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Abstract. For many-particle relatively compact interactions the essential
spectrum of the JV-particle Schrodinger Hamiltonian is shown to consist of a con-
tinuum \ΛNί + oo [ where ΛN is the lowest many-body threshold of the system.
This result applies in particular to separable interactions and some spin-orbit
couplings. The iV-particle Green's function is studied with the help of the Weinberg
equation for many-body forces whose kernel is shown to be compact in the
complementary set of \ΛN9 -f- oo[.

Introduction

It has been shown by HTJNZIKER [1,] [2] with the help of the Wein-
berg equation that the spectrum of a Schrodinger Hamiltonian for a
system of particles interacting via two-body forces, consists of a conti-
nuum lying in [ΛN, -f oo[ where Λ$ is the lowest many-body threshold
of the system and in its complement of eigenvalues with finite multi-
plicities having ΛN as only possible accumulation point. HUNZIKER'S
assumption is that the two-body potentials are locally square-integrable
and vanish at infinity. Our aim is to extend these results to general
"relatively compact" many-particle interactions. Relative compactness
is a very useful concept in the study of Schrodinger Hamiltonians, owing
on the one hand to the large number of physically interesting local and
velocity dependent interactions with this property, and on the other
hand to the fact that from the point of view of perturbation theory it
enjoys the same virtues as compactness itself. In particular a modified
form of Weyl theorem states the invariance of the essential spectrum
under such perturbations [5].

As in [2] we shall use the Weinberg equation; the compactness of its
kernel will be established with the help of Theorem 1.1 concerning
certain connected products of many-particle operators. We shall briefly
discuss the relevance of these equations to solve the bound-state problem.

1. Kinematics and Mathematical Preliminaries

We consider a N particle system. We shall denote by D = {C1 C2 Ck}
a decomposition of the system into k disjoint clusters (or fragments)
C1, . . ., Gk. We shall write {N} for the trivial decomposition into one
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fragment (also denoted by {N}), D0 if each fragment contains only one
particle, {(7} if the only ^-particle fragment with p > 1 is C. The in-
clusion DC.D' means that each fragment of the cluster decomposition D
is contained in a fragment of D'.

The total momentum in the laboratory system of the cluster C will
be denoted by Pc, the position of its center of mass by Xc and its total
mass by mc\ the set of relative cartesian coordinates of particles in
cluster C will be designed by the short-hand notation X^.

The total interaction of the particles in cluster C will be denoted by
. We shall assume that there is no external field acting on the

system in particular F^ = 0 for each particle i. We define the connected
part of the interaction V^ by the recursion formula

y(C} = y{C} _ y y{C'}
' conn r £u ' conn *

σ cc

To each cluster decomposition D there corresponds a decomposition of
the total kinetic energy H'^ in the form

#oW ^ Σ #o(C} , (2)
CζD

IP I 2

where H'^ = Σ o *s ^e kinetic energy for the fragment C. It can
i ζ. L>

itself be split into the sum

The total energy for cluster C is then

H'{C} = H'{C] + γ{C} (4)

and in the center of mass system of C it is

H&) + V(C} . (5)

We shall denote by ffl'W* the irreducible representation space
for the canonical commutation relations of the p particles of cluster G.
It can be written as

WW = 3eG (g) 3f(c} , (6)

where 3fc = ia(Zσ)
 and ̂ {C} = -^2(^{C})

Let (7 = Oj w C2 where C1 and (72 are disjoint clusters. Then one has

(7)

where (̂̂ .̂  = i2^^.^)), with Z^^) - ZCι - ZCa. This results
from (6) if we consider ^f^ as the representation space a particle with
mass mG and rearrange 3? Cι ® J^7

C;3 according to the well-known
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reduction to the center of mass system in two-body problems, obtained
by introducing relative coordinates. This reduction also leads to the
useful formula:

