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Abstract. Einstein's field equations are studied under the assumptions that (1)
the source of the gravitational field is a perfect fluid, and (2) there exists a group
of motions simply transitive on three-surfaces orthogonal to the fluid flow vector.
There are two classes of solutions these are studied in detail. Three special families
of solutions examined include all analytic solutions of the field equations obeying
(1) and (2) of which the authors are aware. The relation of these solutions to various
vacuum solutions is indicated.

1. Introduction

We shall consider solutions of Einstein's field equations

^α&-γ%α6 + Λ</ α b - Tab (1.1)

in which the matter tensor takes the form of a perfect fluid

Tab = μUaUb + P(9ab + uaub) > UaU
a = — I (1.2)

where ua is the normalised four-velocity, μ the density and p the pressure
of the fluid. We shall normally assume μ -f p > 0. The Eqs. (1.1) and
(1.2) are integrable provided we are given an equation of state. This we
will usually assume to have the form p = p ( μ ) . (Because of the homo-
geneity, this will be no restriction on our models unless μ takes the same
value twice.)

Exact analytic solutions of these equations have, of necessity, high
symmetry. The conservation equation ua T°fy = 0 takes the form

μ: = μ9au
a=-(μ + p)θ (1.3)

where θ : = u^a is the expansion of the fluid (see Refs. [1,3] for standard
notation and results). Thus homogeneity of space-time, which implies
a constant density μ, also implies that θ = 0 and so we would not see
an almost isotropic redshift. Hence such spacetimes are not reasonable
cosmological models. The two simplest classes of spacetime that will give
reasonable cosmological models are the well-known Friedmann universes,
which are isotropic and are homogeneous on spacelike sections, and those
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spaces admitting a group of motions1 6r4 multiply transitive on surfaces
of homogeneity $3. These spaces2 are included in the spacetimes classified
and examined in two previous papers [1, 2].

We shall examine here the next simplest class of spacetimes suitable
for use as cosmological models; that is, we assume that (1.1) and (1.2)
hold, θ > 0 and that
there exists a group G3 of motions simply transitive on three-surfaces
orthogonal to the fluid flow vector ua. (1.4)

In these spacetimes matter expands and the universe is homogeneous
in the rest-space of any fundamental observer. These are a subclass of the
Bianchi spacetimes which were systematically investigated by TAUB [5]
in the case p = μ = 0 and by SCHUOKING [6] in the case p = 0 4= μ The
specialisation is that the fluid flow vector is orthogonal to the surfaces
of transitivity of the group 6r3; it is for this reason that the rest-spaces
of the fundamental observers coincide with the surfaces of homogeneity
(which is not the case, for example, in GODEL'S spacetimes [7]).

Since ua is hypersurface orthogonal, the vorticity tensor ωαδ is zero,
and the acceleration vector ύa vanishes because the acceleration of the
vector field normal to a family of spacelike hypersurfaces of transitivity
of a group of motions is always zero [4] that is.

(1.5 a) also follows from the conservation equations (gab + uaub) T*° = 0,
which are

+ ύ= - (b + uub

since p must be constant on the surfaces of transitivity of the group.
The Eqs. (1.5) imply that we may choose a time coordinate t so that

{t — constant} are the surfaces of transitivity of the group and tt au
a = 1

(i.e. ua = — t j a ) [3]. Since

Ua b = θab where θab = 0(ab) θabu* = 0 (1.6)

the expansion tensor θab completely determines the first derivative of
ua and the first order redshift in the model. θab may be split into the
expansion θ = θ% and the symmetric trace-free tensor σα δ = θab

~~ ΊΓ θ(gab + uaub)> which is orthogonal to ua. The Friedmann Λvorld

models occur when crα6 = 0, or equivalently when a2 : = -^-σabσ
al)

vanishes.
1 For terminology and results in the theory of groups of motions see (e.g.)

Ref. [4].
2 We shall call these spacetimes L.R.S. (locally rotationally symmetric).
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The group of motions 03 can be classified into one of the nine distinct

types described by BIANCHI [5, 8]. Since the group of motions is a Lie

group and hence analytic, this Bianchi type is constant throughout

connected non-singular regions of spacetime where the group acts

regularly3. Although the Bianchi type is a useful description of the

symmetry of spacetime, it does not describe the relation of the group to

the metric tensor. In this paper we shall take into account both the

group type and its relation to the metric tensor, using the group classifi-

cation techniques developed by SCHUCKΓNG, KUNDT and BEHR, and the

tetrad methods of Refs. [1] and [2]. Thus we use an orthonormal tetrad

(used previously to study Bianchi world models in Refs. [9—11]) rather

than one in which the scalar products of the tetrad vectors vary from

surface to surface (used previously to study Bianchi world models in

Refs. [5, 6, 12-15]).

Notation is very similar to that in [1]: a, b, c, . . . run from 0 to 3;
α, β, . . . from 1 to 3; ηabcd = η[at>cd] js a skew pseudo-tensor with

tetrad components ^°123 = 1 ε*Pγ = gWr] is a skew pseudo-tensor with

tetrad components ε123 = 1. For arbitrary vectors X = X*-^ ,

Y = Yί-Q-Ϊ the commutator [X, Y] is the vector defined by

[X, Y ] f : = X ( Y f ) - Y(Xf) for all functions / .

With this definition, arbitrary vectors satisfy the Jacobi identity

[X, [Y, Z]] + [T, [Z, X]] + (Z, [X, F]] = 0 . (1.7)

Section 2 sets up the tetrad system, classifies the groups and gives

the Jacobi equations, and Section 3 gives the field equations. Sections 4

and 5 proceed with integration. Sections 6, 7 and 8 examine special cases

of the group or metric structure. The results in Sections 4 to 8 are, as

far as we are aware, new, unless otherwise indicated.

In the following sections we consider only local results. Since any

world-model with homogeneous space sections becomes singular if the

"energy condition" μ + 3p > 0 is satisfied [16], the local methods of

integration used will break down if we consider sufficiently long times4.

2. The Tetrad System

We introduce as a vector basis an orthonormal tetrad {eα}, with the

timelike vector e0 chosen as

4 = «* (2.1)
3 There is no difficulty in extending a solution satisfying (1.4) locally to a global

solution.
4 In our models this follows directly from RAYCHATJDHURI'S work [3, 17].
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Then at each point the vectors {eγ} form a triad of orthonormal
spacelike vectors spanning the tangent plane to the surfaces of transi-
tivity of the group; so the coordinate x° = t satisfies t ^e? = 0. The other
coordinates are chosen to be co-moving: xγ

 t3 u
j — 0. We use ' to denote

covariant differentiation in the direction of the vector u.
As the {ea} are orthonormal, the metric tensor has the tetrad

components
ga* ' - eiebi = diag(- 1, + 1, + 1, + 1) . (2.2)

If / is any function, the derivative of / in the direction ea is daf : = /,*ej.
These derivatives do not commute in general and we define the functions

7ab by

[eα, eb] f : = (dad, - dbda) f - : γ * a b d c f , γc

ab = γ\ab} . (2.3)

The rotation coefficients Γcab are defined by

80 Qij k = ° implies Γcab + Γ6αc = 0.
Lowering and raising tetrad indices by gad and its inverse gad (note

%
that <7α(^ = gad], it follows that

7ab = -fSfr - -FL ~ A b e = y ( y « & c + 7 c α & ~ 7&cα) - (2-5)

From (2.1), (2.5) and (1.5)

The Fermi -derivatives eμ - ev := el

μevi}jU
j may be replaced, since

eμ - ev = - ev - eμ, by the vector [18]

Ωa:^^-ηabcd ubec ed

which implies Ωaua = 0. ί3α is the local angular velocity, in the rest-
frame of an observer with four-velocity ιιa

: of a set of Fermi-propagated
axes with respect to the triad {ev}. Using (1.6) we have

Vξ, = - θμr + Vτ β1

To describe the functions γ%ΰ we follow SCHUCKING-, KUNDT and
BEHE, [19] in separating εvaτ γ^σ into a symmetric part nμτ and an anti-
symmetric part represented by the 'Vector" aP. These are defined by

wκτ . __ __ ..(κpτ)va. __ α
71 ' — 2 Vvo > aβ- 2 Vβa

the inverse of these relations being

y*μv = βμvr n"τ -r δ?aμ - δ*av .

