restriction.

For the models (3) and (4):

*=-4Σ*?=-τΣtf+0. (3.3)
^ r *• r

(3.3) describes a magnetic field in the positive x direction (ft > 0).
In order to apply the general theory of Section 2, we have to choose

the observable AΛ and the projectors PΛ and QΛ. This will be done in
close analogy with the classical case. Let SΛ C A be the set of sites on the
boundary of the cube Λ. PΛ and QΛ will be the projections on common
eigensubspaces of all the nr (or σf) for all r e SΛ, with suitable eigenvalues.
They will be defined therefore by these eigenvalues. We make the follow-
ing choice:

For the models (2) and (4 a) (ferromagnets) :

PA:σ*r=-l9 or ^ = 0, for all reSΛ.

QΛ: σ* = l, or nr=l, for all reSΛ.
 ( ' )
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AΛ is the magnetization (one could equivalently take the density):

AΛ = V-*Σσz

r. (3.5)
reΛ

In these cases, the unitary transformation WΛ = Y[ σ* exchanges PΛ and
reΛ

QΛ, and changes AΛ into —AΛ. Furthermore, the longitudinal part
U of H will be chosen to commute with WΛ. Therefore, it will be sufficient
to check that for some fixed η > 0:

mΛ^(AΛypΛ^-η<0. (3.6)

For the models (1), (3), (4b) and (5) (antiferromagnets):

PA: σί = (-)|r| + 1 for all reSA.
QΛ: σz

r = (-γ\ for all reSΛ.
 ( ' }

AΛ is the sublattice magnetization:

4ι = r 1 Σ(-) | Γ | <f (3 8)
reΛ

where |r| is defined in analogy with (3.2).
Strictly speaking, no WA exists in this case, since the obvious candidates,
namely the translations by one step parallel to one of the coordinate
axes, do not leave A invariant. This will not affect the conclusion, how-
ever, and it will still be sufficient to check (3.6).

All the PΛ, QΛ, AΛ are diagonal in the occupation number representa-
tion, and (2.11) is obviously satisfied. We now concentrate on mΛ = (AΛypΛ,
and drop from now on the index A, as well as the projector PΛ. Then:

m = (A) = Z'1 Ίτ(A exp(-Ή)) (3.9)
where

Z = Trexp(-H) (3.10)

and where the inverse temperatur β is supposed to be included in the
coefficients of H.

We apply Trotter's formula [8] to exp(-H):

exp( - H) = Urn (exp ( - ~) exp ( - ̂  J (3.11)

-f)('-τ)J <3 12)

where T is a positive integer. Since we are in fact dealing with finite
dimensional matrices, the convergence problems are trivial. We sub-
stitute (3.12) into the definition of m and expand the product by intro-
ducing intermediate states running over a basis of the range of P between
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successive factors. We take this basis to consist of eigenvectors of all
the nr (r e A). Such a vector | D> corresponds in a one-to-one way to a
classical configuration D in A. U and A are diagonal in this representation.
Let U(D) = (D\U\Dy and similarly A(D) = <D|A|D>. Then

Tr[Aexp(-ff)]=Jim _ _

' (3.13)

Π<£(Oli-^|£Hί+i)>

Here t is an integer, 1 ̂  t ̂  T. t will be called the time. D(t) is the classical
configuration that occurs at time ί, which means that we have inserted
|D(f)><D(ί)| between the (t— l)-sί and the ί-th factor in the product
(3.12). We take of course D(T+ 1) = D(1). The matrix elements in the
last factor are non zero only in a small number of cases, depending on
the choice of K. We consider separately the cases where K is a transverse
interaction or a transverse magnetic field.

For the models (1), (2) and (5), K is the transverse interaction (3.1).
The matrix element in (3.13) is non zero in the following cases:

(1) D(t) and D(ί+ 1) are identical, in which case it is one.
(2) (resp. (3)) D(t) and D(t+ 1) differ by one particle and a neigh-

bouring (resp. next-to-neighbouring) hole having exchanged their posi-
tions, in which case it is a/T (resp. b/T). The latter case we describe as
an α-jump (resp. fe-jump).

Cases (2) and (3) we describe as jumps. A configuration of the system
is now defined as a sequence A = {D(t\ t= 1,..., Γ+ 1} of classical
configurations in the box A, such that D(T+1) = D(1), and for all ί,
D(t) and D(t + 1) are related as above. The configurations of the quantum
system therefore build a subset of the set of classical configurations in a
box Ω = A x [1, Γ+ 1] on a (v+ l)-dimensional lattice. Let A be a con-
figuration. Let Xa(A) and Xb(A) be respectively the number of α-jumps
and ί?-jumps, and let:

Then
a \Xa(Δ) / fo \Xb(Δ)/ \Xa(Δ) / b \

\ l / \ l 1
« = l i m - /a\x.ώ/h<*^ <3-15)

Γ~*°° τ-ι r- ^ τ , ,x-. / 0 \ / 0

Ύ
The effect of the projector PΛ, which is not written explicitly, is to restrict
the sum over A to those A for which for all t,D(t) satisfies the boundary
condition which defines PΛ.
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Since α>0, b>0, all terms in (3.15) are positive. Therefore the
quantum Gibbs distribution defines for each T a probability measure
over a set of configurations on a (v + l)-dimensional lattice. The prob-
ability of a configuration is:

a \ Xa(A) ( b \Xb(A}

*

= exp[-I/(J)] — — Σ idem. (3.16)
1 / \

The problem is now similar to the classical one.
For the models (3) and (4) K is a transverse field (3.3). The analysis

is almost identical. The matrix element in (3.13) is non zero if
(1) D(t) and D(t + 1) are identical, in which case it is one,
(2) D(t) and D(t + 1) differ by one site being occupied in one of them

and empty in the other, in which case it is h/2T. This we still call a jump.
Configurations A are defined accordingly. Let X(Δ) be the number
of jumps of Δ. Then:

h X(A)

m = lίm - (3.17)

