A Converse to a Theorem by Friedrichs

Joseph Slawny

Department of Nuclear Physics, Weizmann Institute of Science, Rehovot, Israel

Received March 26, 1969

Abstract. It is proved that the requirement of implementability of a group of canonical transformations defines a class of irreducible representations of the CAR. As a corollary a converse to Friedrichs' theorem about canonical transformations implementable in the Fock representation is obtained.

A well known theorem due to K. O. Friedrichs [1] states that a (linear) canonical transformation

$$b^+(t) = a^+(A t) + a^-(B t)$$
 (*)

is unitarily implementable in the Fock representation of the canonical anticommutation relations if, and only if, B is of the Hilbert-Schmidt type (i.e.: B*B is of the trace class).

In this note we prove the following converse theorem: if in an irreducible representation of the canonical anticommutation relations all canonical transformations (*) with B=0 are implementable then it is the Fock or the anti-Fock representation.

Before going further, let us recall the definitions.

Let H be separable Hilbert space (the space of the test functions). By a representation of the canonical anticommutation relations (CAR) over H in a Hilbert space \mathscr{H} we mean a linear mapping $a^+\colon H\to \mathscr{L}(\mathscr{H})$ such that if $a^-(f)\colon =a^+(f)^*, f\in H$, then:

$$a^-(f) \ a^+(g) + a^+(g) \ a^-(f) = (f|g)$$
 and $a^+(f) \ a^+(g) + a^+(g) \ a^+(f) = 0$.

A Fock (resp.: an anti-Fock) representation of the CAR is an irreducible representation for which there exists $\Omega \in \mathcal{H}$ such, that $a^-(f)$ $\Omega = 0$ (resp.: $a^+(f)$ $\Omega = 0$) for all $f \in H$.

One says that a pair (A, B), A linear and B an antilinear operators in H, defines a canonical transformation if b^+ defined by (*) is a representation of the CAR.

If, in addition, there exists such unitary $U \in \mathscr{L}(\mathscr{H})$ that

$$b^+(f) = \, U \, a^+(f) \, \, U^{-1}, \quad \, f \in H \; .$$

then it is said that canonical transformation is (unitarily) implementable in the given representation.

In Sections 1-4, we give an analysis of the following situation: Let S_1 denote the multiplicative group of the complex numbers of modulus one, $G = S_1 \times S_1 \times \ldots$ and let $\{f_i\}_{i=1}^{\infty}$ be some orthonormal basis of H.

Let $g=(z_1,z_2,\ldots)\in G$ and let A_g be such an unitary operator that $A_gf_i=z_if_i, i=1,2,\ldots$, and $B_g=0$; the pair (A_gB_g) defines a canonical transformation.

We will investigate the restrictions imposed on an irreducible representation of the CAR by the following condition: all the canonical transformations defined by $(A_g, B_g), g \in G$, are implementable.

By factorization, the analysis is applicable to the factor type I representations and, with taking needed care, to the representations of the canonical commutation relations too.

1. Let us choose for each $g \in G$ a unitary operator U_g such that:

$$a^+(A_g f) = U_g a^+(f) \ U_g^{-1}, \quad f \in H \ .$$

 U_g is defined by this condition up to a factor of modulus one.

In what follows we will consider G as a topological, compact and separable group: a denumerable product of the compact and separable, topological groups S_1 .

In G there exists a natural Borel structure generated by that topology and in this section we want to prove that for every $x, y \in \mathcal{H}$ the function $g \to |(x|U_g y)|$ is a Borel function.

Let $a_i^{\pm} := a_i^{\pm}(f_i)$ and let a_i denote a_i^{\pm} or a_i^{-} . Because of the estimation $||a(f)|| \leq ||f||$, $f \in H$, [2], separability of H and irreducibility of our representation the Hilbert space $\mathscr H$ is separable and the *-algebra $\mathscr A$ generated by $\{a_i\}$ acts irreducibly in $\mathscr H$.

Because of $U_g a_i^+ U_g^{-1} = z_i a_i^+$, $g \to U_g a_i U_g^{-1}$ is a norm continuous function for every i and therefore for each $A \in \mathscr{A} g \to U_g A U_g^{-1}$ is norm continuous too.

Let us consider some $A \in \mathcal{L}(\mathcal{H})$. Because of the irreducibility of \mathcal{A} and separability of \mathcal{H} there exists a sequence $A_n \in \mathcal{A}$ such that $A_n \to A$ weakly ([3], § 3).