The quantities θaβ, n^ aβί Ωβ, which completely determine the rota-
tion coefficients Γal3C (and γξc), behave as symmetric three-tensors and
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three-vectors under orthogonal transformations of the triad which are
constant in each surface of transitivity.

The triad must lie in the three-surf ace of transitivity of the group
of motions at each point, and we may further restrict it by

\e,, !„] = 0 (2.6)

where rξμ denotes a basis of the Killing vectors generating the simply-
transitive 6r3. A proof of this is to consider taking an orthonormal triad
at one point p in a surface {t = constant} and then dragging it along
successively by ξl to define it on a line, by £2 °̂ define it on a two-
surface, and finally by £3 to cover the hyperplane. Dragging along by
a Killing vector preserves scalar products and hence the triad thus
defined is orthonormal everywhere in the surface. The Jacobi identities
now show5 that (2.6) holds and incidentally prove that the construction
is independent of the choice of Killing vector basis. When the full group
of motions is simply-transitive, an alternative proof of (2.6) can be given.
Any invariant vector uniquely defined by the curvature tensor (or its
covariant derivatives) commutes with the Killing vectors. As the group
of motions is simply transitive (rather than multiply-transitive) we can
find a covariantly and uniquely defined triad, so (2.6) holds for this
triad. Further, since u is uniquely defined in all cases, [ξv, u] = 0, and
hence

[§,, eβ] = 0 . (2.7)

These equations are entirely equivalent to Killing's equations ξv^aι^ = 0
for the vectors ξv.

We define C*μv by

[?/«> ?J — @κμv%κ\C'9μv — Q[μv\ '

Using (2.7) and applying the Jacobi identities to (ett, ξvί

 fξμ) we verify
that the structure constants of the group, C*μv, are constant throughout
spacetime [10] (cf. comment in Section 1). (2.7) and the Jacobi identities
for (|f/t, e0, eb) show that γ%c are constant in the surfaces of transitivity,
i.e.

γa

hc=γ"c(t) (2.8 a)
The vectors {ev} thus generate a simply-transitive group of trans-

formations in each surface {£ = constant}. This is the group reciprocal to
the group of motions. Conversely, the existence of the group of trans-
formations generated by {ev} with the condition (2.8a) implies the exist-
ence of three independent ξμ satisfying (2.6). The uniqueness theorem
for solutions of differential equations then shows that (2.7) is satisfied,

5 This is essentially what is done in EISENHAKT'S book (Bef. [3], p. 113); note
that (2.8) is the statement that each isometry induces an automorphism of the
Lie algebra.
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provided that

_ r 8 v = y£, = o . _ (2.βb)
Lemma 2.1. (1.4) holds if and only if there exists an orthonormal tetrad

{ea} with e0 — u such that (2.8) holds. The {ep} span the surfaces of transi-
tivity of the group.

(2.8) shows that

9y 0.0 = 0, 9,βμ = 0 , (2.9a)

dγnΛβ = 0, dvaμ = 0. (2.9b)

The Jacobi identities for (ea, eb, ec) are, using (2.3),

0 = daγ
d

hc + dcγib + dbγ*a + γ*t γ[c + γ*t y/ f t + γξ, γ<ca , (2.10 a)

which imply also the contracted identities

0 = daγ
a

bc + dc7a

ab ~ dbγ-c + γ^bc . (2.10b)

Applying these relations to (e0, eμ, ev) shows that

d0ax + σκβ a^ + ~ θa« + sκβγ a? Ω? = 0 (2.11)

and

dQnΛβ+2«r(Λεβ)γn Ω» - 2ny(oiatf + ̂ nxβθ = 0 (2.12)

give the time derivatives of αα, nΛβ. Applying the identities to the vectors
(eμ, eσ) ev) we see that for these vectors (2. 10 a) <=> (2.10b) as each set

( κ \
1 of Ref.

[1]. By (2.9b), these are
nΛβaf = 0 . (2.13)

As we are still permitted ari arbitrary time -dependent rotation of the
triad, we may make a canonical choice by taking the vectors {e,J as
eigenvectors of the symmetric "three-tensor" naβ. This assures ortho-
gonality unless two eigenvalues are equal, in which case the vectors may
be chosen to be orthogonal. As (2.13) shows aβ to be an eigenvector, we
may take

nΛβ ± diag K, wa, n9) , a? 5= (a, 0, 0) (2.14)

without loss of generality, and then (2.13) reads

aui = 0 (2.15)

and the commutators of the basis vectors {ev} are

[e1; e2] = ae2 + %3e '

[ea, e8] = n& ,

[e3, e,] = ̂ 2e2

(2.16)
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The three directions thus chosen are unique unless some of the
eigenvalues of nκβ are equal, in which case there is a corresponding
freedom of rotation, providing (2.8) is preserved. Finally we have the
freedom to reverse the direction of, and to renumber, the vectors. Using
this freedom we may make a positive if it is not zero, and simultaneously
change the sign of all the nγ. Thus we may bring the coefficients γjl

σ

to one of the canonical forms in Table 1.

Table 1. Classification of groups G3 following BEHR [10]. The group is of the type
listed on the left, if it is possible to choose a basis such that the γ" satisfy (2.8) and
have the form on the right. The Jacobi identities (2.13) are identically satisfied by

all these group types

Group class Group type a n^ n.2 %

A I
11
VII0

VI0

IX
VIII

B V
IV
VII,
VIΛ

0
0
0
0
0
0

+
4-
4-

+

0
4-
4-
4~
4-
4-

0
0
0
0

0
0
4-
—
_L

4-

0
0
4-
4-

0
0
0
0
4-
__

0
4-
4-
—

Bianchi type

I
II
VII
VI
IX
VIII

V
IV
VII
VI (III if Λ = - 1)

Denning functions ψ£ by ev = ψ£ ξμ, (2.6) and (2.8) imply [4]

ψl ψμ <??α = γκμv ψθκ -

If we choose the Killing vector basis so that at one chosen point

ψv

μ = ̂  (2.17)

then at that point C^χ = γ^χ and hence the group of motions and its
reciprocal group in each surface of transitivity are equivalent. At the
point where (2.17) holds the Killing vector commutators have the form
(2.16), but we may scale the basis arbitrarily and so we can make all
non-zero structure constants either -f 1 or — 1, unless an2n3 Φ 0, in which
case we may set n2, n3 to i 1, a then being determined by the in-
variance of

h:= a*ln2n3 . (2.18)

Thus there are 10 different types of group 6r3 at a point, and since
the C"μv are constant there are 10 different types of group acting on
space time. (Note that h is time-invariant and that the values of h in
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types VΠΛ and VIΛ actually label one-parameter families of groups.)
The preservation in time of group type may also be seen from (2.11) and
(2.12). Table 1 gives the classification of BEHR, and relates it to that of
BIANCHI (see Ref. [10]).

We shall refer to a group in which a = 0 (i.e. in which (7^α — 0), or
a spacetime invariant under such a group and satisfying (1.1), (1.2) and
(1.4) as of Class A, and a group in which a Φ 0 (i.e. in which C°βx =j= 0),
or a spacetime satisfying (1.1), (1.2) and (1.4), invariant under such
a group, as being of Class B.

Since n^β is symmetric there is a second canonical choice when
n : — n* = 0. From Table 1 this happens in types I and V, and can happen
in special cases of type VΪ0, VIΛ, and VIII. Then we may take an
orthonormal triad {ev} such that

ar = 0 . (2.19)

The directions of the axes are determined by this form, unless r = q in
which case there is a rotation preserving (2.19). The commutators of the
vectors {eγ} are

[e1? ea] = re1 -f (q + a) e2 ,

[e2> esl = re2 + res > (2.20)

[e3, ej = r e1 + (q - α) e3 .

This gives rise to the canonical forms of Table 2.

Table 2. Classification of groups where nί = 0 (see Table 1). The Jacobi identities
(2.19) are identically satisfied by these group types (see also Section 6)

Group class

A

B

Group type

I

Vie
VIII

V
VI,

a

0
0
0

4-
+

r q

0 0
0 -f
4- 4-

0 0
0 -f

The non-trivial Jacobi Eqs. (2.11), (2.12) are written out in Appendix I
with the tetrad choice (2.14), and for the case n% = 0 in Appendix II
with the tetrad choice (2.19).
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3. The Field Equations

From the Ricci identity for an arbitrary vector ve,

rfcd-v*dc=-Rb

ecdv*, (3.1)

we can find the Riemann tensor components and so the expression

- RtΛ . = - B»bad = da rgb - dc r$b - r , rιb + r*eb r d

for the Ricci tensor. Using (2.5) and the tetrad specialisations of the
previous section, the field Eqs. (1.1), (1.2) are as follows.

