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Abstract. It is proved that the requirement of implementability of a group of
canonical transformations defines a class of irreducible representations of the CAR.
As a corollary a converse to Friedrichs’ theorem about canonical transformations
implementable in the Fock representation is obtained.

A well known theorem due to K. O. FriepricHS [1] states that a
(linear) canonical transformation

b*(f) = a*(4f) + o= (Bf) (*)

is unitarily implementable in the Fock representation of the canonical
anticommutation relations if, and only if, B is of the Hilbert-Schmidt
type (i.e.: B* B is of the trace class).

In this note we prove the following converse theorem: if in an irre-
ducible representation of the canonical anticommutation relations all
canonical transformations (*) with B = 0 are implementable then it is
the Fock or the anti-Fock representation.

Before going further, let us recall the definitions.

Let H be separable Hilbert space (the space of the test functions).
By a representation of the canonical anticommutation relations (CAR)
over H in a Hilbert space # we mean a linear mapping a*: H - Z ()
such that if a—(f): = a*(f)*, f € H, then:

a=(f) a*(g) + a* (@) a=(f) = (flg) and a*(f) a*(9) + a*(g) a*(f) = 0.

A Fock (resp.: an anti-Fock) representation of the CAR is an irre-
ducible representation for which there exists £ € # such, that a—(f) 2=0
(resp.: at(f) 2 = 0) for all f € H.

One says that a pair (4, B), A linear and B an antilinear operators
in H, defines a canonical transformation if b+ defined by (*) is a repre-
sentation of the CAR.

If, in addition, there exists such unitary U € & () that

b*(f)=Ua*(H U7, f[eH.

then it is said that canonical transformation is (unitarily) implementable
in the given representation.
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In Sections 1—4, we give an analysis of the following situation:

Let S; denote the multiplicative group of the complex numbers of
modulus one, @=8; X §; X ... and let {f;}>, be some orthonormal
basis of H.

Let g = (2, 25, . ..) €G and let 4, be such an unitary operator that
A,fi=2f;,1=1,2,...,and B, = 0; the pair (4, B,) defines a canonical
transformation.

We will investigate the restrictions imposed on an irreducible repre-
sentation of the CAR by the following condition: all the canonical trans-
formations defined by (4,, B,), g € G, are implementable.

By factorization, the analysis is applicable to the factor type I
representations and, with taking needed care, to the representations of
the canonical commutation relations too.

1. Let us choose for each g € G a unitary operator U, such that:

(4of) = Uga*(f) U7", [EH.

U, is defined by this condition up to a factor of modulus one.

In what follows we will consider G as a topological, compact and
separable group: a denumerable product of the compact and separable,
topological groups &§;.

In @ there exists a natural Borel structure generated by that topology
and in this section we want to prove that for every z, y € 5 the function
g — (| U,y)| is a Borel function.

Let aiF : = aiF (f;) and let a; denote a;" or a;~ . Because of the estimation
le(Hl =< Ifl, f € H, [2], separability of H and irreducibility of our repre-
sentation the Hilbert space S is separable and the *-algebra 2/ generated
by {a,} acts irreducibly in 2.

Because of U,a;" Uyl =20, g— U,a,U;t is a norm continuous
function for every 7 and therefore for each 4 ¢ o/ g~ U,A U, is norm
continuous too.

Let us consider some 4 € £ (5#). Because of the irreducibility of o7
and separability of S there exists a sequence 4, € &7 such that 4, — 4
weakly ([3], § 3).

Therefore, for y € 5, g € G:

(y |Us AU y) = Uty AU Yy) = lim (U7 ty[4,U5 )

= lim (y|U,4,U7%).

Thus, the function g — (y| U, 4 U, 1y) being a point limit of a sequence
g (y|U,4,U;ty) of continuous functions, is a Borel function on G.
Taking for A the orthogonal projection on subspace generated by = we
have:

(yl U,4 Ua_ly) = l(?/' Ugw)lz
and therefore for every «, y € 5%, g — |(y| U, )| is a Borel function on @.
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2. In this section using the very strong results of G. W. MACKEY [4],
(see however, the remark in the end of this section) we will prove the
following.

Lemma. There exists o finite dimensional x subspace of S invariant for
all U,.

For the proof let us proceed as follows: from Section 2, we know that
g— |(x| U,y)|is a Borel function on G for all z,y € 5. Using the method of
proof of the Theorem 2.2 in [4] we may define such function fon G, |f(g)| =1,
that for every x,y ¢ # g — (x|f(9) Uyy) is a Borel function. Now, if
Vy:=1f(9) U, then g— V, is a projective representation of G in the
sence of [4] with multiplier o defined by: V, , = 0(9;, g5) V,, V,,. After
introducing in 8; X G' a multiplication; (4;, ¢;) (A29,) = (7(;% , glgz)
one obtains a group G° and (4, g) -~ AV, is an ordinary representation
of this group.