!Ί.02)|2
L, (8)

where P(G^G^ =— — — ̂ — - - — — — is the relative momentum of the
mCl -f mCί

centers of mass of C^ and (72, and ^(olfca) "their reduced mass.
We shall denote by 3S(#f) (resp. Jf pf )) the algebra of bounded

(resp. compact) linear operators on the Hubert space ̂  and by !#> its
identity operator. Then if C = Gτ \J C2) ^(^Cl^) has according to (7) a
natural isomorphic image in & (JjfW) which is

More generally if we define

3t?D = 0 2tfW (9)
CζD

then for DζD' there is a natural embedding of Sf(JfD) into &(&&)
obtained step by step from the preceding one. This embedding is norm
conserving, and in the following we shall denote by the same symbol the
algebra £$(3?D} (as well as its elements) and its image by the above
embeddings; when confusion is possible we shall specify the space of
definition. It is possible to extend in a unique way these embeddings to
unbounded self -ad joint operators for which we shall use the same
convention. Furthermore the following relation hold [3] for each cluster
decomposition D

(10)

where the right-hand side of (10) denotes the norm closure of the sub-
space of ^(^fD) consisting of finite linear combinations of operators of
the following form : they are the product of all elements of a commuting
set of operators obtained by choosing one term in each of the isomorphic
images in J f ( 3 F D ) of the algebras Jf (^c}) involved in (11).

The main theorem needed in the next section is the following :
Theorem 1. Let D = {C^; C2; . . .; Cn} be some cluster decomposition.

p
Let the cluster CQ be contained in . U Ci (p <J n) and such that CQ r\ Gi is

ί p \
non empty for all i = 1, 2, . . . p. Let D' = 1 U G^ Gv+1', . . .; Cn\. If A

li = 1
and B are respectively operators in J^(^f^) and Jf (J0C°^), then the
product AB belongs to ^(^fD>).

The proof of this theorem is given in [4] for p — n. For p < n it is
easily deduced from the preceding case owing to identity (10).
20 Commtm. math. Phys .Vol. 12
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To conclude this section, we briefly describe the commutant $' (3f D)
of the isomorphic image in 3S(3tf (N}) of &(2tf D). Starting from (7) it can
be shown that Jf^ is the tensor product of 3rifD and of another Hubert
space which is roughly speaking associated to the relative motion of the
centers of mass of clusters belonging to D. Then 36' (3$fD) is the natural
image in 36 (3? ̂ ) of bounded linear operators on this Hubert space.

2. Relatively Compact Many-Particle Interactions

It is shown in [1] that the kernel of the Weinberg equation (see
Eq. (20) below] is an operator in the Hubert-Schmidt class for a system
of particle interacting through two-body square-integrable potentials.
In [2] a limiting procedure allows HUNZIKER to derive the compactness
of this kernel if the interactions belong to L2 -f L00, and the L°° com-
ponent can be chosen arbitrarily small. We describe here a class of
perturbations containing the preceding ones which seems to be the
maximal class for which the Weinberg kernel is a compact operator in

N\
Let H be a self -adjoint operator on the Hubert space ^f. Its domain

equipped with the scalar product

(A flW) = (#/.#?)*• +(/>!/)*• (12)

is itself a Hubert space since H is closed.
Definition 1. [5], Let V be some (possibly unbounded) linear operator

in ffl whose domain contains 3>(H). Then V is said to be H -compact on £F
if its restriction to & (H) is a compact operator from & (H) to ffl .

It is proved in Appendix I that this condition is equivalent to saying
that for each z in the resolvent set of H, V(H — z)*1 is a compact
operator on 2tf . Furthermore either one of these two equivalent condi-
tions implies that for each ε > 0 there exists a b (ε) > 0 such that for all
/ in Q) (H) one has the inequality

| j F / | | ^ ε | | f f / ] | + δ(ε)|i/ | | (13)

that is, V is ZΓ-bounded with zero relative bound (or as we shall say
H-ε bounded).