θ + y O2 + 2σ2 + ~ μ + y p = A (3.2)

is the (0 0) equation, Raychaudhuri's equation [3, 17], which shows
that {μ + 3p > 0, A < 0} => {θm < 0 at all times}

3aκσ
κ

v~εvκτ?ιτ^σκ

μ = 0 (3.3)

is the (0 v) equation stating that ua is a Ricci eigenvector and, using
(3.2), we can write the trace-free part of the (β δ) equations as

do<*βδ = ~ θσβό + 2σκ

(βεδ}τκ Ωτ + 2ετσ(βnδ}

τaσ - 2nδμ n
μ -f nnβδ

1 (3.4)

and the trace as the first integral

μ + Λ (3.5)

which is a generalisation of the Friedmann equation.
From (3.4) there follows

ao(σ2) = - 2θσ* + 2af» ε^(βnd]κaτ - 2σd

β ng n? + nng a? . (3.6)

Using this, (1.3) and (2.11), (2.12), we can verify that (3.5) is a first
integral.

From the Gauss-Codacci equations we can find the Ricci tensor R*β

of the three -surf aces of homogeneity

-Λ*, = 90σβ0+0σα0-2σ^

aκ - 2nΰlδ n\ + nnκβ + δκβ 2a* + nκτ n«* -~n (3.7b)

the equivalence of the two expressions following from (3.4). Hence the
scalar curvature of the three- surf aces of homogeneity is

- R* = - E*α = 2 (j θ2 - σ 2 - μ - Λ} (3.8a)

= nκτn
κτ -~n^ + 6α2 (3.8b)



Homogeneous Cosmological Models 117

the first being a special case of an equation due to RAYCHAUDHTJRI [17]
which implies another relation of RAYCHAUDHURI'S :

dQ(R*-2σ*)= -y(9(JS*-6(72) . (3.9)

We can now define the Weyl tensor Cabcd (which is the part of the
curvature not determined by the local matter, and so represents the free
gravitational field [20]), by

τ>

(3-lOa)

Catcd^ CtaδΠcd] J C%ca= 0 = Oα[6cd] . (3.10b)

We may further split this into its "electric" and "magnetic" components

Eab:=-GΛ,t,u'u<; HΛl, .= -^ClVη9rl>tufu (3.11)

each of which has five independent components since (3.1Gb) implies

Ha, = H(at) Ea, = E(ab) ,E = 0 = H ; Ha^ = 0 = Hatu» . (3.12)

Substituting ua in (3.1) we derive the expressions

E«β - dQ(aΛβ) - 2σ*(αεV Ωτ + σκγ a* + ~ Oσ«β - -§- δxβ σ
2 , (3.13a)

H«β = KT n**) δκβ +~nσ«β - 3aμ(nfr - eδ\βσ^γ aδ . (3.13b)

The Eqs. (3.2, 3, 4, 5, 7b, 8b, and 13) are written out in full in
Appendix I with the tetrad choice (2.14), and those that are useful for
the case n% = 0, in Appendix II with the specialisation (2.19). One
consequence [14] is that the curvature R* cannot be zero if the group
is Class B or (in Class A) of type II, and can be positive only if the group
is of type IX.

We can define an "average distance" l(t) [3], corresponding to the
function R (t) in the Friedmann world models, by the equation

I'll = θ/3 . (3.14)

I is thus determined up to a factor by the volume behaviour of the space.
Then the quantities

and q0 :
0' + T')

Z2

where t = tQ is a given time in the world model, correspond to the Hubble
constant and the deceleration parameter at that time and are obtained
from measurements of the volume expansion alone (thus differing
slightly from the similar quantities defined by SAUNDEES [14]). Choosing
a tetrad in the principal directions of the shear tensor we may write
θμv\o = diag (#oU + ει)> H0(l + εa), H0(l + ε3)) where ε1 + ε2 + ε3 = 0;



118 G. F. K ELLIS and M. A. H. MAOUALLUM:

thus H0(l -f- εv) is the Hubble constant in the principal shear direction
ev) and can be obtained from the redshift in that direction. It then follows
that the relative root-mean-square deviation from isotropy, defined by

1 2
ε2 := -τrΣ(ε%) is related to the shear by-^-σ2 = ε2(.£f0)

2. Raychaudhuri's

Eqs. (3.2), (3.8a) now give the relations

1 3
/I = ~~- ίl ~\ n~ P 3*ΪQC[Q -\- €> 8 ίl Q

and z ° z °

•^*lo ̂  3(/w|0 + P\Q ~~ %HQ(1 + ^o) + 3ε2^)

which generalise the usual relations in isotropic world models [21]. HQ, qQ

and ε2 having been observationally determined, these are relations

between Λ, -β*|θJ ^lo an(^ P\Q- K -4 = P\Q = 0, as seems plausible, we find

and

4. Class A Solutions

We consider solutions of the field equations in which

cf = 0 (4.1)

so that the Jacobi Eqs. (2.13) are satisfied. These are of Class A (see
Section 2). If we make the tetrad choice (2.14), it follows from the (0 v)
equations, (3.3), that the tetrad vectors are shear eigenvectors, or, if for
instance n2 = n%, may be chosen as such without violating (2.14). Then
the (α β) equations, (α =J= /?), together with the Jacobi identities (2.12),
show that these shear eigenvectors are Fermi-propagated, or, if for
instance Θ2 = Θ3, may be chosen as such without violating (2.14). Thus
we have

Ωa = 0 θμv = diag (Θ19 Θ2, Θ8) . (4.2)

From the Eqs. (3.7) it follows that the triad thus chosen is a triad of
Ricci eigenvectors of the three-surf aces orthogonal to ua.

Lemma 4.1. In a spacetime of Class A there exists an orthonormal
tetrad {ea} with u — e0 and such that the vectors {ββ} are Fermi-propagated
shear eigenvectors of the flow congruence and Ricci eigenvectors of the sur-
faces of homogeneity. The Weyl tensor is type I (or its specialisations
D or 0).

With this tetrad the remaining Jacobi identities are the three time-
derivative equations for the nγ9 and the remaining field equations are the
(1 1), (2 2) and (3 3) equations together with the first integral (3.5).

Having chosen the tetrad as above we can choose comoving co-
ordinates xa, with vT° = t, such that the coordinate-tetrad relations

eα = 4-= (4.3)
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have the form

dx°

[(I

e =

Z := 1 -

>4
«]-

(4.4)

where Nv N2, Ns are constants and

N2GA
B

Km

(4.5)

(4.6)

The coordinates are regular if lim (S) = 0 and lim (g) = 0 and
α;1-^ α;3-^0

singular if for example lim (S) = 1 or lim (gr) = 1. We can easily
a;1-*^ «3->0

check that all the γ%c are zero, except the nx given above and

θι=-^r(log j)' θ,= --^(logB), θ,= -1|Γ(logί7). (4.7)

Thus we have satisfied (2.14), (4.1) and (4.2), and nγ may be chosen
arbitrarily in an initial surface {t = constant}. The Jacobi Eqs. (2.12)
are, by (4.6) and (4.7), satisfied with arbitrary choice of θγ(t). Thus any
spacetime of Class A may be described by coordinates related to the
tetrad of Lemma 4.1 by (4.4) and (4.6).

Theorem 4.2. In a spacetime of Class A, there exist coordinates xa such
that the metric tensor takes the form

flru = X2(*°

gιz = g(x»)

(χθ) (1 -

(4.8)

where S(xl), g(x3) are determined from the constants Nv N2, N3 by (4.6).
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These are in fact the coordinates used in the relations (4.4), where to
find the metric we have inverted these relations and used (2.2), writing
X = I/A, Y = I/B, Z = 1/0. The remaining field equations and con-
servation equations yield

Λ + -o- (μ ~ P)

XY , XZ
X XY

ΫX
YX

_1 + M
Z ^ ZX

Y

xz

iA
YZ

ZΫ
~zY

and the first integral is

μ • + YZ ' ZX

I ίίN3Z\2

τ((τr

J^
" ~2"

_!_

" 2

1

T

+ τ

JV^Z
2 I X F

1 /IY^Y jy,r\ 2

2 \YZ XZ }

^JL 4. ^1^8 _ι_ ^J^l\
V2 ' V2 ' V2 /

(4.9)

The Eqs. (4.9) have known analytic solutions only for the vacuum case
[5, 22] and for groups of type I (na = 0). This latter case has been inves-
tigated in the case of dust by HECKMANN and SCHUCKING [6], RAY-
CHAUDHURI [23], ROBINSON [24], and SATJNDERS [14] (who included the
A -term); for perfect fluids by THOKNΈ [25], DOBOSHKEVICH [26], STE-
WABT [2], and JACOBS [27] and for vacuum spaces by TAUB [5], KASNER
[28], DATJTCOURT et al. [29], and others. The type IX case has been
investigated by BEHR [12] and SHEPLEY [13].