The probabilistic interpretation is similar to the previous one, with:

/ h \X(A} I
P(J) = exp[-l/(Λ)] — /Σ idem. (3.18)

\ Z 1 / I Δ

We now describe some geometrical properties of configurations. The
following considerations apply not only to the previous periodic con-
figurations (D(T+ 1) = D(l)), but also to non-periodic ones, which would
be needed for the study of operators that are not diagonal in the occupa-
tion number representation.

To each configuration, we first associate contours similar to the
classical ones. Each point in Ω = A x [1, T+ 1] is the center of a (v + 1)-
dimensional unit cube, hereafter called cube. A cube is occupied (resp.
empty) if its center r is occupied (resp. empty), namely if nr = 1 (resp.
nr = 0). The faces of the cubes are v-dimensional unit cubes, hereafter
called faces. The faces of the faces are (v — l)-dimensional unit cubes,
hereafter called edges. We shall consider exclusively the faces and edges
parallel to the time axis, and disregard all others. The set of cubes (resp.
faces and edges) occuring at a given time can and will be identified with
the set of their spatial projections, namely their projections on the
v-dimensional space orthogonal to the time axis. These projections
are v-dimensional (resp. (v — 1) and (v — 2)-dimensional) unit cubes,
and will again be called cubes (resp. faces and edges).
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Let A be a configuration. We now define effective faces in A.

Definition 1. A face is effective in A if it satisfies the following condition:
(1) For the models (2) and (4 a) (ferromagnets): one of the cubes

adjacent to this face is occupied in A, and the other one is empty.
(2) For the models (1), (2), (4b) and (5) (antiferromagnets): the two

cubes adjacent to this face are both empty or both occupied in A.

Let A satisfy the boundary conditions that define PΛ or QΛ. Let $(A)
be the set of effective faces in A. Then the configuration A is uniquely
defined by g(Δ). The effective faces at time t form closed polyhedra,
which characterize the classical configuration D(t).

The following is an equivalence relation between faces in /(A).

Definition 2. Two faces f and f in $(A) are connected if there exists
a sequence (/ = /0,/ι, •••>/« = /') of faces in δ(Δ) such that for any
j=l,...,n9 the pair of faces (/)-!,/)) satisfy one of the following two
conditions:

(1) They occur at the same time and have a common edge.
(2) They occur at consecutive times (ί, t ± 1), and their spatial pro-

jections have a common edge.

We now define contours.

Definition 3. We call contours of A the equivalence classes of $(A)
under this relation. If G is a contour of A, we write GcA.

We next describe some properties of contours.
Let G be a contour, G(t) the set of faces of G at time t. G(t) is identified

with its spatial projection, which is a family of closed polyhedra in
v-dimensional space. G(ί) is not connected in the usual sense in general.
A point in A is said to be internal (resp. external) for G(ί) if it can be
reached from outside by crossing G(t) an odd (resp. even) number of times.

If a face belongs to G(ί) and is not affected by a jump between D(t)
and D(t + 1), then it also belongs to G(t + 1). Suppose now that A has
a jump between D(t) and D(ί+ 1). It can be described as follows:

If K is given by (3.3) (transverse field), then there is one cube with
the following two properties:

(α) its center is in opposite situation (external vs. internal) with
respect to D(t) and D(t + 1),

(β) each of its faces is effective at time t but not (t + 1), or at (t + 1)
but not t.

If K is given by (3.1) (transverse interaction), and the jump is a
b-jump, then there are two cubes with the properties (α) and (β), and
they are next-to-nearest-neighbours, which means that they have a
common edge but no common face.
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If K is given by (3.1) and the jump is an α-jump, then there are two
cubes with properties (α) and (β\ except that they now have a common
face, which is effective in both D(f) and D(t+ 1) or neither.

In all cases, it follows from the definitions that if one of the effective
faces of the jumping cube (or cubes) at time t or (t + 1) belongs to G,
then all effective faces of the jumping cube (or cubes) at time t and (t + 1)
belong to G. We then say that the jump itself belongs to G.

From this it follows that for a given G, there exists a unique con-
figuration ΔG such that $(ΔG) = G. The number of jumps (resp. α-jumps
or b-jumps) of ΔG we call number of jumps (resp. α-jumps or b-jumps) of
G and we denote by X(G) (resp. Xa(G) or Xb(G)). Then clearly, for all A :

*(α.»(4= Σ *(β.b)(G) (3 19)
GCΔ

It is now clear in what sense the choice (3.1) is natural. The convenient
notion to be used when defining classical contours is connectedness
by edge. In (3.1) we have allowed all the jumps that do not destroy this
connectedness. It would not be substantially simpler to consider only
α-jumps.

Our final aim is to prove (3.6). We now give a sufficient condition for
(3.6) to hold, which relies heavily on contours.