We shall require from the interaction operators that they satisfy the
Condition (RC). Each V^ is symmetric and H{

Q

CΪ -compact on ^f^
where H& is the Schrodinger kinetic energy operator.

Obviously compact operators on $f ̂  are #^-compact. But there
also exists a large class of local and velocity dependent potentials, and
among them of differential operators with variable coefficients, having
this property; in fact for a ^-particle cluster, the Hubert space &(H^)
is identical to the Sobolev space W2(^3(v~^) and sufficient conditions
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are known ensuring that the closure of these differential operators are
compact operators from this Sobolev space to L2(Rz(p~^). As an example
we mention the following results due to BALSLEV [6] :

Theorem 2. Let X{cϊ = (Xl9 . . ., Z3(2)_l)) be the3(p - 1) dimensional
vector describing the relative position of the particles belonging to cluster C.

Let Pjc be the differential operator Pk = — i~^r~ , 1 ̂  & ^ 3(p — 1).

Suppose that there exists a junction β(\X^\) such that

i) \V^(XW)\*^ β ( \ X { C } \ ) ,

ϋ) fβ(\X&\) \XW\3-*d\XW\ <oo for some α > 0 ,
o

R + l
Hi) / β(\χM\)d\χW\-*Q as R -> oo .

R

Then F££ is H^ -compact.
If condition (ϋ) is replaced by

ϋa) f β(\χM\) \XW\i-* d\XM\< oo for some a>Q
o

then Vίc} Pk is H{

Q

C} -compact for all k.
This theorem can be of a particular interest if interactions linear in

the momenta, such as spin-orbit couplings, are taken into account.
However although the inclusion of spin in this framework presents no
major difficulties, a detailed study of these interactions is not the aim
of this paper and will be treated in a forthcoming one.

3. Weinberg Equation for Many-Particle Intractions

As is shown in Appendix I condition (RC) implies that if C' 3 C then
F n̂ is JJ^-ε-bounded on J^^. Since perturbation of self -adjoint
operators by relatively bounded symmetric operators with relative
bound smaller than one does not alter the domain and the self -adjoint-
ness [5, Chap. 5, § 4] each ̂ ^ is then a uniquely defined self -ad joint
operator with the same domain as H^. This allows us to write the second
resolvent equation

(z - //W)-1 = (Z - #W)~! + (z - J9r^})-1 F(ΛT> (z - tfW)-1 (14)

and since || F n̂ (z — H^}~1\ ^ ε + — π— can be made as small as we

want for Re z sufficiently negative, we can find a domain of the complex
plane in which the iterations of (14) lead to the norm convergent
expansion

(z - #W)-ι = Σ Σ (* - B^)-1 V<£> . V£s> (z - £Γ{*>)-ι . (15)
20* = 0 CL... ,CΛ
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It is then possible to write down the Weinberg equation as is done in [2],
with a slight modification due to the presence of many-particle inter-
actions. One draws N horizontal lines representing particles 1,2, . . ., N
and one associates to each interaction F n̂ (here the subscript is
essential) a vertical connection of the lines corresponding to particles
in C. Then we can identify each term in the expansion (15) with a graph
obtained by drawing, from the left to the right the vertical connections
associated to the interactions of this term, in the order in which they
appear in it. In this way the graph

L έ
3

N-1 5

Fig. 1
must be identified as

Each graph G defines k maximal disjoint clusters, k ̂  N, which
consist of particles which can be linked together by some path of the
graph formed with horizontal lines or vertical connections. We denote
by D (G) the cluster decomposition associated to G. We consider now all
increasing sequences of cluster decompositions 8 = (DQ, Dl9 . . ., Dk)
where Di contains ni clusters and is obtained from Di^l by linking
[nί_1 — %] of its clusters; a graph G is said to have connectivity S if 8
is precisely the sequence of values assumed by the cluster decompositions
corresponding to the part of G standing at the left of a vertical line L,
when L is shifted from the left of G to the right. In fact when L is
shifted to the right of some subgraph Gt _1 of G such that D (G{ _τ) — Di-ι,
it can either go over a vertical connection pertaining to some graph gi_1

such that D(gί_-L) C DΪ-I, oγ °ver °ne linking particles belonging to
[ni_1 — Ui"\ different clusters of Di_1; in this last case we get a new
cluster decomposition Z>^. So the contribution of the graph G to the
expansion (15) is the left product of (z — H^)~l by a term of the form

