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Abstract. It is proved that the requirement of implementability of a group of
canonical transformations defines a class of irreducible representations of the CAE.
As a corollary a converse to Friedrichs1 theorem about canonical transformations
implementable in the Fock representation is obtained.

A well known theorem due to K. 0, FRIEDRICHS [1] states that a
(linear) canonical transformation

is unitarily implementable in the Fock representation of the canonical
anticommutation relations if, and only if, B is of the Hubert- Schmidt
type (i.e. : B* B is of the trace class).

In this note we prove the following converse theorem: if in an irre-
ducible representation of the canonical anticommutation relations all
canonical transformations (*) with B = 0 are implementable then it is
the Fock or the anti-Fock representation.

Before going further, let us recall the definitions.
Let H be separable Hubert space (the space of the test functions).

By a representation of the canonical anticommutation relations (CAR)
over H in a Hubert space 3? we mean a linear mapping a+ : H
such that if a~(f) : = «+(/)*, / ζ H, then:

α+ (9) a- (/) = (/ 1 g) and α+ (/) α+ (g) + α+ (g) a+ (/) = 0 .

A Fock (resp. : an anti-Fock) representation of the CAR is an irre-
ducible representation for which there exists Ω £ $f such, that or (/) Ω = 0
(resp. : α+(/) Ω = 0) for all / ζ H.

One says that a pair (A, B), A linear and B an antilinear operators
in H, defines a canonical transformation if b+ defined by (*) is a repre-
sentation of the CAR.

If, in addition, there exists such unitary U ζ Jδ? ( $F ) that

then it is said that canonical transformation is (unitarily) implementable
in the given representation.
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In Sections 1—4, we give an analysis of the following situation:
Let 8ί denote the multiplicative group of the complex numbers of

modulus one, G = $x x $t X . . . and let {/j£Lι be some orthonormal
basis of H.

Let g = (z1} z2, . . .) ζ 0 and let Ag be such an unitary operator that
Agfi = Zifi, i = 1, 2, . . . , and Eg = 0; the pair (AgBg) defines a canonical
transformation.

We will investigate the restrictions imposed on an irreducible repre-
sentation of the CAR by the f ollowing condition : all the canonical trans-
formations defined by (Ag, Bg), g ζ G, are implementable.

By factorization, the analysis is applicable to the factor type I
representations and, with t along needed care, to the representations of
the canonical commutation relations too.

1. Let us choose for each g ζ G a unitary operator Ug such that:

a+(Aβf)=ϋ!,a+(f)ϋ-\ f£H.

Ug is defined by this condition up to a factor of modulus one.
In what follows we will consider G as a topological, compact and

separable group : a denumerable product of the compact and separable,
topological groups Sl .

In G there exists a natural Borel structure generated by that topology
and in this section we want to prove that for every x, y £ ffl the function
g -> \(x\ Ugy)\ is a Borel function.

Let a^ : = a^ (f^ and let at denote α/~ or a^~ . Because of the estimation
||α(/)|| ^ ||/||, / ζH, [2], separability of H and irreducibility of our repre-
sentation the Hubert space ffl is separable and the *- algebra <$$ generated
by {a^ acts irreducibly in 3? .

Because of Ugaf U^~l = zta^ , g ->• Ug^U^1 is a norm continuous
function for every ΐ and therefore for each A ζ j/ g -> Ug A Uy~l is norm
continuous too.

Let us consider some A ζ 3? (3f ). Because of the irreducibility of jtf
and separability of $P there exists a sequence An ζ «β/ such that An -> A
weakly ([3], §3).

Therefore, f or y ζ tf, g ζ G :

(yUAUy) = ( U y A ϋ ) = lim ( U

= lim (y\ϋ,Anϋ-^y) .
n—>oo

Thus, the function g -> (y\ UgA Uy~ly) being a point limit of a sequence
Q-*(y\ U gAnU~^y) of continuous functions, is a Borel function on G.
Taking for A the orthogonal projection on subspace generated by x we
have:

(y\UgAU^y)= \(y\ ϋβx)\

and therefore for every x, y ζ_ ̂  ', g -> \(y \ Ugx)\ is a Borel function on G.
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2. In this section using the very strong results of G. W. MACKEY [4],
(see however, the remark in the end of this section) we will prove the
following.

Lemma. There exists a finite dimensional x subspace of ffl invariant for
allϋg.

For the proof let us proceed as follows: from Section 2, we know that
g -> I (x I Ugy) \ is a Borel function on G for all x, y £ &\ Using the method of
proof of the Theorem 2.2 in [4] we may define such function / on G, \f (g) \ = 1,
that for every x, y ζjj?g-> (x\f(g) Ugy) is a Borel function. Now, if
Vg: = f(y) Ug then </-> Vg is a projective representation of G in the
sence of [4] with multiplier σ defined by: V9lgz = σ (ft, g2) V9l V9z. After

introducing in S1 x G a multiplication; (A1? ft) (λ2g2) = ( , 1 ' . , ftftj
\σ\yi9 yz) /

one obtains a group Gσ and (λ, g)->λVg is an ordinary representation
of this group.

Now Theorem 2.1 of [4] asserts that in 0 there exists a topology
that makes Ga a locally compact group, (A, g) -> λ Vg is a continuous
representation of this group and, moreover, the Haar measure in Ga is
the product of the Haar measures of G and 81. The Haar measures of
G and jS1} because of their compactness, are finite and therefore the
Haar measure of Gσ is finite too. But a locally compact group with finite
Haar measure must be compact ([5], § 8) and therefore we arrived at a
continuous representation (λ,g) -> λ Vg of the compact group Ga.

