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Abstract. The Silov boundary of the vertex function is computed without resource to
analytic completion techniques.

1. Introduction

A possible systematic approach to field theory is to derive analytic
expressions (integral representations) for the various Green functions.
These should express the content of the linear axioms, namely, Lorentz-
invariance, energy-momentum spectrum, and local-commutativity. The
integral representations should then be substituted into the non-linear
unitarity [1] or positive definiteness [2] relations for further investi-
gation.

The linear axioms imply analyticity of the Green functions in certain
permuted domains [3] —D. They may generally be continued into
E(D) - the envelope of holomorphy [4] of D. One then tries to set up a
generalized Cauchy integral representation for the functions analytic
in E(D\ which is the desired expression. Now, the Silov boundary of a
domain is the smallest subset of the domain on which one can hope to
represent a holomorphic function by an integral representation. Hence
the Silov boundary is all that is actually needed. It is known [5] that the
Silov boundary of a domain —S(D) coincides with that of its envelope
of holomorphy, i.e.:

S(D) = S(E(D)).

In view of the difficulty of finding E(D) it may be interesting to
calculate S(D] directly.

Furthermore it is not clear whether calculating S(E(D)) is always
easier than calculating S(D). For the vertex function in configuration
space this turns out to be the case. This, however, may be accidental.
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In this paper we consider the vertex function. Section 2 describes the
Envelope of Holomorphy -E(D}- of the configuration space vertex and
its Silov boundary - S(E(D}}. In Section 3 are described the primitive
domain - D - of the configuration space vertex and its distinguished
boundary - d(D).

In Section 4 we compare d(D) and S(E(D)) = S(D\ then show how to
locate S(D) by some simple considerations.

In Sections 5 and 6 we apply our method to specify an upper bound on
the Silov boundary of the momentum space vertex.

2. The Silov Boundary of the Configuration
Space Vertex Function

The Envelope of Holomorphy of the configuration space vertex
function is an analytic polyhedron [6]. It is well known that the Silov
boundary of an analytic polyhedron is identical with its distinguished
boundary (Ref. [5], § 6.4). The latter consists of the union of the inter-
sections of any three boundary hypersurfaces. It was computed by
Kallen and Toll [7]. To facilitate comparison and introduce our nota-
tions we shall briefly describe these results. The Wightman function

FABC(x - xf, xf - x") = <0| A(x)B(x')C(x") |0>

is the boundary value of an analytic function in the variables

z1 = -(x-xf -iη)2 ,

in the domain obtained by η,ηfEV+, which is called the primitive
domain [3]. Due to local commutativity this analytic function may be
continued into the permuted domain [3] D, which is the union of the
primitive domain and the domains obtained therefrom by permutations
of z l9 z2, z3.

The envelope of holomorphy of the permuted domain E(D) is bounded
by the following analytic hypersurfaces [6]:

Cuts: zk = ρ>0, fc = l,2,3,

ZiZ,

Here yk = Im zk

F' ' z

0<ρ<oo, ymyk<®, ymyι<®
g: z1 z2 + z2z3 + z1 z3 - ρ(z1 + z2 + z3) + ρ2 = 0 ,

0<ρ<oo, y1 y2 >0,
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Next we describe the distinguished boundary

zίcut Λz 2 cut Λ F'l2. (A?)

The Zj and z2 cuts should be approached from y1 y2 > 0. Fig. 1 a illustrates
the case y1>0, y2>0, while Fig. Ib corresponds to the completely
symmetric yl < 0, y2 < 0. We shall not mention these obvious symmetric
situations any more.

y3

Fig. la. The intersection zίcut Λ z2cut Λ F[2 shown in the z3-plane for ylt y2 > 0

Fig. Ib. The intersection zίcut Λ z2cut Λ F[2 shown in the z3-plane for y l5 y2 < 0

F[2 should be approached from the domain of regularity (unshaded).
F[2 is infinitesimally deformed (Ref. [7], §2).

z 1 c u t Λ z 2 c u t Λ δ , (A^)

Zi and z2 cuts approached from y1y2 > 0. Fig. 2 illustrates j^ > 0, y2 > 0.
g is infinitesimally deformed. Fig. 3 sums up the (A3) contribution,
i.e. z iCut Λ z2cut Λ (Fί2ug), z1 and z2 cuts approached from yίy2 > 0.

Λ z2cut Λ F23. (B?)
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The zί and z2 cuts should be approached from y^y2 < 0. Figs. 4a and 4b
illustrate the situation yl > 0, y2 > 0.

D2 appears in Fig. 4b, where x2 > x^. In D2 all xk are positive and
fulfill the inequality x2 > (j/^q +1/^)2:

z 1 c u t Λ z 2 c u t Λ F 1

/

3 , (El)

illustrated in Figs. 4a and 4b.