Lemma 3. A sufficient condition for (3.6) to hold is that the probability
π(r) for re A to lie inside at least one contour at time 1 satisfies:

(3.20)

Proof. The definitions of PΛ and contours have been chosen in such a
way that any re A which can be reached from outside without crossing
any contour contributes -1 to V AA. Therefore

reΛ (3.21)
^ sup (2π(r) - 1) .

reΛ

The lemma follows immediately. Notice that π(r) = 0 for re SA.
There remains to obtain bounds on π(r). This will result from three

estimates, as sketched in the introduction: a probability estimate for
an arbitrary contour G, an entropy or shape estimate, and a position
or density estimate. The last one is the number of possible positions of G
with a given shape, such that r be reached from outside by crossing G(l)
at least once. If g = 0(1) is the total area of G(l), this is less than (g/2v)vlv~l

by the classical estimate. The first two estimates are model-dependent.
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In the following sections, we shall obtain these estimates and deduce
from them the property (3.20) of π(r), which implies (3.6) and therefore
the existence of a phase transition.

4. Quantum System with Extended Hard Cores

The hamiltonian H = K + U is defined by (3.1) and by

U=-μ^nr + ̂ φ(r-s)nrns (4.1)
r r Φ s

where:
φ(r)=+oo for \r\ = 1 (4.2)

Σ |r| |φ(r)|<oo. (4.3)
H^2

The appropriate AΛ, PΛ and QΛ for this model are defined by (3.7, 8).
For technical reasons [5, 12], we restrict the length of the edge of Λ to be
even. The extended hard core considerably restricts the possible con-
figurations and contours. Effective faces can only separate empty cubes.

Let g(f) be the total area of G(ί), and #α(ί) the area of the faces of
G(ί) that are orthogonal to the α-th coordinate axis. Then, for all α = 1,..., v,
and all ί, g(t) = vgΛ(t). Therefore g(t) = 2vk(t), where k(t) is an integer.
The only possible jumps are shown on Figs. 1 and 2 (respectively α-jump

-B-
Fig. 1. Typical α-jump for model (1)

Fig. 2. Typical b-)ump for model (1)

and fc-jump), where shaded means occupied, a small circle means empty,
and no claim is made concerning the effectiveness of the faces not drawn.
In particular, one sees immediately that g(t) is independent of ί, so that
k(t) = k(l) = k. If G is a contour, we denote by Xa9Xb and X = Xa + Xb

the number of α-jumps, of b-jumps and of jumps of G. We now derive
the relevant estimates.
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Lemma 4. The probability P(G) of a given contour G satisfies:

a Y« / b V»
(4.4)

V ί / V i I
where:

C=~Σ Σ (W + 1)IΦWI (4.5)

Proof. Up to an inessential improvement in estimating the contribu-
tion of the tail of the potential, the proof is a straightforward transcrip-
tion of that in [5] and will not be repeated. The transformation TG which
occurs in [5] is replaced by

We need also an entropy estimate.

Lemma 5. The number of possible contour shapes with given g = 2vk
and given Xa and Xb is at most:

T!
— _ 9(2v + l)k-v

_ 2

2 (4 ?)

Proof. We first estimate the number of possible shapes of G(l),
for given g and X. The classical estimate 29~v, which corresponds to
X = ΰ, no longer holds because G(l) is not connected in general. Now,
with each jump of G is associated a pair of cubes. It follows immediately
from Defs. 2 and 3 that by adding to G(l) the 2X jumping cubes, we obtain
a connected polyhedron. Moreover, it is clear by inspection of Figs. 1
and 2, that as far as connectedness is concerned, we loose nothing by
adding only one cube per jump, namely the jumping cube that is occupied
before the jump. Adding these X cubes to G(l), we then obtain a connected
polyhedron G with area g + 2vX. Now G can be considered as a single
closed polyhedron, by which we mean that the faces of G adjacent to the
same edge are connected in pairs, in such a way that the set of all faces
of G is pairwise connected, and that no face has a free edge. In fact, G
can be constructed by adding X times a cube to some polyhedron, in
the situation shown on Figs. 1 and 2. One then opens the polyhedron
and the cube along a common edge, and reconnects the faces as shown
on the same figures. Furthermore, this can be done in such a way that
no two directly connected faces of G are parallel. The number of possible
shapes of G is therefore at most 29 + 2vX~v by the classical estimate [2, 5, 7],
where however 3 is replaced by 2 in view of the restriction mentioned above.
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In order to extract G(l) from G, it is sufficient to extract X cubes.
Each one is characterized by its lower horizontal face: .one has therefore
to choose X faces among g/v + 2X. Since each choice removes one cube
and therefore two horizontal faces, one finally gets:

(4.8)

G(l) being chosen, one then chooses the times at which the jumps occur.
The number of possible choices is:

T!
(4.9)

Xa\Xb\(T-X)\ '

We now complete the counting of the possible G by estimating the number
of possible G(ί) in the order of increasing ί. Suppose G(ί) is fixed. If
there is no jump at time ί, then G(ί+ l) = G(ί). If there is an α-jump
at time ί, the number of possible α-jumps, and therefore of possible
G(ί + 1), is at most equal to the number of non effective faces of cubes,
the (2v — 1) other faces of which are effective in G(ί) (see Fig. 1). Since
each face of G(ί) can be used at most twice as a face of such an incomplete

cube, this number is less that . This is best possible, as shown
2v — 1

by a close-packing arrangement of crosses of the type represented by
Fig. 3. If there is a fo-jump at time £, the number of possible b-jumps

Fig. 3. Contour with the maximum number of possible α-jumps for model (1)

is at most equal to the number of edges of G(ί), namely (v — l ) g . Collecting
all the estimates, we obtain (4.7).