The simplest cases in Class A which have not been analytically
integrated are those with local rotational symmetry [1, 2] (see Section 7).
Unless these can be integrated analytically, it is unlikely that any more
complex or general cases can be so integrated. The difficulty arises from
the characteristic cross-terms in X, Y and Z which occur when any of
the Nβ (i.e. Πβ) are non-zero. A further possibly-integrable case arises
when these cross-terms can be made to vanish by use of the specialisa-
tion (2.19), i.e. when n — 0. This and certain other special cases are
discussed in subsequent sections.

5. Class B Solutions

We now consider solutions in which the group is of Class B, i.e. using
the tetrad choice (2.14)

α Φ θ . (5.1)
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The Jacobi identities (2.13) are satisfied if and only if

% = 0 . (5.2)

The Jacobi identities (2.11) now imply

Ω* = σ12) Ω*=-σ13. (5.3)

As well as the first integral (3.5) we have three non-trivial constraint
Eqs. (3.3), and these are all conserved under the time-propagation.

The consistency conditions are somewhat more involved than in
Class A. First, we note from (3.3) that either

a& is a shear eigenvector <=> σx 2 = σΊ 3 = 0 (5.4a)
or

a? is not a shear eigenvector <=> σ12σ13 =j= 0 =φ n2nB -j- 9α2 — 0 . (5.4b)

Using definition (2.18) we see that
Theorem 5.1. The only Class E spacetime in which aβ is not necessarily

a shear eigenvector is that with a group of type VIΛ with h = — 1/9.
If n2 — ns on an open set, then dQ(nz — n3) = 0 shows, using (2.12),

that either n2 = n3 = 0, or n2 + n3 Φ 0 and Θ2 = Θ3. (2.12) further yields
cr23 = 0, and dQ(σ23) = 0 =Φ σ 12σ13 = 0. Using this with (5.4) and the (0 1)
equation, which is

Θι = γ(θ a +θ 3 ), (5 5)

we find we have a Robertson-Walker model, which we prove in Section 7
to admit a group of type V.

Lemma 5.2. A spacetime of Class B has n2 = n3 on an open neigh-
bourhood if and only if there is a group of type V.

We call these spacetimes of Case Ba. We may choose the tetrad to
satisfy (2.16) and so that the vectors {ββ} are Ricci eigenvectors of the
three-surfaces orthogonal to Uβ and Fermi-propagated eigenvectors. This
is because when n2 — % = 0 we have the freedom of a rotation φ (xϋ) in
the e2/e3 plane which we use to make Ω1 = 0 everywhere and σ23 = 0
initially; then the time derivative equations show that σ23 == 0 every-
where. Then (5.5) holds. So we have

Case Ba: %2 = % on an open set <=> there is a group of type V <=> we
can satisfy (2.14), (5.1) with Uβ = Ωβ = 0 = ffa/8(a 4= β) and (5.5) holds.

If n2 Φ nz on any open set, we can solve (2.12) for Ωl in terms of
cr23, and we also have (0 1), as:

Ω! = (n2 + n3) σ23/(?ι3 - nz) , (5.6)

θi = y ̂  + ΘB) - (*>* ~ %) <W2α - (5-7)

If σ23 = 0 on an open neighbourhood, (5.5) holds, and if n% φ ?ι3,

(2.12) =» Ω1 = 0 and 90(
σ23) = ^ gives a first integral
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which shows that σ12σ 13 =j= 0 and hence h = — 1/9. [The time derivative

of this equation shows, using (3.3), that Θ2(3(σ13)
2 + ((Ti2)2) + 93((tf13)

2

+ 3(crI2)
2) = 0 which is a new constraint showing that matter does not

recede in one of the principal directions. So if σ23 = 0 and matter expands
in all directions, the group is type V.]

We thus have two cases when n2 ={= nz and (5.1) holds.
Case Bbi : OΊ 2 = σΊ 3 = 0 σ23 =t= 0. (This can be written in a new tetrad

such that n23 Φ 0 and σ23 = 0, but this makes little difference.)

Case Bbii: (T12cr13 φ 0; h = — 1/9 - ~ - ~

Lemma 5.3. T&e <wfa/ Glass B spacetimes in which the eigenvectors of
nyβ are shear eigenvectors are those of case Ba.

As in Class A, we do not expect in general to find analytic solutions
with n2 or ns non-zero. Hence we are likely to obtain such solutions only
in Case Ba. In this case we find a first integral applicable to any perfect
fluid and previously given for dust by HECKMANN and SCHUCKING [6]
and ROBINSON [24]. This equation may be integrated in certain cases
(see Section 7) in particular when Λ = μ = 0 [31].

One may also obtain solutions when the space is an L.R.S. space
Λvith a group of Bianchi type III. When 715 = 0, the terms in the
Hβ may again be rendered in a simpler form by use of the tetrad choice
(2.19). These special cases are discussed in subsequent sections.

6. The Case nβ

β = 0

In the last two sections the field equations have been reduced to
a form in which they are in general consistent. This may no longer be
true when the value of some quantity [e.g. (Θ2 — Θ3)] is constrained to
be zero at all times. The constraint gives rise to further constraint equa-
tions through the time propagation [e.g. 50(Θ2 — Θ3) = 0]: these further
constraints must themselves be conserved in time giving rise to yet
more constraints. Either these sets of constraints will lead to incon-
sistencies, or there will come a stage where the new constraints found
are merely identities by virtue of the previous equations and we will have
a consistent solution. In this and the following sections we will examine
some such special cases.

In this section we consider n = 0. We may choose a tetrad satisfying
(2.19) with q ̂  0, r ̂  0.

In Class A solutions, a = 0 and the (0 v) equations show

ί(*18 - <*12) + '(08 - θa) = 0 , (6' la)

r(*i3 - ^12) + 2(Θ3 - θa) = 0 . (6 lb)

If q = r Φ 0, the Jacobi identities and (6.1) show that σμv = 0, which is
incompatible with the time development equations for the shear. If



Homogeneous Cosmological Models 123

0 4= q =4= r, then (6.1) shows σ12 = cr13J Θ2 = $3. Then the Jacobi identities
imply

which shows Ω1 = £?2 + Ω3 = 0 and with these restrictions the Jacobi
identities further yield Ω2 = — cr12 and 2rσ12 -{- ^0*23 == 0. Taking the time
derivative of this last equation and using (0 2) we find the further
constraint g(3r2 + (σ^)2 + ^(^ss)2) = 0 from the time conservation. This
proves that r — σ12 = 0*23 = 0, since q = 0, r φ 0 leads easily to an
inconsistency.

Theorem 6.1. nfy is not zero in any open set in a spacetime of Class A
invariant under a group of type VIII.