Zjcut Λz 3 cut Λ O u F ί ^ j (A2)

Fig. 2. The intersection zxcut Λ z2cut Λ g shown in the z3-plane

Fig. 3. The intersection z tcut Λ z2cut Λ (F[2^>W shown in the z3-plane

illustrated in Figs. 5a (x^> x3) and 5b (xx < x3),

Zjcut Λ z3cut Λ (F[2 uF3 2), (B2)

illustrated in Figs. 6a (x1 > x3) and 6b (x^ < x3);

z2cut Λ z3cut Λ (guF23), (A1)

z2cut Λ z3cut Λ (Fί3 uF^2). (B1)

These are obtained from (A2), (B2) by cyclic permutation of indices.
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Fig.4a. The intersection ZiCut Λ z2cut Λ CF23uFί3) shown in the z3-plane for the case-

Fig. 4b. The intersection z^ut Λ z2cut Λ(F2 3uFί3) shown in the z3-plane for the case

Fig. 5a. The intersection zxcut Λ z3cut Λ($uFί3) shown in the z2-plane for the case

Fig. 5b. The intersection z tcut Λ z3cut Λ ($uF(3) shown in the z2-plane for the case xί < x3
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Fig. 6a. The intersection z^ut Λ z3cut Λ (F^uF^a) shown in the z2-plane for the case

Fig. 6b. The intersection Zjcut Λ z3cut ^) shown in the z2-plane for the case

3. The Distinguished Boundary of the Permuted Domain

Let us first describe the permuted domain D. Two characteristic
situations are described in Figs. 7 and 8 (Ref. [6], p. 22). Unshaded area
represents domain of regularity.

It is seen that D is again bounded by analytic hypersurfaces:

Cuts:

0 < ρ < oo, yky{ < 0 ,

0<ρ<oo,

However, D is not an analytic polyhedron, because an analytic poly-
hedron is defined by the intersection of domains bounded by analytic
hypersurfaces (Ref. [5], § 5), whereas here one has a union of such domains
(Ref. [6], p. 26). Nevertheless the distinguished boundary contains the



114 M.Glϋck:

Silov boundary also in this case. This is seen by following closely the
arguments in § 5.2 of Bremermann's paper. In the present case, the
distinguished boundary d(D] does not coincide with the Silov boundary,
because the proof (Ref. [5], § 5.3) that every point on d(D] is a maximum
point of some function analytic in D breaks down. Let us describe the
distinguished boundary of D.

z tcut Λ z2cut Λ S . (A'?)

Fig. 7 Fig. 8

Fig. 7. The domain D shown in the z3-plane for the case y± >0, y2 <0, xίy2 -^JΊ <°

Fig. 8. The domain D shown in z3-plane for the case y2>y\ >0; x^y2 + *2y\ >0;

The cuts should be approached from yly2 >0. Fig. 9 describes the case

z1 cut Λ z2 cut Λ F13 (or 23) (AD

The situation is described in Fig. 10, where the cuts are approached
from y1,y2 >0.

z 1 c u t Λ z 2 c u t Λ F 1 2 . (A'^)

The cuts should be approached from y1y2 > 0 as in Fig. 11. We see that
the intersection of our hypersurfaces passes through a fourth one; the
z3 cut. They are disentangled in the usual way [7, 9] by deforming F12
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infϊnitesimally : F12-+ Ff2 .

Fig. 9 Fig. 10

Fig. 9. The intersection z^ut Λ z2cut Λ S shown in the z3-plane for the case ylt y2 > 0

Fig. 10. The intersection zt cut Λ z2 cut Λ Ft 3 (or F23) shown in the z3 -plane for the case

Thus finally the (A/3) contribution Zjcut Λ z2 Λ (Su^uF^), where the
Zj and z2 cuts are approached from yί9y2> 0, is as illustrates in Fig. 12.

z 1 c u t Λ z 2 c u t Λ 5 . (B/3)

Looking up Fig. 7 we see that as y1,y2-^>Q the right hand side of S
approaches the z3-cut. As P is indefinite in this limit we may discard

~Z1Z2

Fig. 11. The intersection z1 cut Λ z2cut Λ Fl 2 shown in the z3-plane
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this branch. The final situation therefore is as shown in Fig. 13. Similar
contributions are obtained from (A'2), (B/2), (A'1), (B'1). Other contribu-
tions:

zlcut/\S /\S.

Looking up Fig. 7 we see that when z2 — — αz t; α>0 a self inter-
section of S is obtained. This should be intersected with the z1 (or z2) cut,

Fig. 12. The intersection zxcut Λ z2cut Λ (SuF2 3ujF1 2) shown in the z3-plane

Fig. 13. The intersection zx cut Λ z2cut Λ S shown in the z3-plane for the case y± > 0, y2 < 0

giving the above mentioned and similar contributions to d(D). No
further contributions arise except for manifolds of lower dimensions
which may be discarded (Ref. [7], p. 764). Except for the contributions
above all parts of d(D) belong also to S(E(D)). This can be easily seen
by direct comparison of the corresponding figures.
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4. Direct Location of the Silov Boundary

We have compared the distinguished boundary of the permuted
domain - d(D) and the Silov boundary of its envelope of holomorphy -
S(E(D)). General considerations, indicated at the beginning of § 3, show
that d(D)^S(E(D)). Our comparison shows that d(D] nearly coincides
with S(E(D}\ i.e. they are identical except for the contribution due to the
self intersection of S.

