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Abstract. We prove cluster properties of the correlation functions at high
temperature and arbitrary activity. We obtain also results on clustering at complex
temperatures and activities.

§ 1. Introduction

In a recent paper [1] it was shown that the correlation functions of

a lattice gas with negative two -body interactions have some cluster pro-

perty not only at low activity, as known before [2—4] but also for all

values of the activity z inside the Lee-Yang circle defined by

A= Σ ψ(y) (!)
'

Similar results [1] have been obtained for purely repulsive potentials but

with, the Lee-Yang circle replaced by the circle of convergence of the

Mayer series.

Fig. 1

* On leave of absence from Aix-Marseille University.
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In Ref. f l] analyticity properties in β and z of the pressure and the
correlation functions are proved for z in any compact not intersecting
the Lee-Yang circumference \z = expβA, in the attractive case, or for
z in the interior of the circle of convergence of the Mayer series, in the
repulsive case.

In this paper we deduce results, complementary to the above cited
ones, concerning clustering and analyticity at high temperature for
lattice gases with very general interactions (not necessarily attractive or
repulsive and possibly involving many-body interactions).

We show that there exists β0 > 0 such that the Ursell functions
u(X) are analytic in z and β for z in an open region G of the complex
plane including an open strip around the real positive axis (see Fig. 1 :
C has the form of the complementary of the dashed set) and β in a
neighborhood Ic of the set |Re/3| < βQ, Imβ = 0.

Furthermore if X is a configuration X = {#15 xz, . . .,i%(z)} and
X = Σ! \j X2 is any decomposition of X into two configurations at
a distance d(Xl9 Xz), then there exist θ > 0, α > 0 such that:

exp - α » . ,(z,β)ζCχIc, (2)

where λ ^ -f σo is the range of the interaction. If λ — -f <χ> the following
weaker result still holds for (z, β) ζ C X Ic :

lim w(Z 1uZ 2) = 0. (3)
d(Xι,XJ-+<χ>

N(XJ + N(X2) fixed

The techniques used to obtain (2) and (3) are similar to the ones used
in Ref. [1] except that we obtain bounds on u(X) and analyticity regions
by using integral equations instead of the Lee-Yang theorem on attrac-
tive potentials or the Groeneveld alternating sign property for positive
potentials.

We remark that (2) implies that

Σ |«(Z)|< + oo. (4)
0€X

N(X) fixed

§ 2. The Interaction Potentials

Suppose the particles are on a ^-dimensional lattice Zv and interact
through symmetric translationally invariant many particle potentials
Φ<fc) (#!... xk) and consider these as a function Φ on the finite configura-
tions X defined by

φ(Σ) = Φ( f fW>K ^U)) if X = K^2, ,aW

We consider only interactions involving a finite number of particles such
that Φ (2> (x, x) = -f- oo and we call Jt the set of the sites occupied by
particles in X (so if X Φ -X" the configuration X has zero probability).
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Furthermore we suppose finiteness of the energy of the origin, i.e.

| |Φ||= Σ \Φ(Σ)\ < + <*>. (5)
OζX

x = x
We denote by 23 the class of potentials described above. Since we shall
be interested in the analyticity properties in the activity z = exp — β Φ ί1)
it is useful to write Φ = (Φ^1), Φ') where Φ' is obtained from Φ by setting
the one particle potential Φ^1) (which may be interpreted as minus the
chemical potential) equal to zero.

It is also useful to introduce the potential £?Φ £23 defined, for

(X) = (- !)*<*> Σ Φ(S) , Φ £93 (6)

(this potential is related to the symmetry properties of the lattice gas
under the exchange of particles and holes [5]) and the quantities:

A = Σ Φ($) (energy of the origin) , (7)

'« - 1) - 1)] , ( J

α = θxp j80 | |Φ'| |, α '^θxpjSolK-SPΦ)!. (9)

§ 3. Review of Useful Results

The following properties are proven in Refs. [2— 6] :
i) Consider the two circles centered on the real axis respectively at

~τ~τ37ΐy and z = — α' expβ0A [where α, γ, γ', A are defined in (7),

(8), (9)] and with respective radii: / 2 \ _ \ \ an(^- j' α/ expj80^4.. Suppose

j50 is so small that the maximum real z on the left circumference is, as
in Fig. 1, inside the right circle.