The above implies that in Class A we can always set

r = 0 = Ωβ=σ.p(<x*β). (β.2a)

In the case q =j= 0 we have the further condition

Θ2=θ,. (β.2b)

In Class B solutions r = 0 and the Jacobi identities imply σ12 = Ω3,
σ, 3 = — £?2. -̂  # =H 0, ί̂  = σ23 = 0. Since in the case q = 0 (Case Ba)
this last equation may be made true by choice of tetrad, we may assume
it true in all cases. In Case Ba and Case Bbi solutions, a& is a shear
eigenvector and so σ12 = or13 = 0, whence (6.2 a) is still true. In Case Bbϋ,
a& is not a shear eigenvector and the equations (0 2), (0 3) are

0 = cr12(g + 3α) - σ13(g - 3α) . (6.3a)

We may therefore choose the axes so that σl 2 φ 0, and we then have

•£3 = #12 φ 0 =Φ q = - 3α, Ωz = Ω± = σ13 = σ23 = 0 . (6.4a)

In all Class B, the (0 1) equation reads

0 - a(2θί - θa - Θ8) + q(θs - θa) (6.3b)

which reduces in Case Bbii to

e3 = y(0 2+^). (β.4b)

Combining the results for the two Classes, A and B, we find there are
two families of solutions in which nfy = 0, a general case characterised by
(6. 2 a) and a special case characterised by (6.4). In either case we may
choose coordinates related to the canonical tetrad (2.19) by;

e2 - 5 (a;0) exp((α0 + g0) α;1) -̂  ,

e3 - 0(α;0) exp((α0 - g0) α;1) ~̂ -

9 Gommun. math. Phys.,Vol. 12
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where θj = - A'IA,e2= - B'IB,Θ3 = - C'lC an.d(Af)' - - 2cr12J3;g0,a0

are constants, and g = qQA, a = a0A. The corresponding metric is

ds* = -dt*-ϊ- {X*(x*} + Y*(x») /2(^°)} (dx1)*

- {2 Y*(x«) f(x°) exp(-(α0 + ?0) a*)} ̂ i Λa?2

+ { Γ2 (s°) exp (- 2 K + ίo) a;* * * I >

+ {Z2(^°) exp(2(?0 - «0)

where we have defined X = IfA, Y= IjB, Z = 1/0. In Case Bbii we
can integrate the d0tf12 equation to give σ12=bB2C and f(xQ)

/

v
-y^-dx0 where & is a constant. 5 Φ O < ^ # = — 3a and

The remaining field equations and their first integral now read

vzr^=-(iog*:
_1_, _ X XΫ XZ 2(α| + go) 2δ2

+ % (μ — P) — X ~τ~ XY + XZ "X2 Y*Z2

7 V "Y" V y Ό /V/2 i /-, ,v \ O A 2J A J^ Z(α0-r^o^o) ^0- + τ_ + -
(6.7a)

7 ' ΓZ ' ΓZ Jί2 Y 4Z !

— A.4_^_ i AZ 2 ( f t p - f t p go)
~~ z + ~zx + zT~ J E * '

/ Q ^ / 2 i ^2\ Ύ"V T" V ^V O7ι2
„ i A \ (dα° + q°> — A r l Λ^ ! ^r j ^6 fa 7 u\
M ~Γ /I ~Γ ^ ΛΓ V ' V / 7 ~Γ /7V Γ VΛ /7o . IΌ. / ϋ)
' -Λ. ^\. 2 -Λ.Z/ Z/J: JL έJ

Theorem 6.2. For all spacetimes satisfying (1.1), (1.2) and (1.4) m
which n&β = 0, ίΛere exists an orthonormal tetrad satisfying (2.19) <xm£
coordinates xa related to this tetrad by (6.5). The metric is then given by (6.6)
and the field equations by (6.7), with the constraint (6.3b).

This form is generally simpler than the other tetrad choice (2.14).
There are the following subcases.

Class A: a = 0, b = 0.
q — 0 <=> the group is type I. These spaces have isotropic three-

spaces (see Section 7) and may be integrated for many types of matter
(see Eef. [27]).

q φ 0 =Φ the group is type VI0 and Θ2 = $3. There are two independent
θv but the shear equation is more complex than in type V, where (5.5)
holds.

Class B:aή=0.
q = 0 <=> type V<=> (5.5) holds. The three-spaces are isotropic and we may

reduce the shear equations to a first integral (see Section 7).
q =j= 0, δ = 0 =Φ Case Bbi, group type VIΛ. (6.3b) determines .̂ This

is in general similar to the case of Class A, type VI0, above. There is
a special case when h = — \ o q = a which is of Bianchi type III, is
L.R.S. and has been integrated for several behaviours of matter [32, 33].
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q φ 0, b =j= 0 => the special case q = — 3α <=> 2Θ3 = Θ1 -f $2 which is
of case Bbii; there is now a cross-term of the more complex type found
in (4.9) due to the off-diagonal component of shear.

The simplest cases with the more difficult cross-terms are those of
type II which are L.R.S. and the type VIh(nfy = 0) case with cr12 =j= 0
just discussed. All other solutions have in general several such cross-
terms and are unlikely to be integrated before the ones listed above.

Most of these cases have been integrated in the vacuum case
(p = μ = A — 0) (see Section 8) and Bianchi types I and III (n& = 0)
have been integrated for several types of fluid. None of the rest have
been integrated even for dust (p = A = 0). A special situation arises
when p = μ ("stiff" matter), when apart from types I and III we may
integrate in type V (see Section 7) and type VI0 (njj = 0 == Λ). This last
solution is

(6.8)
-f

where Z2 - u(M~V/2 exp(g0^
2) and μ = MfiuPX*. Setting M = 0 gives

the vacuum solution with A = 0. In the case of dust the type VI0 (n& = 0)
field equations reduce to

2XYΫ=t

ί a (27Γ+ Γ2) + 7472 = 0

to which we could find only the special solution Y2 — X = t. This seems
to be the simplest case without a known general analytic solution.

7. Spacetimes With Some Isotropy

In this section we consider first those spaces satisfying (1.1), (1.2) and
(1.4) which are also locally rotationally symmetric (see Refs. [1] and [2]
for detailed discussion). These are spaces in which there is a group of
motions θr with r = 4 or 6, multiply-transitive on the three-surfaces
orthogonal to the fluid flow vector ua, and having at least one three -
parameter subgroup simply transitive on these surfaces. If r — 6, the
space is a Robertson- Walker (isotropic) space if r == 4 the space is
partially isotropic and has non- vanishing shear.

Each point p is invariant under a subgroup of Gr, the isotropy group
of p, which is one -dimensional if r = 4 and three-dimensional if r == 6.
This group induces a group of rotations in the tangent space T^ which
leaves invariant all quantities defined covariantly at p by the curvature
tensor and its derivatives. It follows (cf. [1, 2]) that if we choose a tetrad
with eQ = u and ex as an axis of a group of rotations at each point (unique
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if r = 4), then the rotation coefficients have the form

θγδ « diag(α, β, β ) , Ωγ = (Ω, 0, 0) , (7.1 a)

( m — a3 aλ

-a3 n 0 1 , (7.1b)
a2 On/

where B2γ = 93y = 0 for each coefficient γ , (7.1 c)

and we can set Ω = 0 by choice of the time-propagation of the tetrad.
The existence of a tetrad in which (7.1) is obeyed is in fact the necessary
and sufficient condition for a fluid-filled spacetime to be L.R.S.

In Refs. [1] and [2] the tetrad was further restricted so that n = a3 = 0,
but in general the resulting rotation coefficients would not satisfy (2.9b).
In the present case where (7.1) and (2.9) hold, the Jacobi identities
(2.13) are satisfied if and only if either

a2 — α3 = 0 = ma± (7.2a)
or

n = a1 = 0. (7.2b)

As the group type is preserved in time we need consider only one surface
of transitivity $3.

The group 6r4 or 6r6 is multiply transitive on spacelike surfaces $3,
with a subgroup Cr3 simply transitive on these surfaces it is possible that
there is another subgroup 6r3' also simply transitive on $3. In that case
there will be a position-dependent rotation relating the tetrads which
generate the reciprocal groups of these groups of motions. Each of the
tetrads must satisfy (2.9). If el is chosen as the axis of rotation at each
point (unique if r = 4 not unique if r = 6) and φ as its magnitude we
may verify directly from this requirement that αα, nΛβ have the form
(7.1b). We also find that m, aλ and the quantity

Γ:=4(K)3+(α3)2)-Wm

are left invariant by the rotation. It is therefore possible to classify the
solutions of (7.2) by the values of these quantities m, % and T. The
result is shown in Table 3.