That this contribution should disappear in S(E(D)) is rather obvious
when one considers the Kneser technique of analytic completion through
corners (Ref. [6],§ VI). We have shown, therefore, that in this particular
case one is able to compute the Silov boundary directly without resource
to the difficult analytic completion procedure. It must however be
admitted that as long as no method is known for writing the integral
representation directly, in terms of the Silov boundary, this analytic
completion is necessary.

5. The Silov Boundary of the Momentum Space Vertex Function

The permuted domain [3] D is now bounded by the following
analytic hypersurfaces

Cuts : zk = ρ^.ak,

Skι - Zm = zk(ί - ρ) + zΛ 1 --

0<ρ<oo, ykyι<0.

Fkl:

0<ρ<oo,

This is the same as the domain described in Section 3, except for the fact
that the thresholds ak may now be greater than zero.

Hence exactly the same considerations apply here, and the results
should be similar to the previous ones. We shall therefore not go into
detail but only state the following: The contributions to the Silov
boundary are again of the form zi cut Λ zj cut Λ Fkl or zt cut Λ zj cut Λ Ski9

and are illustrated in Figs. 12 and 13. The expression "zrcut" has now,
however, the meaning zi ^ α, .

Other contributions to the distinguished boundary are: S Λ S Λ z£cut,
which does not contribute to the Silov boundary on account of the
argument given in Section 4. Also S Λ (F13 uF23) Λ (z1cutuz2cut) belongs
to the distinguished boundary but not to the Silov boundary, as it does
not appear in the partially continued domain of the following section.
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6. Partial Completion of D and its Silov Boundary

The completion of Kallen and Wightman [6] is final when all ak

equal zero and is also a partial completion for positive thresholds. Let
us denote this partially completed domain by E(D). It is bounded by the
following analytic hypersurfaces

Cuts : zk = ρ ̂  ak .

'

0<ρ<oo, ymyk<0, >' I M 3>/<0.

z1 z2 + z2 z3 + zl z3 - ρ(zί + z2 + z3) + ρ2 - 0 ,

0<ρ<oo,

This is the same as the domain described in Section 2, except for the fact
that the thresholds ak may now be greater than zero. Hence the same
considerations apply here and the results should again be similar. The
contributions to the Silov boundary are once more of the form z fcut
nzy cutnFfcj/ z{ cutnz,- cutng and are illustrated in Figs. 3, 5 and 6
(z; cut - {z; : z; = ρ ̂  αf}).

There are some contributions to the distinguished boundary which by
the arguments mentioned above do not contribute to the Silov boundary.
They are gn/^nzrcut, for all those values of zf and zj9 where the point
of intersection 5 n / j lies below the zk threshold (it is well known that g
and F j intersect on the positive zk-axis) and contributions of the form
Fi3nJF

123nz1-cut, etc. (which do not appear in the domain described in
Section 2). Again we see that although D + E'(D) and d(D) φ d(E (D)\
we have S(D) - S(E'(D)).

The same considerations may be applied to the domain E"(D]
(DE'(D)) obtained by Brown [8], with similar results. We shall not discuss
this in any detail, for Brown's domain is also only a partial completion
and moreover its validity is restricted to the single threshold case.

We have now found an upper limit on the Silov boundary of the
momentum space vertex.

In view of our success in Section 4 and the coincidence of our results
for D, E'(D\ E"(D] we may even hope to have come down directly on
S(D). However, no rigorous proof of this has been found.

Acknowledgments. It is a pleasure to thank my advisor Professor A. Peres for his
unfailing encouragement as well as to Professors G. Kallen and H. Araki for very helpful
remarks.



Silov Boundary 119

References

1. Lehmann, H., K. Symanzik, and W. Zimmerman: Nuovo Cimento 1, 425 (1955).
2. Wightman, A. S.: Phys. Rev. 101, 860 (1956).
3. lost, R.: Properties of Wightman functions, pp. 127-145. In: Lectures on field theory

and the many-body problem. Ed. E. R. Caianiello. New York: Academic Press 1961.
4. Wightman, A. S.: Analytic functions of several complex variables, pp. 159-221. In:

Dispersion relations and elementary particles. New York: Wiley 1960.
5. Bremermann, H. J.: Trans. Am. Math. Soc. 91, 246 (1959).
6. Kallen, G., og A. Wightman: Dan. Vid. Selsk. Mat. Fys. Skr. 1, No. 6 (1958).
7. -, and J. Toll: Helv. Phys. Acta 33, 753 (1960).
8. Brown, W. S.: J. Math. Phys. 3, 225 (1962).
9. Kallen, G.: Private communication.

M. Gluck
II. Institut fur Theoretische Physik
der Universitat
2000 Hamburg 50, Luruper Chaussee 149