For such representations it is known that the Hubert space of repre-
sentation splits into a sum of finite dimensional invariant subspaces and
thus the Lemma follows from proportionality of Ug and λ Vg.

Remark. In fact the use of the results of Ref. [4] about connection
of Borel structure and topology in separable groups is not essential.
After introducing in Gσ the product measure and product Borel structure
we see that Ga becomes a Borel group with a left and right invariant finite
measure and (A, g) -> λ Vg is a measurable representation of Gσ in a
separable Hubert space. But for such representations the existence of
a finite dimensional invariant subspace may be proved directly. I have
not found the proof published but it proceeds, with minor changes, as
for compact groups. As it is rather long, it is not given here.

3. Let us define Nk = a£akι {Nk} is a commuting set of projectors
Now we show that there exists in ffl a common eigenvector for all
Nκ,k=l,2,...

It is easy to verify that for z = eit ζ^: eitNkak

r e~itNk = za£ and
eitN*a+ e~UNk- zaf for j =f= L If therefore, pk denote the injection 8I->0
for which pk(z) has the k — th component equal to z and the remaining
equal to one then eitNk must be proportional to U p j c ( z ) (they implement
the same canonical transformation).
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From the preceding section we have that there exists W — a finite
dimensional subspace of 3? such, that eitN* 3?' C 3?'* {^itNl6\^'}t^ is a
commuting family of unitary operators in a finite dimensional space
and therefore there exists in 3ff" common eigenvector for this family.
The same vector is of course a common eigenvector for {Nk}.

4. Let us consider in more detail such irreducible representations of
canonical anticommutation relations for which there exists common
eigenvector x for {Nk}. Nk are projectors and therefore Nkx = 0 or
Nkx = x.

Let e/f 0(αO = {k:Nkx = 0} and ^(α?) = {k:Nkx = x}. Let α' + and
a"+ be irreducible representations in 3ff" and 3tf " respectively. Suppose
that x' ζ W and x" ζ 3?" are common eigenvectors for {N'k} and {Nk}.
Then:

The representations α'+ and α" + are equivalent if, and only if, the
set Λ°Q(x') r\ jV^(x"} is finite.

For proof let us suppose that the set Λ*Q(x') r\ Λ^ Ja;") is not finite
and let {̂  , ί2 , . . .} be some enumeration of its elements. Let us define :

a n d = + + .

Calculations give: \\Nk\\ ^ 1 and ||[αj, JV£]|| ^ 1/i. Therefore, if for
some vector x ζ &" there exists the strong limit s — lim Nkx then the

_ fc— >00

sequence ^̂  is strongly convergent and the limit is a scalar operator.
But NfrX* = 0 hence 5 — lim JV^ = 0. Applying the same to N'k' we see

that s - lim Nk = I.
Jc-+oo

Now if there exists such unitary U:3^' -> 3f' that Ua' + (f) U~l

= «// + (/)? /J^ then: UN'kU^1 = ̂ ', UN'^U^ = N'k' and therefore
ί7«s — lim NfrU-1 = «s — Hm '̂, thus, we arrived to a contradiction.

fe-»oo &->oo

The proof of the "if" part is straightforward (see also the next
section).

The representations described in this section are called in [6]: the
translated canonical representations.

5. In this section we prove a converse to the Friedrichs' theorem
formulated in the introduction.

From Section 3, we know that there exists a common eigenvector x
for {Nk}. Let ^0(x) and ^^(x) be as in the preceding section. Let us
first observe that if i £ ̂ 1 (x) then af x — 0, because of af Nt = 0, and
afx Φ 0, because of (α^ αf~ + afa*) x = x.

Therefore if ,Λr

1 (x) is finite : ̂ 1 (x) = {̂  , . . . , ίk} and x' — a£ . . . a^ x
then x' Φ 0,̂ (0:') is an empty set and αf # = 0 for all ί. Thus our
representation is a Fock one. Similarly, if ^0(x) is finite we have an
anti-Fock representation.
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But another possibility leads to a contradiction. For, let ^Q(x)

= {h> *2> •} and ^Ίfa) — {hi Jz> •} both be infinite. Let A be such
a unitary operator in H that Afik = fίk, Afjk = fik and let B: = 0. Then

the paired, B defines a canonical transformation and from assertion of the

theorem to be proved there exists unitary operator U £ 3? (£?} such, that :

a(Af)=ϋa(f)U-\ t£H.

Let N'k = 1/i (N^ + + Nik) and N% = 1/4 (Λ^ + - + #J. As in
Section 4, we arrive at a contradiction by : s — lim JY£ = 0, s — lim

Theorem is therefore proved.

The author wishes to thank Professor AMNON KATZ for remarks concerning the
manuscript.

References

1. FBIEDBICHS, K. 0.: Mathematical aspects of the quantum theory of fields.
New York: Interscience Publishers, Inc., 1953.

2. ABAKI, H., and W. WYSS: Representations of canonical anticommutation rela-
tions. Helv. Phys. Acta 37, 136 (1964).

3. DIXIMIER, J. : Les algebres d'operateurs dans Γespace hilbertien. Paris : Gauthier-
Villars 1957.

4. MACKEY, G. W. : Unitary representations of group extensions. Acta Math. 99,
265 (1958).

5. WEIL, A.: L'integration dans les groupes topologiques et ses applications.
2β ed., Acta Sci. Ind., No. 1145, Paris: Herman 1953.

6. GARBING, L., and A. WIGHTMAN: Representations of the anticommutation rela-
tions. Proc. Natl. Acad. Sci. U.S. 617 (1954).

J. SLAWNY
Department of Nuclear Physics
Weizmann Institute of Science
Rehovot, Israel

13 Commun. math. Phys., Vol. 13