The in variance of m, αα and T permits only the following non-trivial
transformations between these possible L.R.S. cases (where primed and
unprimed refer to after and before the transformation respectively):

a) (7.2a) satisfied before and after the transformation, T = m = 0,
and we are only altering n. This carries groups of types I and V into
groups of types VΠ0 and VIIΛ respectively. The transformation has
the form

d1φ = ri-n-) d2φ = d3φ = Q, (7.3a)

aβ = a't = (α, 0, 0); nκβ = diag(0, n, n) n'Λβ = diag(0, n', n'} . (7.3b)
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Table 3. All spatially homogeneous models satisfying (1.4) which are L.R.S.,
classified by the values of the parameters alf m and T

aλ m T

0 0 0

Φ

φO 0 0

0 φO 0

φ

-

Group type

I
VII0

III (7$ - 0)

V
VII,

11

VIII
HI (n£ Φ 0)

IX

n

0
φ

0

0
φ
0

φ
0

-

al + al

0
0

Φ

0
0

0

0
φ
0

b) (7.2b) is satisfied before and after the transformation, T > 0, and
we alter only the relative magnitudes of α2, α3. The transformation has
the form

B1φ = 0 d2φ = 2α(sin(<^ φ ψf) — sinγ;)
(7.4)

'

where aP = (0, a cost/;, a sin^), α / / 5 = α(0, COST/;', sin?//) and nκβ is given
by (7.1b) for each case. This transforms one group of Bianchi type III
into another.

c) (7.2a) satisfied before and (7.2b) after the rotation, m φ 0, T > 0.
This transforms groups of type VIII into type III (and its inverse does
the reverse). The transformation has the form

a* =(0,0,0); a'P = ±-bc((

(7.5a)

*if * = I —-bcsimp

— δ c cos ψ 0

1 , . 1
— ocsmyj —

0

0

(7.6b)
where 6 Φ 0 φ c and d^φ = — δ2 Θ2^ = 6c sin(^i φ

BBφ — — be cos(φ φ ψ) .

In all the above the quantities (a, n, nf, γ, ψ', b, c) used have arbi-
trary values in the chosen hypersurface.
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Thus we can summarise the L.R.S. cases as follows; (7.1) holds in
each case.

First suppose r = 4. In Class A: (7.2a) is satisfied.

m = 0 <=> the space is invariant under a simply transitive group of
type I and a one-parameter family of groups of type VII0, related by
(7.3). As this is a special case of type I, it can be integrated.

m 4= 0 o the space is invariant under a simply transitive group of
type IX, II, or VIII according as n > 0, n = 0, n < 0; in the last case
T > 0 and the space is also invariant under a one-parameter family of
groups of type III (n& =j= 0). These are the cases of Class III in Refs. [1]
and [2]; none has been analytically integrated except for vacuum. The
last case gives the only spaces invariant under groups of Class A and
Class B.

In Class B, if (7.2a) holds, m = 0 and we may use (7.3) to make
n = 0. By (5.5) the space is then Robertson-Walker and so invariant
under a 6r6. Thus in the case r = 4, σ ={= 0, (7.2b) holds.

m ~ 0 <=> the space is invariant under a one-parameter family of
simply transitive groups of type III (nfy = 0) related by (7.4). This case
is analytically integrable [32, 33] and is in class II of Refs. [1] and [2].
In fact, if the group is type III with nfy = 0 the space is necessarily
L.R.S.

m φ 0 <=> the space is invariant under a one-parameter family of
simply transitive groups of Bianchi type III (nfy φ 0) and a simply
transitive group of type VIII, related by (7.5). This is the case referred
to in Class A above.

Now suppose r = 6.
The space is Robertson-Walker and so invariant under a group of

type I (or VΠ0), IX, or V (or VΠΛ); this will be shown later in this
section6. The isotropy group at each point is the rotation group 03

(Bianchi type IX). This group permutes some of the simply transitive
subgroups amongst themselves. Consideration of its action shows that
the following L.R.S. cases with σ = 0 (Robertson-Walker cases) can
occur. We have θβ = θ/3, β = 0, and

_β* = 0 <=>α/3 = m = 0. These spaces are invariant under a simply
transitive group of type I and, for each value of n, a three-parameter
family of groups of type VII0.

j?* <0 <^«^=h 0, m = 0. The space is invariant under a three -
parameter family of groups of type V and, for each value of n (i.e. for
each value of h), a three-parameter family of groups of type VΠΛ.

If jβ* > 0, the reciprocal group to the group of motions of type IX
simply transitive on S3 is also a group of motions of type IX simply

6 This was also discovered by GBISHCIIUK [34].
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transitive on the SB. These two groups commute, so generating a six-
parameter group of motions 03 X 03 — 04. This is the full group of mo-
tions of a three-space of constant positive curvature and we cannot find
any other two commuting groups (73 each simply transitive on the
manifold7. So we have

E* > 0 <^>α'5 = 0 3 m = ^ Φ θ . The space is invariant under two
simply transitive groups of type IX; these groups are reciprocal groups.

It should be noted that the Robertson-Walker cases are not given
here in the usual coordinates, but by the appropriate specialisation of
the coordinates of Theorems 4.2 and 6.2.

All the L.R.S. solutions listed above are self-consistent. The only
fluid L.R.S. solution spatially homogeneous on surfaces orthogonal to ua

which does not occur here is case I of KANTOWSKI and SACHS [32], which
is the only fluid solution in which a group of motions multiply transitive
on spacelike three-surfaces does not have a subgroup G% simply transitive
in these surfaces.

In all the L.R.S. cases the quadric defined by θμv is necessarily
isotropic about some axis (chosen here as e^. Conversely we may ask;
what spaces result if the expansion quadric is isotropic about some
axis ?

In Class A suppose Θ2 = Θ3. Time conservation of this implies
(n2 H- n%) (n2 -f n3 — %) = 0. If n2 = n3 we have L.R.S. solutions. If
n2 φ nz then nλ — n2 φ n3. The time derivative of this equation implies
n^ = 0 or a = 0 (which is inconsistent with n2 Φ n3). So apart from L.R.S.
cases there is only the solution of type VI0 with nj* = 0 in which Θ2 = Θ3

necessarily.

In case Ba, partial isotropy implies a Robertson-Walker space.

In case Bbi, we may choose the shear eigenvectors as axes with
a? = (a, 0, 0) we find that if Θ2 = Θ3 we have a Robert son-Walker space.
If θj = Θ2, then (0 1) implies a = n23. The time derivative of this is
Ω1(n22 — %s) = 0. The only consistent solution is Ω1 = n22 = 0, which
is an L.R.S. solution of type III (with arbitrary njj). Thus Ba and Bbi
lead only to L.R.S. solutions. We have been unable to solve the more
complex consistency conditions for Case Bbii, but it is unlikely that any
spaces of this kind with partially isotropic shear exist.

7 If a surface 83 is regarded as given by embedding the unit three-sphere in
a Euclidean four-dimensional space R* (with coordinates u1, u2, it3, %4) then the two
simply transitive groups are generated by the two-forms

du*- Λ du* -f dυ? Λ du*

duz Λ du5 ~f du1 Λ du*

du* Λ du1 -f du2 Λ du*

dιι> Λ du2 — du3 Λ du4

and du2 Λ du3 -- du1 Λ du4

duz Λ du1 — du2 Λ du4
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Similarly we can assume nxβ is partially isotropic about some axis.
Apart from L.R.S. solutions, we find only solutions in which n^β is par-
tially isotropic because some nγ are zero (types I, II; V, IV).

Now we can consider those cases in which the surfaces of transitivity
are isotropic,

, R* = R*a, (7.6)

these surfaces then being three- surf aces of constant curvature

Using a Fermi-propagated tetrad (Ωβ = 0) in (3. 7 a), the isotropy of
R*β implies [3] [using definition (3.14)]

d0σκβ = - θσκβ o σκβ = -̂  , Γ^ = 0 (7.7)

the shear tensor being thus determined by the trace -free constant tensor

ΣΛβ. Defining Z2 = ̂ ΣaβΣ^, (7.7) implies

σ2 - Σn-* (7.8)
so substituting in (3.9) gives

It* - 6KI-* , K = 0 , (7.9)

where the constant K is the curvature of the three-space on which 1=1.
Use of (7.8) and (1.3) allows integration of (3.2), if Γ Φ 0, to give

3(Γ)2 - Σ* l~* - (l*μ) - Λl* = 10 E , E' = 0 (7.10)

a generalisation of the Friedmann equation; comparison with (3.8) shows
that E is related to the K of (7.9) by 3K = - 10 E. With suitable
rescaling of /, K can be set to ^ 1 if it is not zero.

If we assume the barotropic equation of state p — (γ — 1) μ where γ
is a constant then (1.3) integrates to give

μτ=Ml-*Y, J f -0, J f > 0 , (7.11)

where μ ^ p ^ 0 = > 2 ^ γ ^ 1. Then (7.11) determines the behaviour
of the matter term in (7.10) which we can now in principle integrate for
l(t) with given values of Σ, M, γ, Λ and E. Suitable values of γ are

γ = 2 (<=> p = μ, "stiff" matter), γ = 4/3 ί <=> p = y μ, disordered radia-

tion) and γ = 1 (<=> p = 0, dust). We can, if we wish, add several such

terms to represent non-interacting components of matter.