* ["any graph g{ _ x

[Wi '

where Qi has a non empty intersection with each of the [ni_l — n^] old
clusters of Di_l and is contained in their union. Let V^D^ denote
the sum of the corresponding F n̂ over the clusters C^ having this
property and define yD _ v γ{C}

HD = HW + VD , (16a)

ΘD(Z) = (z - H*>)-ι. (16b)
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Then summation over all graphs having connectivity S gives the
following contribution to (15):

GS(*) = ^o(z) VK.DM*) VDkik^Gιh(z) . (17)

It now remains to sum over all sequences S. For this we define

#(*)= Σ βs(z)9

C(z)= Σ Os(z). (19)
{S\nk = 1}

Observing that in C (z) the resolvent G{N}(z) can be factored out we
obtain the Weinberg equation in the domain of the complex plane in
which the iterations of Eq. (14) converge

, (20)

where / (z) is defined on the dense domain Π Qi ( V& ) byv ' C conn/ J

Σ Π [GD^)VDi,DiJ. (21)
{S\nk = 1} i = 1

4. The Discrete Spectrum of JffW Below the Two -Body Threshold

Let Λy be the greatest lower bound of the spectra of the hamiltonians
HD, D Φ {N}. From our assumption (RC) and the resulting H^-ε-
boundedness of the interaction V^ it results that Λ$ is finite. Denote
by Π ΛN the complex plane slit along the cut \ΛN, + oo[. It is shown in
[2] that if the following conditions are satisfied :

k

1. /(z)* = Σ Π [VDiίDi βDί >(*)] andD(2) are analytic families
{S\nk=l} ί=l

of bounded operators in ΠΛN .

2. For each z in Γ[ΛN) I(z)* is compact. Then the Eq. (20) can be
continued analytically to ΠΛN \ its solution G^} (2) is given by

G{N](z)=[l-I(z)]~iD(z) (22)

except at possible poles of [1 — 7(^)]~1 which can accumulate only at
Λ$ . Here I (z) — I(z}** is the unique bounded extension of the operator
defined in (21).

By the observation that at some bound state energy E$ < ΛN the
spectral projection operator P(E0) of ffi^ satisfies, owing to (20), the
relation

HUNZIKER concludes that under conditions 1. and 2. the spectrum of H^
consists of isolated eigenvalues with finite multiplicities which can
accumulate only at ΛN .

Our aim is now to prove 1. and 2. from our condition (EC). This will
be derived from the following lemmas
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Lemma 1. Under condition (RC) each product
of bounded operators on ffl^ , analytic in the slit complex plane ΠΛN

Hence D(z) and each Ig(z)* also has this property.
Proof. From our condition (RC) and Kato's theorem on relatively

bounded perturbations it follows that for each cluster C and decomposi-
tion D one has the inclusions

. (23)

The two norms on Q) (H^) determined by the scalar products ( , )@ fH(N}\

and ( , )^ίH^N}\ given by (12) are equivalent, as can be seen from the

jBΓ^-ε-boundedness of the interactions. Hence GD(z) (z ζΠΛN) is an
analytic family of bounded operators from ffl W to the Hubert space
@(H^). The #W-ε-boundedness of each F^n implies that they are
bounded operators from &(TW) to JfW. So'V^ GD(z) is for z ζΠΛN

an analytic family of bounded operators from 3^^ to 34?^. Now D(z)
being a sum of products of such operators enjoys the same property. By
inclusion (23) the same conclusion holds for