If C is any closed set in the complementary C of the dashed region
drawn in Fig. 1 it is possible to choose β0 small enough that there exists
a neighborhood Ic of the set |Re/?| < βQ9 Imβ = 0 such that the correla-
tion functions ρβφ(X) are analytic functions in (β,z) £/c X C. In this
case there also exist [5, 6] a constant Θ0 > 1 such that

\ρβ9(X)\ <Z Θ8<*> (β,z)£IcxC. (10)

Remark. What is really proved in Refs. [5, 6] is that if β is in a
suitable neighborhood of the set |Re/?| < β0, Imβ > 0, with β0 sufficiently
small, and z is both in C and inside the right circle we ha1ve\ρβφ(X)\ ^ θ'0 .
However under the same conditions but with z outside the left circle we
have, using the symmetry between holes and particles, that Qβφ(X)
^ Σ (~l)N(S} Qβ^φ(X) (for X - 1) and \ρβ<?Φ(X)\ ^ ΘQ. Inequality

sex
(10) is a consequence of these two facts.
19*
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ϋ) The Ursell functions are given, for sufficiently small \z\, by the
convergent [2—4] series:

tt(Z) = Z»(*> ΣznCn(X), (11)
n^O

where the coefficients cn (X) are of the form

<>„(*)= Σ

and the functions U (8) are defined by (apart from combinatorial

factors): π^ = ̂  fl(e-β*(T) _ i) , (13)
r T^r

where Σ me&ns sum over all the "connected diagrams" contained in S.
r

The coefficients cn(X) have the following properties [1—4]

Urn cre(Z1wJί2) = 0, (14)

cn(Z1wZ2) = 0 if >^(X1) + ^(X2) + ̂ , (15)

where λ denotes the range of the interactions; (14) can be proved in the
same manner used for two-body interactions in Ref. [1], Eq. (15) is
obvious.

§ 4. The Cluster Properties

The Ursell functions are defined in terms of correlation functions:

- r -
< = 1

X>Xi Φ0

where the second sum runs over the ordered families of k configurations
such that UiXi = X. Then using (16) we find

\u(Σ)\ £ (2NW θQ)N<n N(X) Φ 0 (β,z)ξI0xC. (17)

Let us now choose the analyticity region C to be the closure of a simply
connected open set containing the origin1. Then by Bieman's theorem [7]
there exists a conf ormal one-to-one mapping z->t(z) which maps the
interior of C onto the interior of the unit circle of the complex t -plane
and leaves the origin invariant. Thus the Ursell functions have a power-
series expansion in t, convergent for |ί| < 1 :

where, for t sufficiently small and z= Σ cκ ^ >
k = l

γ,(X) = Σ <s*(Σ) Σ °kl βt, Ci,(Z)t. . (19)

1 At this point we could apply a very general theorem by ZEKNΈR [8] to obtain
the promised result (we owe this remark to RTJELLE).
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Hence, from (14) and (15) it follows that

y r(Z1wZ a) = 0 if d ( X X * } >N(X1) + N(X2) + r (20)

and, if λ — -j- oo:

lim γr(X1\jX2)=^0. (21)

tfCΓO+'tf car,) fixed

Now using the Cauchy formula (integrating over a circle of radius as
near as we want to 1) one finds from (18) and (17) that

(22)

Hence the series (18) converges uniformly in X and t provided N(X) is
fixed and t is inside any compact contained in the interior of C. Thus
from (21) we can deduce property (3) for (β, z) ζlc x C and from (20)
we deduce [for ( β , z ) ζ Ic X C]:

| ί (z) |<l . (23)

§ 5. Possible Improvements

The results at hand are incomplete in two respects. First in the case
of infinite range interactions one has only the quite weak cluster pro-
perty (3) whereas one expects that a cluster property of the form (4)
holds.

Secondly one has little information, even in the case of finite range
interactions about the dependence of the cluster property on N(X). It
is known [2—4] that at sufficiently low \z one has a cluster property,
both for finite or infinite range forces of the form

+ co. (24)

N(Σ) arbitrary

It seems that, at least for what concerns the second problem, one
has to use some different techniques like, for instance, integral equation
methods of Refs. [2, 4, 5].
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