
Commun. math. Phys. 14, 158—164 (1969)

Physical Symmetries in a Theory of Several Scalar
Real Fields

JAN T.
Institute of Theoretical Physics, University of Wroclaw, Wroclaw

Received March 27, in revised version June 2, 1969

Abstract. Let us consider a theory of n scalar, real, local, Poincare covariant quantum
fields forming an irreducible set and giving rise to one particle states belonging to the same
mass different from zero. The vacuum is unique. It is shown under fairly weak assumptions
that every Poincare and TCP invariant symmetry of the theory, implemented unitarily,
which mapps localized elements of the field algebra into operators almost local with respect
to the former (such a symmetry we call a physical one) can be defined uniquely in terms of
the incoming or outgoing fields and an rc-dimensional (real) orthogonal matrix. The
symmetry commutes with the scattering matrix. Incidentally we show also that the
symmetry groups are compact. A special case of these symmetries are the internal symmetries
and symmetries induced by locally conserved currents local with respect to the basic
fields and transforming under the same representation of the Poincare group. We may make
linear combinations out the original fields resulting in complex fields and its complex
conjugate in a suitable way. The inspection of the representations of the groups S0(n)
and their subgroups sheds some light on the s.c. generalized Carruthers Theorem con-
cerning the self- and pair-conjugate multiplets.

1. It is of some interest to explore the problem of physical symmetries
starting from a theory of n scalar, real fields subjected to some fairly
weak restrictions (see below). By a physical symmetry we mean not only
internal symmetries (preserving strict locality) but a larger class of
symmetries mapping localized elements of the field algebra into operators
almost local with respect to the former [1]. We believe that every
symmetry induced by a locally conserved current belongs to his class and
there are strong indications that it is so (see [2, 3]).

We succeeded in giving the recipe how to find the most general of such
a symmetry, provided it is unitarily implemented in the Hubert space. It
commutes with the scattering matrix. Incidentally we showed also that
the symmetry groups are compact.

Linear rearrangement of the original fields, suitable for physical
problems, yields then a possibility of a classification of the relevant
symmetries occuring in the theory of n scalar (not necessarily real)
fields. The present results encompass the results obtained earlier
by the author [2]. It is worthwhile to notice that some light is shed
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on the problem of self- and pair-conjugate multiplets raised by Carru-
thers (s. c. generalized Carruthers theorem [4]).

2. To start with we list the relevant assumptions
i) The Poincare group is unitarily implemented in the Hubert

space 3C. We denote the representation of (Λ, a) by U(Λ, a). The spectrum
of P2, where

T(a)=

consists of two discrete points μ2 = 0 (corresponding to the single vacuum
state Ω) and μ2 = m2 φ 0 (corresponding to one particle states) as well
as out of a continuous part, say (4m2, oo) (scattering states).

ii) We are concerned with n scalar, real quantum fields ψj(x)
j = 1, ... n. All of them transform under the same Poincare representation,
viz.

U(Λ, a) Ψj(x) U(Λ, a)+ = ιpj(Λx + a), j = l,...n (1)

are local and local with respect to each other1. We assume for simplicity
reasons that

(β,V//)β) = 0, ; = !,...« (2)
where

iii) To exclude trivial cases and to get proper asymptotic conditions

[5] we assume that

Σ*Av//)β = o iff .̂ = 0. (3)
J = l

Here E1 is the projection operator on the Hubert subspace JΊ?9 labelled
by p2 = m2, p0 > 0 (spanned by the one particle states induced by the
fields ψj(x)).

iv) Then the free asymptotic fields [6] exist and we assume them to be
irreducible. This implies that the original set of n fields is also irre-
ducible. As a matter of fact it would be sufficient to assume only that
the incoming fields form an irreducible set (due to the existence of a
common TCP operator).

We may form linear combinations out of these fields. They will be
again local, local with respect to each other, real, will transform under the
same representation of the Poincare group as ψj and build an irreducible
set. Let us call them (Pj(x)j= 1, ..., n. We demand in addition that2

-yιm2ιj9k = l9...n (4)

1 We believe that weak locality would be sufficient for our aims.
2 The case (Ω, <pj(x) £, φk(y) Ω) = 0 is excluded by the assumption (3).
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These fields have asymptotic free fields

φJ Sίt M ~ <Pj, ex M (in vίrtue o

belonging all to the same mass m2 Φ 0.
We have the
Statement. Let us assume that there exists such a unitary transforma-

tion V for which
(β, VΩ) Φ 0 (5)

and the fields
Vφj(x) V+ = Aj(x)9 j=ί,...n (6)

transform under the same representation of the Poincare group and under
the same TCP operator3 as φfa), viz.

U(Λ, a) Aj(x) U(Λ, a)+ = Aj(Λx + a), j = 1, . . . n (7 a)

ΘAj(x)θ'1 = Aj(-x) (7b)

and are almost local with respect to φk(x)9 k = 1, ... n. Then we have

(x) (8)

where ujk forms an ^-dimensional (real) orthogonal matrix and

[K,S]=0 (9)

where S is the scattering matrix. V is uniquely defined by (8).