Therefore, for $y \in \mathcal{H}$, $g \in G$:

$$(y \mid U_{g}A U_{g}^{-1}y) = (U_{q}^{-1}y \mid A U_{g}^{-1}y) = \lim_{n \to \infty} (U_{g}^{-1}y \mid A_{n} U_{g}^{-1}y)$$

$$= \lim_{n \to \infty} (y \mid U_{g}A_{n} U_{g}^{-1}y) .$$

Thus, the function $g \to (y | U_g A U_g^{-1} y)$ being a point limit of a sequence $g \to (y | U_g A_n U_g^{-1} y)$ of continuous functions, is a Borel function on G. Taking for A the orthogonal projection on subspace generated by x we have:

$$(y | U_q A U_q^{-1} y) = |(y | U_q x)|^2$$

and therefore for every $x, y \in \mathcal{H}, g \to |(y \mid U_g x)|$ is a Borel function on G.

2. In this section using the very strong results of G. W. MACKEY [4], (see however, the remark in the end of this section) we will prove the following.

Lemma. There exists a finite dimensional x subspace of $\mathcal H$ invariant for all U_{σ} .

For the proof let us proceed as follows: from Section 2, we know that $g \to |(x|\ U_g y)|$ is a Borel function on G for all $x,y \in \mathscr{H}$. Using the method of proof of the Theorem 2.2 in [4] we may define such function f on G, |f(g)| = 1, that for every $x,y \in \mathscr{H} g \to (x|f(g)\ U_g y)$ is a Borel function. Now, if $V_g := f(g)\ U_g$ then $g \to V_g$ is a projective representation of G in the sence of [4] with multiplier σ defined by: $V_{g_1g_2} = \sigma(g_1,g_2)\ V_{g_1}V_{g_2}$. After introducing in $S_1 \times G$ a multiplication; $(\lambda_1,g_1)\ (\lambda_2g_2) = \left(\frac{\lambda_1\lambda_2}{\sigma(g_1,g_2)},g_1g_2\right)$ one obtains a group G^σ and $(\lambda,g) \to \lambda V_g$ is an ordinary representation of this group.

Now Theorem 2.1 of [4] asserts that in G there exists a topology that makes G^{σ} a locally compact group, $(\lambda, g) \to \lambda V_g$ is a continuous representation of this group and, moreover, the Haar measure in G^{σ} is the product of the Haar measures of G and G_1 , because of their compactness, are finite and therefore the Haar measure of G^{σ} is finite too. But a locally compact group with finite Haar measure must be compact ([5], § 8) and therefore we arrived at a continuous representation $(\lambda, g) \to \lambda V_g$ of the compact group G^{σ} .

For such representations it is known that the Hilbert space of representation splits into a sum of finite dimensional invariant subspaces and thus the Lemma follows from proportionality of U_g and λV_g .

Remark. In fact the use of the results of Ref. [4] about connection of Borel structure and topology in separable groups is not essential. After introducing in G^{σ} the product measure and product Borel structure we see that G^{σ} becomes a Borel group with a left and right invariant finite measure and $(\lambda, g) \to \lambda V_g$ is a measurable representation of G^{σ} in a separable Hilbert space. But for such representations the existence of a finite dimensional invariant subspace may be proved directly. I have not found the proof published but it proceeds, with minor changes, as for compact groups. As it is rather long, it is not given here.

3. Let us define $N_k = a_k^+ a_k$; $\{N_k\}$ is a commuting set of projectors Now we show that there exists in \mathscr{H} a common eigenvector for all $N_k, k = 1, 2, \ldots$

It is easy to verify that for $z=e^{it}\in S_1$: $e^{itN_k}a_k^+e^{-itN_k}=za_k^+$ and $e^{itN_k}a_y^+e^{-itN_k}=\overline{z}a_j^+$ for $j\neq k$. If therefore, p_k denote the injection $S_1\to G$ for which $p_k(z)$ has the k-th component equal to z and the remaining equal to one then e^{itN_k} must be proportional to $U_{p_k(z)}$ (they implement the same canonical transformation).

178 J. SLAWNY:

From the proceding section we have that there exists \mathcal{H}' – a finite dimensional subspace of \mathcal{H} such, that $e^{itN_k}\mathcal{H}' \subset \mathcal{H}'$. $\{e^{itN_k}|\mathcal{H}'\}_{t,k}$ is a commuting family of unitary operators in a finite dimensional space and therefore there exists in \mathcal{H}' common eigenvector for this family. The same vector is of course a common eigenvector for $\{N_k\}$.

4. Let us consider in more detail such irreducible representations of canonical anticommutation relations for which there exists common eigenvector x for $\{N_k\}$. N_k are projectors and therefore $N_k x = 0$ or $N_{\nu}x=x.$

Let $\mathcal{N}_0(x) = \{k: N_k x = 0\}$ and $\mathcal{N}_1(x) = \{k: N_k x = x\}$. Let a' and $a^{\prime\prime}$ be irreducible representations in \mathscr{H}' and \mathscr{H}'' respectively. Suppose that $x' \in \mathcal{H}'$ and $x'' \in \mathcal{H}''$ are common eigenvectors for $\{N_k'\}$ and $\{N_k''\}$. Then:

The representations a'^+ and a''^+ are equivalent if, and only if, the set $\mathcal{N}_0(x') \cap \mathcal{N}_1(x'')$ is finite.