Now Theorem 2.1 of [4] asserts that in G there exists a topology
that makes G° a locally compact group, (4,9) >4V, is a continuous
representation of this group and, moreover, the Haar measure in G° is
the product of the Haar measures of G and ;. The Haar measures of
G and §;, because of their compactness, are finite and therefore the
Haar measure of G“ is finite too. But a locally compact group with finite
Haar measure must be compact ([5], § 8) and therefore we arrived at a
continuous representation (4,9) - AV, of the compact group G°.

For such representations it is known that the Hilbert space of repre-
sentation splits into a sum of finite dimensional invariant subspaces and
thus the Lemma follows from proportionality of U, and A V.

Remark. In fact the use of the results of Ref. [4] about connection
of Borel structure and topology in separable groups is not essential.
After introducing in G° the product measure and product Borel structure
we see that G° becomes a Borel group with a left and right invariant finite
measure and (4,g) > AV, is a measurable representation of G° in a
separable Hilbert space. But for such representations the existence of
a finite dimensional invariant subspace may be proved directly. I have
not found the proof published but it proceeds, with minor changes, as
for compact groups. As it is rather long, it is not given here.

3. Let us define Nj = aj" a;; {IV;} is a commuting set of projectors
Now we show that there exists in # a common eigenvector for all
Nynk=12,...

It is easy to verify that for z = eit € 8,: ¢!t ¥rqz ¢~ e = 20;f and
et Vig ¢~ 1Nk = ZgF for j = k. If therefore, p; denote the injection §; — G
for which p,(2) has the & — A component equal to z and the remaining
equal to one then ¢!*¥ must be proportional to U, () (they implement
the same canonical transformation).
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From the proceding section we have that there exists s#’ — a finite
dimensional subspace of # such, that e*¥ " C A", {!* V| H"'}, , is a
commuting family of unitary operators in a finite dimensional space
and therefore there exists in J#’ common eigenvector for this family.
The same vector is of course a common eigenvector for {V;}.

4. Let us consider in more detail such irreducible representations of
canonical anticommutation relations for which there exists common
eigenvector z for {I,}. N, are projectors and therefore Nz =0 or
N,z = .

Let A (%) = {k:Nyx = 0} and A (x) = {k:Nyx = x}. Let o'+ and
@’ * be irreducible representations in ¢’ and S’ respectively. Suppose
that ' € #” and &'’ € "' are common eigenvectors for {N;} and {N;}.
Then:

The representations o'+ and a'’+ are equivalent if, and only if, the
set A o (2") N A (2"') is finite.

For proof let us suppose that the set A" (z") N A7 (2") is not finite
and let {¢,, ¢y, . . .} be some enumeration of its elements. Let us define:

=, 1 ’ ’ XTI " "
Ni=%Niy+---+Nj) and Nk=—(N +o 4+ Ny

Calculations give: [N < 1 and |[aj, N}]| < 1/k. Therefore, if for
some vector & € ' there exists the strong limit s — klim Nz then the

sequence Ny, is strongly convergent and the limit is a scalar_operator.
But Niz' = 0 hence s — k]im N}, = 0. Applying the same to N, we see

that s — lim Ny =1
Now if there exists such unitary U:2#"' — ¢’ that Ua'+(f) U1

=a"*(f), f €H, then: UN U= N}/, UN,U-'= N, and therefore
Us— klim N U1l=s— klim N}, thus, we arrived to a contradiction.

The proof of the “if” part is straightforward (see also the next
section).

The representations described in this section are called in [6]: the
translated canonical representations.

5. In this section we prove a converse to the Friedrichs’ theorem
formulated in the introduction.

From Section 3, we know that there exists a common eigenvector x
for {N.}. Let A y(x) and A (%) be as in the preceding section. Let us
first observe that if + € 4" (z) then a;" z = 0, because of a;" N, = 0, and
a; x + 0, because of (a;" a;” + a; af) v = «.

Therefore if A, (x) is finite: A (x) = {3y, . . ., and &' = @i ... a2
then 2’ == 0,47 (2") is an empty set and a;j"x =0 for all . Thus our
representation is a Fock one. Similarly, if 7 (x) is finite we have an
anti-Fock representation.
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But another possibility leads to a contradiction. For, let A ()
= {1y, 1y, ...} and A () = {};, 2, - . .} both be infinite. Let 4 be such
a unitary operator in H that Af;, = f;, Af; = f;, and let B: = 0.Then
the pair 4, B defines a canonical transformation and from assertion of the
theorem to be proved there exists unitary operator U € Z () such, that:

Af a() U, feH.

Let Ny=1/k (N, + -+ N,;) and Ny = 1/k(N; + -+ N;). As in
Section 4, we arrive at a contradiction by: s — hm N r=0,8— hm

Nk——IandUNkU‘1~N .
Theorem is therefore proved.

The author wishes to thank Professor AMNoN KTz for remarks concerning the
manuscript.
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