We have all the estimates needed. In order to formulate the result,
we reintroduce the inverse temperature β. Let:

μ = βμ, a = βά, b = βb, φ = βφ, etc. (4.10)
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Theorem 1. The model defined by (3.1) and (4.1) exhibits a phase
transition for all μ > μ0 and β > βo(μ), where

> 2 v + 3 2v
2v- l

α + v(v (4.11)

The function β0(μ) is a decreasing function of μ. It tends to infinity when μ
tends to μ0, and tends to zero when μ tends to infinity.

The two-phase region is indicated by shading on Fig. 4, in the (β — μ)
plane, for fixed α, b and φ.

Fig. 4. Two-phase region for model (1) for fixed (a, b, φ)

Proof. It is sufficient to prove (3.20). We collect the estimates from
Lemmas 4 and 5, and obtain:

Xa,Xb

T!

The last sum is equal to:

x la
Σ
x

Therefore:

2v- l +(v-D6

2(2v+1)fe

(4.12)

(4.13)

. (4.14)

(4.15)
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The series can be made convergent and the sum arbitrarily small, and
in particular less than 1/2, by taking μ sufficiently large. Note also that
the last exponent is linear in β. In particular, for all μ, α, b and φ that
satisfy μ>μ0, a phase transition will occur for β sufficiently large. This
proves Theorem 1.

Remark L Instead of proceeding as above, one could also deduce a
bound on the entropy from the fact that, when G(l) and the X cubes are
known, as well as the jumping times, then G is uniquely determined by
the order in which the jumping cubes are used, which introduces a factor
XI The last sum in (4.12) would then be replaced by:

/T\ ίa\Xaίb\Xb

ΣQ*<212'""0) (4) <««
The fact that a jump is a or b is now determined uniquely by the geo-
metrical situation. We therefore obtain:

(4.17)
X 1 (1 — A j !

^ [1 - 22(v+1) Max(α, b)]-1 . (4.18)

However, this is restricted to Max(α, fr)<2~2(v+1). In particular, the
allowed values a and b of the transverse interaction would tend to
zero like β~l for /?->oo. This estimate is therefore of restricted interest.

5. Anisotropic Heisenberg Ferromagnet

The hamiltonian H = K+ U is defined by (3.1) and by:

υ = {^φ(r-s}(σlσl-l} (5.1)
r<s

= - ΐ Σ Ψ(r - s) [«,(! - ns) + n,(l - n,)] (5.2)
r<s

where:
φ(r)=-2a'<0 for |r| = 1 (5.3)

and:
Max £ |rβ | |φ(r)|<4vα'. (5.4)

α r : | r |>l

The appropriate AΛ,PΛ and QΛ for this model are defined by (3.4, 5).
The effective faces separate occupied cubes from empty cubes. Therefore
all jumps are superficial, in the sense that they exchange two cubes,
one of which is internal and the other external to the contour G to which
the jumps belong. For an α-jump from G(ί) to G(t+ 1), the jumping
cubes have a common face, referred to as the jumping face, which belongs
to both G(ί) and G(ί + 1). The jumping face uniquely determines the

16 Commun. math. Phys., Vol. 14
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jump. For a fe-jump, the jumping cubes have no common face but only
a common edge, which also belongs to both G(t) and G(t + 1). A given edge
of G(t) or G(t -f 1) can accommodate at most two jumps. In order to
describe the times at which the jumps of a given G occur, it will be con-
venient to introduce the following notation: We define a function

(x(t) = 0 if there is no jump from G(t) to G(t + 1)

(x(ί) = 1 if there is a jump from G(t) to G(f + 1)
Let: f

X(t)= ΣX(S). (5.6)
s = l

Then, the total number of jumps of G is X = X(T). We still denote by
Xa and Xb the numbers of α-jumps and fe-jumps (X = Xa + Xb).

In this model, g(t) is not constant in general. However, one sees im-
mediately by inspection that:

(5.7)

From this it follows that:

(5.8)

One could in fact consider separately α-jumps and b-jumps. For the latter,
the coefficient (4v — 2) can be replaced by (4v — 4). We shall not make
this negligible improvement.

We now derive the relevant estimates.

Lemma 6. The probability of a given contour satisfies:

a \Xa ( b Yb

-
L

where

c = α'--^-Max £ |rj \φ(r)\ . (5.10)
^V α r: |r |>l

Proof. For nearest neighbour interaction, the proof is a straight-
forward transcription of the classical one [2 to 7] and will be omitted.
The inclusion of the tail of the potential follows the argument in Ref. [7],
up to a trivial improvement by a factor 2.

We need also an entropy estimate.

Lemma 7. The number of possible contour shapes with given g = g(l\
given x(.) and Xa (therefore also given X and Xb) is at most:

' - (5.11)
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Before proving Lemma 7, we make the following remark. It may seem
surprising that (5.11) still depends on #(.); the reason is the following:
we estimate the number of contour shapes in successive steps (in fact
successive values of ί), and the number of possibilities at each step
depends on the choice that has been made at the previous steps, namely
the choice of the preceding G(t). The estimate (5.11) will be used in
conjunction with (5.9), which also depends on the same choice, and we
shall take the supremum over all possible g(i) compatible with (5.7)
only after combining (5.9) and (5.11). Taking the supremum over g(t)
separately in (5.9) and (5.11) before combining them would lead to a
catastrophic result.