Using the tetrad (2.14) in (3.7 b) we find E*β is isotropic if and only if

0 = a(n2 — n3) — (n± + nz — ns) (nλ — n2)
(7.12)
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so that at least two of the Uβ are equal. Renumbering to make these
nz, n% we find (7.12) is satisfied either by

n^ = 0 , nz = % (7.13a)
or

% = n2 = n3 = : m . (7.13 b)

Now n2 = n3 Φ 0 implies Θ2 = Θ3 and σ23 = 0; this is an L.R.S. solu-
tion of type VII0 or VΠΛ. These cases are also invariant under groups
of type I and V respectively, by (7.1) to (7.3), and the latter case is Robert-
son-Walker, since σκβ = 0. Hence there are always axes such that (7.13b)

3
holds and B* — -5- m2 — 6α2. If m =f= 0 we have a type IX group and the

time derivative of (7.13b) shows it is Robertson-Walker (R* > 0). If
m = 0 we have spaces invariant under a group of type I (if a = 0 and
R* = 0) or type V (a φ 0, R* < 0). This proves the results concerning
Robertson- Walker models [for which (7.6) and (7.7) always hold] quoted
in Section 5 and earlier in this section. Apart from the Robertson- Walker
cases of type IX, these spaces are special cases of those examined in
Section 6.

Theorem 7.1. The only spacetimes satisfying (1.1), (1.2) and (1.4) in
which the three-surfaces of transitivity are isotropic are those of types I and V
(in which these surfaces are necessarily isotropic) and a special case of
type IX in the last case the isotropy of the surfaces implies their isotropic
embedding. If in addition the spacetime is L.R.S., the type I and V cases
also admit groups of types VI I Q and VII h respectively.

This result is rather surprising. It includes all Robertson- Walker
models [by (3. 7 a)]. Since groups of type VIII are rather closely related
to those of type IX (one can go from one to the other by a complex
coordinate transformation), one might have expected that a Robertson-
Walker model with R* < 0 would be invariant under a simply transitive
type VIII group but the appropriate group is type V (or VII0)

6.

In each case there are Fermi-propagated shear eigenvectors [Lemmas
4.1, 5.3 or directly from (7.7)] and we can define lengths lx along the
principal directions of shear by l± := X, 12 := Y, 1B : — Z in (4.9) or (6.7).
Then 4/^α = θκ (no sum) and I3 = const x Z^s We have thus diagonalised
Σκβ. Maximising (e.g.) Σn with Σκβ trace-free and Σ constant, we find
we may write

O 0

ocβ:= oc±(β- l)-g-, (7.14)

where α is a constant and there is no sum over β. Then the relation of
I, ly and θγ is

ΐγβγ =θγ = I'jl + -J-γ Σ sin α (no sum) (7.15)
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which can be integrated as

l y ( t ) = l(t) exp (Σsmocγ . (7.16)

Using the coordinates (4.9) or (6.7) the lγ completely determine the
behaviour of the models.

Theorem 7.2. In spaces satisfying the conditions of Theorem 7.1, the
field equations reduce to (7.10), (7.14), (7.16) where α, Σ, E are constants
related by E <0=$>Σ=Q; $ > 0 => α = 0.

[The last restriction follows from (5.5).]
In each case we can specify the behaviour of the matter [e.g. by

choosing M, γ in (7.7)]; integrate (7.10); and then integrate (7.16) for
allowed α, Σ and E. When 2?= 0 this procedure gives the Robertson-
Walker solutions explicitly.

For type IX groups we have only the Robertson- Walker case with
K = -f 1. A special case is when θ = 0 and (7.10) is no longer a first

integral of (3.2); we find m is a positive constant, μ -f p = -~- m2,

1 3
Λ = -£- μ + -£- p, and we have the Einstein static universe (which is

invariant under a type IX group only) unless μ + p = 0 when we have
flat empty space (since μ Ξ> 0, p ^ 0) and the group degenerates to
type I. If the space is empty the solution requires Λ > 0 and is the
de Sitter universe.

For type I groups we can integrate to obtain the well-known solutions
for most reasonable behaviour of matter ([2, 6, 14, 23—26]). The solu-
tions for "stiff" matter are

Λ>0, l* = c sinh γ3Λ t, lβ = l tanh

ί , lβ=ltP, (7.17)

Λ < 0 , I* = c sin /-~3ΛU , lβ=

where

If we set M = 0 we derive the vacuum solutions (the A — 0 case being
Kasner's solution [28]). The "stiff" matter term and the shear terms in
(7.10) have the same ^-dependence, so the vacuum and stiff matter solu-
tions are essentially the same.

For groups of type V, we obtain Heckmann and Schύcking's represen-
tation [6, 10]. The first integral Eq. (7.10) can be solved if 27=0
(Robertson-Walker) for various behaviour of matter; for empty space
(giving Joseph's solution [31] if Λ = 0); f or Λ = 0 with γ = 2,5/3,4/3,
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or 1 and A Φ 0 with γ — 2 or 4/3. All except isotropic models and Joseph's
solution require elliptic integrals. As in type I, the stiff matter and
empty space solutions are essentially the same. In the type V and IX
cases it often helps to introduce a new time variable [e.g. by taking
t' = f dtjX which implies e0 = A (f) djdt' and gives the ejel surfaces in
conformally flat coordinates].

Even when (7.10), (7.16) are not analytically integrable we may use
(7.10) together with (7.15), (7.7) and (1.3) to give analytic expressions
for the expansion θ, principal expansions θv, density of matter μ and
shear σxβ in terms of the average length I. This gives considerable quanti-
tative knowledge, as we lack only the relation of I to the proper time t.

In particular we see from (7.10) and (3.2) that if μ ^ p Ξ> 0 the
type IX solutions with A = 0 always reach a point where θ — 0 and
θ' < 0. So the solution reconverges to a second singularity. In types I
and V the solution expands at all times.

8. Vacuum Solutions and Other Special Cases

We can obtain from our equations a number of explicit solutions for
a vacuum (μ = p = 0), sometimes requiring the extra condition A = 0.
Our classification is not dependent on μ Φ 0 or p Φ 0, so we obtain all
empty space solutions invariant under a group 6r3 simply transitive on
spacelike hyper surf aces, on choosing the normals to these hypersurfaces
as the vector field ua (now not defined by Tab ).

First we consider all vacuum solutions in which E*β is isotropic. For
type I, these are the solutions (7.17) with M = 0. The L.R.S. subclass
(02 = 03) is the case Az of EHLEBS and KTJNDT [35] (in different co-
ordinates). For type IX there is only the de Sitter space (Λ > 0); and
for type V we have Joseph's solution [31] and its generalisation to non-
zero Λ. The solutions with E*β isotropic include the completely isotropic
solutions (a = 0), which are invariant under a group of motions 6r10 and
are the (conformally flat) four-spaces of constant curvature. If the
curvature of the four-space is positive (Λ > 0) the group is type I, V or
IX; if it is zero (Λ = 0) the group is type I or V; and if it is negative,
the group is type V8.

We can also obtain all vacuum L.R.S. solutions in our class of
spaces9. The L.R.S. classification of Section 7 holds also in the vacuum
case. The type I solutions are those mentioned above. For the groups
of types II, IX and VIII [or III with nj Φ 0, see (7.5)] we obtain the

8 Or, in each case the appropriate related groups of type VIII0 or VΠA: see
Theorem 7.1.

9 M. CAHEIT and L. DEFRISE have found all vacuum L.K.S. solutions (Ref. [36]
and private communication).
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NUT spaces [37] (the type IX case being Taub-NUT space [5, 37] in-
vestigated in detail by MISNEB and TATJB [38]). These may be integrated
with non-zero Λ1Q giving in the coordinates of (4.9)

u=fXdt, Γ2 - u* + (NJ* ,

72Z2 - k + mu - N^u* + ~ A (NJ* u* + ^Λu* , (8.1)

where & = -r- (N^N^ — -γ^A(Nl)
4: and m is an arbitrary constant (N^^

being the NUT parameter corresponding to μ0 in Ref. [37]). The type II
case has N2 = 0, types VIII and IX having N% φ 0 and opposite signs
of Nv The axis of symmetry is ex. If the group is Bianchi type III with
n& = 0 we obtain the spatially homogeneous part of the "pseudo-
Sehwarzschild" space (type A2 in Ref. [35]) which is easily generalised
to Λ 4= 0. The only empty space with homogeneous spatial sections and
a one-parameter isotropy group of spatial rotations which is not included
in those obtained above is the spatially homogeneous part of the Schwarz-
schild solution (type A1 in Ref. [35]) which corresponds to the spaces of
class I in KANTOWSKI and SACHS [32, 33] and does not have a three-
parameter group of motions simply transitive on the spacehke hyper-
surface of transitivity of the group (?4.