Now the compactness of I(z)* results from the
Lemma 2. Under condition (RC), for each z ζΠΛN and each sequence

S = (jD0, D1 . . ., {N}) the operator Ig(z)* is compact.
By the stability of compactness under analytic continuation (see

Appendix 2) it will be sufficient to prove compactness of Ig(z)* in the
open region ΔΛN = {z\~Rez < Λ$}. First we recall the integral formula
expressing the resolvent of the semi-bounded self-adjoint operator H as
a norm convergent integral

(z- H)-1^ - fezτe-Hτdt, Rez < A , (24)
o

where A is the g.l.b. of the spectrum of H.
The exponential operator e~Hτ, r > 0, is bounded from ffl to

Hence if F is an #-ε-bounded (resp. ^-compact) operator inJ^, Ve~Hτ,
t > 0 is a bounded (resp. compact) operator in 30?. Furthermore

oo

V(H — z)-1 is the norm limit as ε -> 0 of / ezτ Ve~Hτdt. To see this we
ε

remark that

V(H - 2)-

The convergence to zero of \(e-ε(Ή-^ - 1) (H — z)~l\ results from the
inequality (1 - e~λ) < λ, λ > 0. From (13) we deduce that for all / in 3?
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and η > 0 there exists b(η) > 0 such that

- I) (H - z] (H - z)-ι/||

-<H-*>δ - 1) (H - z)-1/!

(25)

Let us choose ε0 such that ε < ε0 implies ||(e-<H~*)e — 1) (H — z)*1]]
Ύ]

— "TC^ί7?) + I2!)"1 We can then niajorize the left member of (25) by

η\\f\\
Let us now look at an operator like

Vw.B*.M*) JVι..DM βί.(2) FD. .A.W (26)

Since VDi)D. χ is H^-e-bounded one derives from the above conside-
rations that for Re 2 < 0, (26) can be approximated in the operator norm
by the norm convergent integral

+ 00 + 00

A norm convergent integral of compact operators is compact, hence in
order to prove compactness of (26) it is sufficient to prove that the
integrand is compact on ̂ W. We recall that Vj).)D. _L is a sum of terms
^conn over ̂ e clus^ers having a non empty intersection with and only
with all the clusters of Di^l which do not belong to Dt. If C is some of
them one has

e

(28)

Let us look at the left factor on the right-hand side of (28). Let Ct be
the new cluster of Di (obtained as the union of clusters of Ot _1 connected
by C) and C( = Ci— C. Applying (8) to Ct = G \J C^ we see that, owing
to (7), this first factor contains only operators in ^(^D} r\ ^'(^c}).
By the same method the last factor can be shown to be an operator in
&'(ji(?D*) hence in 38'(^Dί^}. This leads to the following result: Let
^<-! = Ki^B^i where K^ £Jf(^Di-1) and E^ is some bounded

operator in J>pfW); then F^e"^^^. Ai-1 = KiBi where
and || 5, || ^ ||̂  _ι||. To prove this we use the decom-
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~"H τ

position (28), the compactness in J^ff} of F^ne~"H° τ< for any ti > 0,
the Theorem 1 and the fact that JίΓ(J^D) is a two-sided ideal in ^(^f D).
It is now sufficient to use a simple recurrence procedure in order to prove
that the integrand is a finite linear combination of operators in Jf pfW).
Hence (26) is a compact operator.

We now return to /*(z). Owing to the inclusion (23) one can omit in
its expression the adjunction operation on the potential. Using the second
resolvent equation

one can express /* (z) as a finite sum of terms having the same form as
(26) except that some resolvents GDo(z) in (26) have to be replaced by
GDo(z) VDG1}(z). But for R,ez < ΛN, the integral formula (27) still holds
for Crp(z), D 4= {N}. And since VD is j^-ε-bounded, these terms can still
be approximated in the operator norm by norm convergent integrals of
type (27) in which additional factors VDe~HDτ will have to be inter-
polated between some terms of (27). But these terms are product of two
factors, one in &(3?D) and the other in &'(3!fD), so that the same
arguments as above will apply in deriving the compactness of the
integrand.