Proof of Lemma 7. The proof is very similar to that of Lemma 5.
We first estimate the number of possible shapes of G(l) for given g
and X. With each jump of G is associated in a one-to-one way a pair
of cubes. It follows from Defs. 2 and 3 that by adding to G(l) the 2X
jumping cubes, we obtain a connected polyhedron. We can improve
on this result by using the periodicity condition G(T+1) = G(1): it
implies that after X jumps, each site is in the same occupation state as
it was initially. Now this state changes whenever a jumping cube is
added around the site in question. Therefore, all the jumping cubes occur
at least twice. It is therefore sufficient to add X cubes to G(l) to obtain
a connected polyhedron G, the area of which is then g + 2vX. In G, each
face occurs as many times as it does in G(l) and the jumping cubes.
In particular, all jumping faces associated with α-jumps occur at least
twice in G.

Fig. 5. Typical α-jump for model (2)

Now G can be considered as a single closed connected polyhedron,
as one sees by opening the X jumping cubes along suitable edges and
sticking them along these edges to G(l) or between themselves. This
can be done without connecting two coinciding faces directly. A typical
situation is shown in Fig. 5. The number of possible G is then at most
y+2vx-v by {kg classical estimate. The number of possible G(l) that
can be extracted from G is at most 29/2v + 2X, by the same reasoning as
in the previous case (cf. (4.8)).

We have fixed x(.) and Xb. We know therefore the jumping times and
fx\

the number of jumps of each type. There are then I 1 possible choices
for the times and types of all jumps. \ b'
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This being fixed as well as G(l), we then estimate the number of
possible choices for G(ί) in the order of increasing ί. For a given G(ί),
there are g(t) possible jumping faces for an α-jump, and (v — 1) g(t) edges,
each of which can be used in two different ways, for a b-jump. The number
of possible G(ί + 1) if x(t) = 1 is therefore g(t) for an α-jump, and 2(v — l)g(t)
for a fc-jump. Collecting all the estimates, we obtain (5.11).

We have all the estimates needed. We reintroduce the temperature
by (4.10) to formulate the result.

Theorem 2. The anisotropic Heisenberg ferromagnet defined by (3.1)
and (5.1) exhibits a first order phase transition if the ratio of transverse
to longitudinal interaction is sufficiently small and the temperature suf-
ficiently low.

ce/c

Fig. 6. Two-phase region for model (2)

The region where the existence of the phase transition is proved
to exist is indicated on Fig. 6 in the plane of the variables β and α/c,
for fixed φ, where c is given by (5.10), and α by:

α/c is essentially the anisotropy. For nearest neighbour interactions,

α/c = 4.32v—. The isotropic Heisenberg model corresponds to a = a'.
a

Proof of Theorem 2. It is again sufficient to prove (3.20). Collecting
the estimates (5.9) and (5.11), we obtain:

\_U__\v-l 30

,«Λ2v
T

(4 32v)x Sup
*(.)

- -r Σ 0<t) Π
Xb\

Λb

(5.13)

where the supremum has to be taken over all g(t) (t ̂  2) compatible with
(5.7) for fixed 0s 0(1).
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The last sum reduces to :

(5.14)

Substituting (5.14) into (5.13), we obtain for the second sum the following
expression :

[ c τ Ί τ / α \x(t}

- ^ Σ f f W Π ί v f l W ) (5 15)1 ί ==ι Jί = l \ J /

where α is given by (5.12). We perform the sum over x(t) in the order of
decreasing t. This will require to perform T times a sum of the type

Σ [f 9(t) Y exp [ - *ϊ=± g(t + 1)] . (5.16)

The sum starts with the term t = T, with ,4(0) = 0. Taking at the same time
the supremum over g(t+ 1) for fixed g(t) according to (5.7), we obtain:

Sexp _

Therefore the sum in (5.15) reduces to T sums of the type (5.16), where
A(t) is determined by Λ(0) = 0 and by the recurrence relation:

Λ exp Γ(4v -Λ(ί + l) = Λ(ί) + c-αexp|(4v-2)-^-|. (5.19)

One then obtains

5(0) <Ξ exp I -^g\. (5.20)

It is convenient to perform the harmless limit JWooatthis stage. Let
τ = t/T and

w(τ)=exp -(4v-2)-^- . (5.21)

Then u(0) = 1; we need κ(l), and (5.19) becomes:

//M

4v-2)(α-cu). (5.22)
dτ

This gives immediately:

ιι = u(l)= — + (1 - — )exp[-(4v-2)c] . (5.23)
c \ c '
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Finally we obtain:

(
\ V

JL jv - 1 y 2g/2v ug/(4v - 2) ^ (5^4)

2 V /

This can be made arbitrarily small and in particular less than 1/2, for
u sufficiently small. The condition for a phase transition is of the type
u<uQ, and gives rise to the two phase region indicated on Fig. 6. This
completes the proof of Theorem 2.

Remark 2. Instead of proceeding as above, one could also construct
an entropy estimate containing X\, where X is the number of jumps
of G. Used in conjunction with (5.8) and (5.9) this would also give a region
of existence of two phases, but the allowed anisotropy would then tend
to zero exponentially for β tending to infinity, instead of increasing to a
constant value.