Proof. From the fact that φ7 and Ak transform under the same re-
presentation of the Poincare group and from the irreducibility of the
fields q)j as well as from (5) follows

(10)

and VΩ = eibΩ, b a real number.
To get rid of the factor eib we redefine V in such a way that

VΩ = Ω. (11)

Let V act on the one particle states

3 The author is grateful to Dr. M. Rinke who pointed out that a common TCP operator
is sufficient to exclude cases like that of two real fields φex(x) = φ(^)(x)-\-φ(

t^
)(x) and

^ex(χ) = eίλφ(eϊ }(χ) + e~iλ<pix\χ) which are qusilocal for every λ.
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In virtue of (10), irreducibility of the fields φ, (/) on the one particle
subspace and the unitarity of V we get

VΦj(f)= Σ a/* **(/)> (12a)
k=l

and 7 *=1

'V (13a)

Now the generalized result of Borchers [7] implies

[φ, ,ex(x), A.exOO] = i4/fcΛ(x ~ y\ ™2} (14)

Making use of (12) and (13a) we see that

The irreducibility of the fields φjjCK as well as (11) lead us to the conclusion
that

Λ,exM = Vφk,ex(x) V+=Σ akjφj>ex(x) (8)
j=ι

Since φk>ex are real fields

<Xkj = *kj (13b)

The matrix akj is then an π-dimensional (real) orthogonal matrix. Notice
that V is uniquely defined by (8) due to the irreducibility of the fields
Ψk,Qχ as weM as to (H) Since (8) holds for the incoming as well as for the
outgoing fields

[K,S]=0. (9)

This accomplishes the proof.
Thus the most general unitary transformation satisfying the hypo-

theses of the Statement is given by (8), (13) and (9).
From the Statement follows immediately the

Corollary. If the set of the unitary matrices V(g) satisfying the hypo-
theses of the Statement forms a representation of a continuous group
G(g e G) the group is compact.

Proof. The matrices Oyk(g) form an rc-dimensional unitary representa-
tion of the group G.

The only admissible groups of physical symmetries are compact.
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3. The internal symmetries or physical symmetries whose generators
are induced by a (pseudo) vectors [2] fall into the class of unitary trans-
formations obeying the requirements of the Statement. For generators

β" = JΓ°*(x)d3x; μ = 1,2, 3,0

induced by a (pseudo) tensors Tμv(x) [3], local with respect to the
original fields (it follows then that Tμv(x) are local with respect to
themselves), locally conserved, viz.

τλμ(x) = 0 (16a)
dxλ

transforming according to

U(Λ, a) Tλμ(x) U(Λ, a)+ = ΛλσΛμρ TσQ(Λx + α) (16b)

the conditions imposed in the Statement (see conditions (7)) lead to

*jk = 0.
The same holds true for any generator set of tensorial character in the

Minkowski space of rank n ̂  1.
4. Special cases of the general procedure presented above are the

cases considered in [2].
For n = 1 we deal only with one scalar real field φ and

T/ -rr -\ [ / 4 l-J\

since according to (13) |α|2 = 1 and α = α. There is no continuous group
of symmetry transformations different from 1.

In case n = 2 we have the 2-dimensional real representation of the one
parameter group SO (2). We may introduce the field

_ i , . . (18)

and its complex conjugate. Then

V(φ) Cex(x) V(φ}+ = eίφCex(x), φ real number (19)

and V(φ) is the gauge transformation. In case n = 2 for any V we have
either (19) or

FCex(x) V+ = eiβC+κ(x), β real number (20)

(discrete symmetry). A transformation like

FCex(x)F+=/(x,Cex,Ce

+

x) (21)

is automatically ruled out.
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In case n = 3 we may introduce the fields

Q = ifo>ι+ι>2) = C3

+, (22a)

C2 = Φ3 >

and consider the 3-dimensional complex irreducible representation of
SO (3). In this way we get a triplet encompassing particles and its anti-
particles as well, like in case of π+,π°, π~. There is no 2-dimensional
group transforming Q and C3 among themselves, viz.

PQ.exM K+ = uC l s e x + i Ca.e*, ^ Φ 0 (23)

leaving C2 unchanged. Should C2 be left unchanged MI; has then to vanish
and the case reduces to the previous one, (19) and (20).

In case n = 4 we may introduce the fields

C:. (24b)

Then in addition to the 6-parameter 4-dimensional complex irreducible
representation of SO (4) we may also consider the 3-parameter 2-
dimensional irreducible representation of SU (2) and its complex
conjugate. The latter ones will transform C1? C2, and C3, C4 resp. among
themselves, viz.

C'1=aC1+βC2 (25 a)
α, /?, v, <5 complex

(25 b)

Thus we get two doublets of particles no one of which will involve its
antiparticles, like in case of K+ and K°. However, there is no group
transforming the fields Q and C3 = Q+ among themselves. Other groups
are trivial extensions of the cases considered earlier.

In case of SO (3) we have to do with a self-conjugate and in case of
SU (2)®SU (2)* with a pair-conjugate multiple:. Of course, in the first
case there exists a (3-dimensional) unitary matrix transforming the
complex representation into a real one. In the latter such a 2-dimensional
matrix does not exist.

These conclusions extended to the case of an π-dimensional re-
presentation oϊSO(ri), n - an arbitrary natural number, and its subgroups
express the generalized Carruthers theorem [4] which can be formulated
as follows: in case of a self-conjugate multiplet there exists a unitary
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matrix making the matrix representation of the group to a real one, in
case of a pair-conjugate multiplet this can not be done (originally it was
shown that self-conjugate isospin multiplets of bosons with half-integral
isospin can not exist).
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