4. The Spectrum of H{N}

We now look at the whole spectrum of H^ and show that its
essential part consists of the interval [ΛN, -j- oo[. There exists a
D = {Clt (72, . . ., Ck} such that ΛN is the g.l.b. of the spectrum of
HD , D Φ {N}. Since this operator has a continuous (and even absolutely
continuous) spectrum, WEYL'S criterion [8] applies with the result that
for each λ in [ΛN, + oo[ there exists an infinite sequence un in ^(HD)
with \\un\\ = I , un tends weakly to zero and sΛim(HD — λ)un = 0.
Denote by f ( s D ) a vector obtained by applying to / ζ^(H^) a trans-
lation by Xc. of the center of mass of each cluster Gt ζ D such that
8D = min (X%

Ct - X0). Then \\(H» - λ) f(sΰ)\\ = \(HD - λ)f\\ . We want
ί^rj 3

to show that if
- (29)

Then:

8. lim 11/^^nM^O. (30)

In fact let F n̂ be one of the interactions in (29); the effect of
shifting indefinitely the c.m. of Cl9 C2, . . ., Ck is to separate more and
more the fragments C\ — C r\ Ct , i = 1,2, . . . , k. Owing to the
H^ compactness of F^n in 3?^ and to (7) one has then
lim \\V(HW-z)-ι)==(). Since &(H») = ®(HW) one can

Sj) — >• oo
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apply this result to / = (H^ — z) un for any n and this implies
lim \\V^n

un(sn}\\ = 0 and consequently (30). One can then extract a

bounded infinite sequence from the set {un(sD)} such that the Weyl
criterion for H(N^ = HD -f ID can be applied with the result that λ be-
longs to the essential spectrum of H^.

We then summarize all preceding results in the
Theorem 3. Under condition (EC ) on the interaction, the Hamiltonian

H^ is self -adjoint and its domain coincides with 2(H^). Its spectrum
consists of a continuum [ΛN, -f oo[, where ΛN is the lowest many -body
threshold, and in the real complement of this continuum of eigenvalues of
finite multiplicities which can accumulate at most at ΛN .

Let us mention that for physical interactions ΛN is expected to be
the two -body threshold but we do not know any method to prove it
rigorously.

5. Concluding Remarks

The relative compactness condition on interactions is probably not
the weakest under \vhich Theorem 3 holds. In particular one would
expect that its conclusions remain true for multiplicative interactions in
Z/Joc tending to zero at infinity and volocity dependent potentials in-
volving the square of momentum operators. The first problems to solve
concern then the self-adjointness and the domain of Jf/W and can
probably be overcome as in [6] by the use of quadratic forms instead of
operators. It seems on the other hand that C(z) rather than I(z) has some
chance to be compact but it can easily be seen that this is sufficient to
derive the results concerning the spectrum of H^.

As was announced in the introduction we briefly discuss the relevance
of the Weinberg equation for the bound- state problem. We have seen
that every boundstate energy is a pole of [/ — I ( z ) ] ~ l . It is well-known
that the converse is not true owing to

I - I(z) = D(z) (z - HW) (31)

since a zero eigenvalue of D (z) can give a solution of the equation I(z)f — f
which would not correspond to a bound state. In fact in the case N — 3

one has D(z) = GDo(z) \H& - Σ t(i}J} (z) ~ z\ GDO(*)> where ί<M) (z)
L i<j=l J

is the off-shell two-body scattering amplitude. The existence of solutions

of the equation H^ — Σ tV>ft(z) — z\ f = Q ίoτ non real energies has
L ί<? = l J

been shown by FEDEKBTJSH [7]. Owing to the analyticity of I(z) such
solutions can occur only at some isolated points of the complex plane
and it is an open question whether they exist for real negative energies
a proof of the contrary would be a good starting point for an estimate of
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upper-bounds to the binding energy of N particle bound-states with the
help of the Weinberg equation.