6. System with Extended Hard Cores and Transverse Field

The hamiltonian is H = K+ U where K is given by (3.3) and U by
(4.1). The reason for considering this strange model is pedagogical. It is
the simplest of a family of three models ((3), (4) and (5) in the introduction)
for which a new difficulty appears: in the models (1) and (2), all the jumps
were superficial, in the sense that the jumping cubes at time t were
connected with G(ί). This will no longer be the case, and jumps from G(ί)
will be possible anywhere. Of course the jumping cubes will still be
connected either with G(ί) or with G(t + 1), but the entropy estimates
will be more complicated, and the results weaker. In particular, for β
tending to infinity, the allowed anisotropy will have to tend to zero
like /?"% instead of increasing to a constant.

The present model uses the same AA, PΛ and QΛ as model (1). For
fixed ί, its contours are the same as those of model (1). Let G be a contour.
There are two possible types of jumps transforming G(ί) into G(ί+ 1):

(1) jumps that create a particle, or equivalently destroy a unit cube
from G(ί) These we call j -jumps or superficial jumps.

(2) jumps that destroy a particle, or equivalently add a unit cube to
G(ί). These we call z-jumps or internal jumps.

The two notions are of course interchanged if we consider the succes-
sive values of t in the opposite order. For a given G, we define y(t) and
z(ί) by:

(y(t) =1 if G has a y-jump from G(ί) to G(ί + 1)

\y(t) = 0 otherwise.

f z(£) - 1 if G has a z-jump from G(ί) to G(ί + 1)

[z(ί) = 0 otherwise.
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Then, ifg(t) = 2vk(t):

k(t+ί) = k(t)-y(t) + z ( t ) . (6.1)
Let

s>t

(6.2)

Γ(ί) =

and
/.(11 ̂  > 7\ S!l

(6.3)

Then:
(6.4)

The number of y-jumps (resp. z-jumps) is y=y(T)=Y'( l ) (resp.
Z = Z(T) = Z'(1)). The total number of jumps is J¥ - Y + Z.

The periodicity condition G(T+ 1) = G(l) implies that each jumping
cube occurs the same number of times for y-jumps and z-jumps. In par-
ticular, y=z = x/2.

We now obtain the relevant estimates.

Lemma 8. The probability P(G) of a contour G satisfies:

P(G) £ exp Γ - ^β- £ k(t]\ (AY (6.5)

where c is given by (4.5).

Proof. The proof is identical with that of Lemma 4.
We need also an entropy estimate:

Lemma 9. The number of possible contour shapes with given k, y(.)
and z(.) is at most:

(6.6)

where k(t) is given by (6.4).

Proof. By the same argument as in the proof of Lemma 5, there are
at most 2(2v + 1 ) k~ v + ( v + 1)X ways to choose G(l), with 0(l) = 2vfc, and
the X/2 cubes that characterize the jumps; each of these cubes has to be
used once for a y-jump and once for a z-jump.

We next estimate the number of possible G(ί) in the order of increas-
ing t. Let G(f) be fixed. If G has a y-jump at ί, the number of possible
G(t + 1) is at most equal to the number of unit cubes in G(ί), which is
less than g(t)/v = 2k(t). If G has a z-jump, its cube has to be chosen
among those of the X/2 jumping cubes which have not been used before
for z-jumps. There are Z'(ί) of them. The lemma follows immediately.
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We have all the estimates needed. We reintroduce the temperature
by (4.10).

Theorem 3. The model defined by (3.3) and (4.1) exhibits a phase transi-
tion for all μ>c, β> β0(μ) and h^h0(β,μ). β0(μ) is an estimate of the
classical type [5]: β0(μ) = C t (μ — c)"1. h0(β, μ) is a function of the form
hQ(β,μ) = β~lh0(μ — c), where h0(x)&x^ for x->oo. In particular, for
fixed μ > c, h0(β, μ) tends to zero like β~^ when β tends to infinity.

horαr'

Fig. 7. Two-phase region for models (3), (4) and (5), for fixed (φ, μ, c)

The shape of the two-phase region is shown on Fig. 7 for fixed μ, φ, in
the (β, h) plane

Proof. It is sufficient to prove (3.20). We collect the estimates from
Lemmas 8 and 9 and obtain:

where

S(k)= Σ

]y

(6.7)

(6.8)

where α = 2vΛ. We obtain an upper bound for S(k) by forgetting the
restrictions Z=Y and y ( t ) . z ( t ) = Q. We first sum over y ( . ) for fixed
z(.) and therefore fixed K(t) = k + Z(t). We consider:

Σ exp Γ^ Σ Y(t ~ 1)1 Π Γ^ (K(t - 1) - Ύ(t - 1))T° . (6.9)
y(.) L L t = ι J ί L ^ J
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We compute this sum in the order of decreasing t by performing T
times the following sum:

(6.10)

If we determine A(t) by A(Q) = 0 and the recurrence relation:

A(t+l) = A(t) + (μ-c)- 2α exp ( —^- J (6.11)

we obtain, after the summation over y ( . ) :

( A(T)\ Γ 1 τ Ί Γ α Ίz(ί)

S(k) < exp - k —i=r-} Σ exp - — V z(ί) A(T- ί) ΓT h^rz/(0v ; - P V r ;,t) L τ£ ; J V L T J
(6.12)

We now perform the summation over z(.) in the order of increasing ί,
by performing T times a sum of the following type:

(6.13)

If we determine J5(ί) by jB(0) = 0 and the recurrence relation:

(W4)

we obtain, after the summation over z(.)'