For proof let us suppose that the set $\mathcal{N}_0(x') \cap \mathcal{N}_1(x'')$ is not finite and let $\{i_1, i_2, \ldots\}$ be some enumeration of its elements. Let us define:

$$\overline{N}'_k = \frac{1}{k} (N'_{i_1} + \dots + N'_{i_k}) \quad \text{and} \quad \overline{N}''_k = \frac{1}{k} (N''_{i_1} + \dots + N''_{i_k}) .$$

Calculations give: $\|\overline{N}_k'\| \le 1$ and $\|[a_i', \overline{N}_k']\| \le 1/k$. Therefore, if for some vector $x \in \mathscr{H}'$ there exists the strong limit $s - \lim_{k \to \infty} \overline{N}_k' x$ then the sequence \overline{N}'_k is strongly convergent and the limit is a scalar operator. But $\overline{N}_k'x'=0$ hence $s-\lim_{k\to\infty}\overline{N}_k'=0$. Applying the same to \overline{N}_k'' we see that $s - \lim_{k \to \infty} \overline{N}_k^{\prime\prime} = I$.

Now if there exists such unitary $U:\mathcal{H}''\to\mathcal{H}'$ that Ua'+(f) U^{-1} $=a''+(f), \ f\in H, \ \text{then:} \ UN_k'U^{-1}=N_k'', \ U\overline{N}_k'U^{-1}=\overline{N}_k'' \ \text{and therefore} \\ Us-\lim_{k\to\infty}\overline{N}_k'U^{-1}=s-\lim_{k\to\infty}\overline{N}_k'', \ \text{thus, we arrived to a contradiction.} \\ \text{The proof of the "if" part is straightforward (see also the next)}$

section).

The representations described in this section are called in [6]: the translated canonical representations.

5. In this section we prove a converse to the Friedrichs' theorem formulated in the introduction.

From Section 3, we know that there exists a common eigenvector xfor $\{N_k\}$. Let $\mathcal{N}_0(x)$ and $\mathcal{N}_1(x)$ be as in the preceding section. Let us first observe that if $i \in \mathcal{N}_1(x)$ then $a_i^+ x = 0$, because of $a_i^+ N_i = 0$, and $a_i^- x \neq 0$, because of $(a_i^+ a_i^- + a_i^- a_i^+) x = x$.

Therefore if $\mathcal{N}_1(x)$ is finite: $\mathcal{N}_1(x) = \{i_1, \ldots, i_k\}$ and $x' = a_{i_1}^+ \ldots a_{i_k}^+ x$ then $x' \neq 0, \mathcal{N}_1(x')$ is an empty set and $a_i^- x = 0$ for all i. Thus our representation is a Fock one. Similarly, if $\mathcal{N}_0(x)$ is finite we have an anti-Fock representation.

But another possibility leads to a contradiction. For, let $\mathcal{N}_0(x) = \{i_1, i_2, \ldots\}$ and $\mathcal{N}_1(x) = \{j_1, j_2, \ldots\}$ both be infinite. Let A be such a unitary operator in H that $Af_{i_k} = f_{j_k}$, $Af_{j_k} = f_{i_k}$ and let B := 0. Then the pair A, B defines a canonical transformation and from assertion of the theorem to be proved there exists unitary operator $U \in \mathcal{L}(\mathcal{H})$ such, that:

$$a(Af) = Ua(f) U^{-1}, \quad f \in H.$$

Let $\overline{N}_k' = 1/k (N_{i_1} + \dots + N_{i_k})$ and $\overline{N}_k'' = 1/k (N_{j_1} + \dots + N_{j_k})$. As in Section 4, we arrive at a contradiction by: $s - \lim_{k \to \infty} \overline{N}_k' = 0$, $s - \lim_{k \to \infty} \overline{N}_k'' = I$ and $U \overline{N}_k' U^{-1} = \overline{N}_k''$.

Theorem is therefore proved.

The author wishes to thank Professor Amnon Katz for remarks concerning the manuscript.

References

- FRIEDRICHS, K. O.: Mathematical aspects of the quantum theory of fields. New York: Interscience Publishers, Inc., 1953.
- ARAKI, H., and W. WYSS: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136 (1964).
- DIXIMIER, J.: Les algèbres d'opérateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1957.
- MACKEY, G. W.: Unitary representations of group extensions. Acta Math. 99, 265 (1958).
- Weil, A.: L'intégration dans les groupes topologiques et ses applications.
 2º ed., Acta Sci. Ind., No. 1145, Paris: Herman 1953.
- GARDING, L., and A. WIGHTMAN: Representations of the anticommutation relations. Proc. Natl. Acad. Sci. U.S. 617 (1954).

J. SLAWNY Department of Nuclear Physics Weizmann Institute of Science Rehovot, Israel