Appendix 1

Theorem A.I. Let H be a self -adjoint operator on the Hilbert space ffi
ana V some linear operator whose domain contains &(<Zf). Then V is
H-compact on 3F if and only if for some z in the resolvent set of H the
operator V(H — z)~l is compact; one of these two equivalent conditions
implies that V is H-ε bounded.

Proof. The necessity of the compactness of V (H — z}~1 is obvious
since (H — z)"1 is a bounded operator from ffl on &(H).

Suppose now that V(H — z)~l is compact on 2% \ Then if / ζ@(H)
we have Vf = V(H - z)~lh, with h = (H - z)f. If (fn) is a bounded
sequence in @(H), the corresponding (hn) is bounded sequence in Jj?.
Hence Vfn has a limit point in 34?, which proves Jΐ- compactness of F.

Let E ( A ) be a projection operator in the spectral family of H. For
any bounded Borel set A in the spectrum of H, VE(A) is a compact
operator on ffl . Let An be a sequence of such bounded sets having the
property that E(An) tends strongly to the identity operator. By a well
known property of compact operators V(H — z}~1 [1 — E(An)] converges
in the norm to zero. For / £ £$(H) one has

SΞ \\VE(Δn)t\\ + \V(H - 2)-ι [I - E(An)] (H - z)

For a given ε > 0 a suitable choise of an nQ gives for n > n0

\\Vf\\ ^bn\\f\\ + ε\\(H-z)f\\

which proves //-ε-boundedness of F.
Theorem A.2. Let F<c> be H-e-bounded on ^c> and C

Then V^ acts on ̂ c^ as an H^^-ε-bounded operator.
Proof. Let C = Ci-C. Then from (7) and (8) we have

9 and

We suppose that these self -adjoint operators are acting on ffl^^ and
since they are positive we have for all / in the domain of

So that it is sufficient to prove the #<0

c}-ε-bounded of V{c} on Jtf ^2>. Let

(ψm) be some orthonormal basis of tf&'ά Θ ^C'C/^. Then each / in «^ίσ«>
can be decomposed into the form / = Σ Ψ™ ® f^ w^ f^} 6 ̂ G\ and

we have for all / in
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so that each f^ is in the domain of H^ in 3^^ hence in the domain
of V^. Now #^-ε-boundedness can be written in an equivalent form

1 V^i^f <* ε'lWCT + δ'(ε') ||/£>p

with e' as small as we want. Hence || F^/||2 is defined for any /
in JtifW*} and summation over m ives the desired result.

Appendix 2 (by Hunziker)

Theorem A.II. Let A (z) be a family of bounded operators on an Hilbert
space, analytic in some open connected region & of the complex plane. If
there exists an open subset Θ of 2$ such that A (z) is a compact operator for
all z in Θί then A (z) is an analytic family of compact operators in 2.

Proof. Any point z0 in 2 can be reached through a chain of open
spheres 8{ contained in &, with centers zi ^Sί_1 such that z1 ζ 0 and
z0 ζ 8n. Inside each sphere ̂  , A (z) is obtained as a norm limit of finite

K (Z - Z i ) k

sums Σ - 7ΓΓ — ^^(Zi), where AW(z^ is the generalised derivative

where Ci encloses some bounded neibhourhood of zi contained in 2. This
results easily from usual estimates for the Taylor expansion of analytic
functions and Schwartz inequality. Now if the A ( z ) , z £ Si_l, are
compact operators, these generalised derivatives also are, as can be seen
by choosing Ci contained in ^_x and using summability of ||-4(^)|| on
Ci} which results from analyticity of A(z). Choosing C1 contained in
the open set Φ, we derive step b}̂  step the compactness of A (z0).
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