. ,6,5,

There remains only to compute A(T)/T and B(T)/T. We perform the
limit T-»oo at this stage. Let τ = ί/T, and let κ(τ) = exp(-^(T)/T),
t;(τ) = exp[-JΪ(T)/T]. Then M(0) = ϋ(0)=l. We need M(!) and ι (l).
The recurrence (6.11) is very similar to (5.19). One obtains:

(6.16)
μ-c
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The recurrence relation (6.14) becomes:

dv(τ)

Therefore
= -αιι(l-τ). (6.17)

Ό(τ) = 1 _ τ _ _

μ-c μ-c \ μ-c

Collecting all the estimates, we obtain:

π(r)^2~v £ /c*-1 2<2v+1)*ιιkι;-1 (6.19)
fc^l

where :
o / o \

(μ_c)] (6.20)

(6.21)

μ — c y μ — c
and

μ-c

The estimate (6.19) however, holds only if v determined by (6.21) is
positive. The theorem follows immediately from (6.19,20,21). In particular,
for j8-»oo, the condition t»>0 becomes 2α2<(μ — c), and therefore
h < C t β "*, for fixed μ and φ.

Remark 3. In this case also, we can derive a simpler entropy estimate
containing (Y + Z)! The allowed magnetic field then decreases ex-
ponentially with β when β tends to infinity.

7. Ising Model with Transverse Field

The treatment in this section covers two different models with the
same K given by (3.3), and U given either by (5.1, 2, 3, 4) for the Ising
ferromagnet, or by:

U- — Y (-}(** n - A γ z

A ^LJ i \ ' \ Y s ) f\ £_^i r \ ' /
^ r<s z r

where:
φ(ή = 2a'>0 for |r| = 1 (7.2)

and:
Max £ (|rα| + 2) |<p(r) |<4vΛ'. (7.3)

The latter case is an Ising antiferromagnet. The appropriate AΛ, PΛ and
QΛ for these models are defined by (3.4, 5) for the former and by (3.7, 8)
for the latter. For fixed ί, the geometrical properties of the contours
are the same as in model (2).
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Let G be a contour; we divide the set of its jumps into two classes:
(1) jumps occuring between some G(f) and G(ί + 1), and such that

the jumping cube has a common face with G(ί). These we call y-jumps
or superficial jumps.

(2) jumps occuring between some G(ί) and G(ί+ 1), and such that
the jumping cube has no common face with G(ί) These we call z-jumps,
or internal jumps.

If a jump is internal, all its faces are effective in G(t 4- 1). Contrary
to the previous case, there is no symmetry between the two classes of
jumps, and no relation between the class to which a jump belongs and the
initial occupation state of the jumping cube.

We define y(.\ z(.), Y(.), Z(.), etc. as in Section (6). In the present
case, g(t) is not determined by y ( . ) and z(.). However:

\g(t+l)-g(t)-2vz(t)\£2vy(t). (7.4)
Therefore

(7.5)

The periodicity condition G(T+1) = G(1) implies that each jumping
cube occurs an even number of times, and therefore at least twice. How-
ever, there is no general relation between the numbers of y-jumps
and z-jumps using the same cube.

We now obtain the relevant estimates.

Lemma 10. The probability P(G) of a contour G satisfies:

P(G) ίS exp Γ- - , ί 0θ - Γ (7-6)

where c is given by (5.10) for the I sing ferromagnet, and by

c = α '_J_Max £ (|rj + 2)|φ(r)|-^- (7.7)
4v α r: |r |>l 2V

for the Ising antiferromagnet.

Proof. The proof is identical with that of Lemma 6 for the ferromagnet.
For the antiferromagnet and for nearest-neighbour-interaction, it is a
straightforward transcription of the proof in [5]. The contribution of
the tail of the potential has been estimated by the method of Ref. [7].

We also need an entropy estimate.

Lemma 11. The number of possible contour shapes with given g = g ( l )
and given y ( . ) and z(.) is at most:

f [ [2^(ί)7(() (Z'(ί))z(I). (7.8)
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The remark that follows Lemma 7 also applies to Lemma 11. The
proof is almost identical with that of Lemma 9. There are at most
3*+v<r+*>-v2'/2 v + y + z ways to choose G(l)^

cubes that characterize the jumps. There are I J^2 y + z ways

to decide which of these cubes, counted twice, give rise to y-jumps and
which to z-jumps. For fixed G(ί), the number of possible y-jumps is at
most 2g(t\ and that of possible z-jumps is at most Z'(ί). The lemma
follows immediately.

We now formulate the result, after reintroducing the temperature
by (4.10).

Theorem 4. The Ising model with transverse field, as defined by (3.3)
and (5.1) or (7.1) exhibits a phase transition for all c>0, β> β0(c) and
h^h0(β,c).βQ(c) is an estimate of the classical type: βQ(c) = C t c ~1. hQ(/?, c)
is a function of the form hQ(β, c) = β'1 h0(c\ where h0(c)« c* for c-»oo.
In particular, when β-κx) for fixed c, h0(β, c)« /?"*.

The shape of the two-phase region is indicated on Fig. 7 in the
(h, β) plane, for fixed (φ, μ, c).

Proof. It is sufficient to prove (3.20). We collect the estimates from
Lemmas 10 and 11 and obtain:

(7.9)
9 V

where:

Sup
9(D,(S2 L 1 ' = 1 J

z(t)

where now α = 2 . 3v/z. The proof is a combination of those of Theorems 2
and 3 and will only be indicated briefly. We first perform the summation
over the superficial y-jumps and take the Supremum over #(.), thereby
obtaining:

where 4(0) = 0 and:

NO
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We then perform the sum over z(.) as in the previous section. Taking
the limit T->oo, we obtain:

g^2v \ 2 V /

where:

ii = — + ( 1 - -̂  ) exp(-2vc) (7.14)
c

Theorem 4 follows immediately from (7.13, 14, 15).

8. Anisotropic Heisenberg Antiferromagnet

The hamiltonian H = K+ U is defined by (3.1) and (7.1, 2, 3). The
appropriate AA9 PΛ and QΛ are defined by (3.7, 8). For fixed ί, the geo-
metrical properties of the contours are the same as in models (2) and (4).
The possible jumps can be divided into α-jumps and b-jumps as in Section 3.
Clearly, the b-jumps are always superficial. Their relation with the con-
tours to which they belong is the same as for model (2). On the contrary,
the 0-jumps involve pairs of adjacent cubes in the same situation (ex-
ternal vs. internal) with respect to the contours. We again divide the
set of jumps into two classes.

(1) jumps from G(ί) to G(t + 1) such that one of the jumping cubes
has a face in common with G(ί) These we call j -jumps or superficial
jumps. This class includes all b-jumps.

(2) jumps from G(ί) to G(t + 1) such that the jumping cubes have
no face in common with G(ί) These we call z-jumps or internal jumps.

We define y(.)9 z(.\ etc. as in Section 6. In the present case:

]g(t + 1) - flf(ί) - (4v - 2) z(ί)| £ (4v - 2) y(t) . (8.1)

Let Ύa and Ύb be the numbers of superficial α-jumps and b-jumps. Then,

We now obtain the relevant estimates.

Lemma 12. The probability P(G) of a contour G satisfies:

Γ c τ Ί / a \Xa ( b \Xb

W>S-p[-τΣ»»J( f) (4)

where c is given by (7.7).

Proof. The proof is identical with that of Lemma 10 in the anti-
ferromagnetic case.
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We need also an entropy estimate.

Lemma 13. The number of possible contour shapes with given g =
and given y(.), z(.) and Yb, is at most:

(δ.3)

The remark that follows Lemma 7 also applies to Lemma 13. The proof
is almost identical with that of Lemma 11. There are at most y+2vX~v

. 29/2v + 2x ways to choose £(1) wjth 0(i) = g an(j the x cubes that charac-

terize the jumps. From the 2X jumping cubes we now extract the Z
pairs that define the internal jumps. We can extract the first cube of a

{2X\
pair in I I ways, the second in (2v)z ways, and each pair is countedz

ί2X\
twice. This gives a factor I 1 vz :g 22X vz. We next choose, among

V z /
the 7 times for y-jumps, those that correspond to α-jumps and fo-jumps,

/ y \
thereby obtaining I J .We finally choose G(ί) in the order of increasing ί.

\ b/

From a given G(ί), the number of possible superficial α-jumps is at most
2vg(t), and that of fo-jumps 2(v — 1) g(t). The number of possible z-jumps
at time t is Z'(ί). Collecting all these estimates, we obtain (8.3).

We now reintroduce the temperature by (4.10) and formulate the
result.

Theorem 5. The anisotropίc Heisenberg antiferromagnet defined by
(3.1), (7.1) exhibits a phase transition for allc>Q,β> β0(c) and α rg α0(β, c).
Here c is defined by (7.7), β0(c)= C t c"1. α is defined by:

The function α0(β, c) tends to zero like β~^ when β tends to infinity for
fixed (φ, μ, c).

In the (α — β) plane, for fixed (φ, μ, c), the two-phase region still
has the shape indicated on Fig. 7.

Proof. It is sufficient to prove (3.20). Collecting the estimates from
Lemmas 12 and 13 and performing the sum over Yb, we obtain:

(8.5)
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where :
z(t)[ c τ Ί τ ( 2α V(ί) / Ί \z(t)

- ^ Σ f f W Π - T - 0 W ) Krz'(o^ ί = l Jί = l V * J \ l J
(8 6)where:

The end of the proof is identical with that of Theorem 4. The result,
which implies Theorem 5, is:

I V (o. I)

where
2α / 2α \

\v-2}c] (8.8)

(8.9,

9. Concluding Remarks

We have proved that the phase transition which occurs in the Ising
ferromagnet or antiferromagnet and in classical lattice gases with
nearest-neighbour hard cores [5] is not destroyed if one adds a transverse
magnetic field or a transverse interaction (or kinetic energy), provided
the added term is sufficiently small. The method relies on Trotter's
formula, and is thereby a perturbation method around the classical
model. The transverse terms appear in the form of jumps that transform
classical configurations between themselves. As regards the domain
of validity of our proof, two situations emerge. In models (1) and (2),
the jumps are superficial, and we can allow a ratio of transverse to lon-
gitudinal terms that tends to a non zero constant when β tends to in-
finity. In models (3), (4) and (5), on the contrary, the jumps can be in-
ternal, and the allowed ratio of transverse to longitudinal terms tends to
zero like β~^ when β tends to infinity.

We have restricted our attention to nearest-neighbour and next-
to-nearest-neighbour transverse interaction. It is certainly possible
to drop this restriction, but connectedness by edge will then no longer be
the useful notion to define contours, and the entropy estimates will
become more complicated.
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