The type II and III (nj φ 0) cases in the NUT spaces reduce to the
Schwarzschildian spaces (A2 and A% of Ref. [35]) by smooth transitions
to zero of the appropriate parameters. But there is no such smooth
transition for the space of type IX (nor would there be in type VIII
if we did not rewrite in terms of the group of type III).

We may also obtain some vacuum solutions with nj* = 0. For types I
and V these are as above. In type VI A the solution with Λ = 0 is [in the
coordinates of (6.7)]

t = / Σ du ,

where k = #0/α0. This gives Joseph's (type V) solution when k = O
Expanding the solution (8.2) in powers of u and then letting a0 go to zero
gives the vacuum space of type VI0 which may also be derived by
setting M = 0 in (6.8). We have not found a general solution for Bbii
with n& — 0 (or otherwise). However, the spatially homogeneous part of
the special solution of COLLINSON and FRENCH [40], with a Weyl tensor
of Petrov type III is of Case Bbii.

10 Using a method due to J. M. STEWART. These solutions are part of a general
family found by B. CARTER [39].
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Table 4. Possible group types which occur in special cases. "Integrable" means inte-
grable at least for dust. "<-»" identifies the same model it it has more than one group
of motions simply transitive on the S3. "a" means nβκ = 0; "δ" means nβκ =f= 0.

This table includes all cases so far analytically integrated

special cases, not ROBERTSON-WALKER Robertson-
Walker cases

Case

A Aa: type I
(always ίnte-
grable)

Ab: [coords
(4.5), Eqs.
(4.9)]

B Ba:V[Eqs.
(6.7), intβ-
grable]

Bbi

Bbii: VIft,
h = - 1/9

n$ = 0 isotropic
[coords (6.5), 3-spaces
field Eqs. [coords, and
(6.7)] field Eqs.

(7.10) (7.16)]

necessarily necessarily
(see Refs.
[23] to [26])

VI0 VΠ0 (L.R.S.)

necessarily necessarily
(Refs. [31, 6])

VIΛ, III none

VIft none

L.R.S.
(coords, and
field Eqs.
see [1, 2])

1 I (K = 0)

! ψ
VII0 /see RefΛ VII0 (K = 0)
II, IX \[6,38])/IX(^= + l)

-WΊII

i none V (K == - 1)

III (nδ = 0) VlIh(K=~l)
(Ref. [32])

none none

Finally we have the general solution for type II with Λ = 0 given by
TAUB [5]. It seems probable that further investigation of the field equa-
tions would yield further analytic spatially homogeneous vacuum
solutions.

There are a number of analytic solutions in which one of the θv = 0
none of these are physically interesting in that they all have zero or
negative redshift in some direction and may involve negative pressures
or densities. We shall therefore not give them here.

To conclude our survey of special cases of spatially homogeneous
solutions with hypersurf aces orthogonal to the fluid flow vector we have
summarised our results for the main classes of such solutions in Table 4.

9. Conclusion

We have examined in some detail the properties of the solutions of
Einstein's field equations for a perfect fluid which have homogeneous
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spatial sections orthogonal to the fluid flow, in the sense of admitting
a three-parameter group of motions simply transitive on these surfaces.
This has been done using an orthonormal tetrad technique.

The models fall into two broad classes distinguished by whether the
vector a? (defined in Section 2) is or is not zero; that is, whether the
three-vector C^x (formed from the group structure constants) vanishes
or not. We were able to find a canonical form for the tetrad-coordinate
relation whenever C"β κ = 0 (Class A) and to use this to describe many
properties of these solutions. Without explicitly finding coordinates in
Class B (0^ Φ 0) we were able to describe general properties of these
solutions (see Sections 4 and 5).

We further investigated a number of special subclasses. These in-
cluded three subsets of our models with especially simple features, which
were i) solutions in which n& = 0 (nκβ being defined in Section 2), ϋ) solu-
tions with local rotational symmetry (i.e. a group of motions multiply
transitive on the homogeneous spatial sections), iii) solutions in which
the surfaces of homogeneity are isotropic three-spaces. In all these cases
canonical forms of the tetrad-coordinate relations were found, and in
most cases the field equations were partially integrated.

The only fluid cases which have been analytically integrated for
a wide range of barotropic fluids are those in which the group of motions
is of Bianchi type I or III with njj = 0. These fall into the special subsets
detailed above. The known spatially homogeneous vacuum solutions are
discussed in Section 8.

When one cannot integrate analytically, one may either integrate
numerically [12—14] or use approximation techniques [11,15,24,25,30] to
determine properties of the models. In particular one can investigate the
behaviour when nearly isotropic and when near the singularity. These
cases may respectively provide reasonable approximations for the
present-day universe, and for the early behaviour of the universe, the
latter determining the primeval element formation.

In a subsequent paper we will discuss some of these questions. This
will also contain a detailed discussion of the properties of observations
in these cosmological models. The most interesting of these properties
is the existence of discrete isotropies.
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Appendix I

With the specialisation (2.14) the equations read as follows

d0a -f θ^a = 0 ,

a(Ω3~σ12) = Q, (2.11)

+ (0a +
 ΘB ~ °ι) "i = 0

σ12 + K - n*) Ω3 = 0

<rls + (w3 - ^) β2 = 0

wa = 0 ,

30w8 + (0! + 02 -
 fls) % = 0

0 f l + βf + 0| + θ§ + 2σ|3 + 2σf 3 + 2σ?2

1 3 (°°) (3 2)
y^ + Y^ '

a(2θ1 -Θ2~ Θ9) + σ2 8(wa - %) = 0 , (0 1)

3ασ ιa + σ1 8(w8-wι) = 0, (02) (3.3)

3<xσ13 + oΓjg^ — n2) — 0 (0 3)

= a θ + 00 - 2α2 + 7^2

! (22)
- K - %)2 + 2σ23β1 - 2σ12β3 ,

! (33) (3.4)/(3.5)
~ Y K - ^)2 + 2σ13ί32 - 2σ23β1 ,

0 = 30012+ 00i2+ (02 -01)^3
(1 2)

*

σ13Ω3 + a(nz - n3)
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0102+9*08+0801

= μ + A + 3α2 + -i- (nf + n\ + n\ - 2n2n3 - 2nλnz - 2^2) (3.5)

_ 9/y2 I JL^2 JL /™ 77 \ 2
— — Δd -f- 0^1— o (^2 ~~ "'SJ >

i _

~r 2 2 ~~ 2 3

1 1 = y (/^ + -4) + 2^2 - y Wf + y (% - 713

2 2 = (μ + Λ) + 2α2 - y n§ + y (w8 ~ ^i)

(3.7b)

JR* - - 6α2 + y (2?^w2 + 2^% + 2^3 - nf - w| - dj) (3.8b)

3 1
1̂1 = ~ y %GΓll + y (^2 ~ %) (02 ~ 03) '

3

~ y %^33 + Y K ~ ^2) (01 - 02) >

γ(%— 2^1 ~ 2^2) ^12 + Y^OΊs >

y(%- 2%- 2^3)σ1 3-y«σ1 2,

0*1 3 ̂  3 ~ 03012 > (3.13)
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Appendix II

With the specialisation (2.19) the equations are

d0α + θ-^a = 0 ,

α(βa-<r ιa) = 0, (2.11)

= 0

2r - r(σ23 + J

3r - r(σ23 - ΩJ - g(σ]3 + βa) = 0 ,
(2.12)

β1) = 0,

σ13) = 0 ,

θf + θl + θ§ + 2σf 2 + 2σf 3 + 2σ|3
1 3 (00) (3.2)

- Θ8) + g(θ3 - 0a) 4- r(σ l s - σ ιa) = 0 , (01)

σ12(g + 3α) + r(θl -Θ3- Θ23) = 0 , (02) (3.3)

σ13(g - 3α) + r(θ1 - βa - σ23) - 0 (03)

- 2α2 - 2r2 -
(22)

- 2α2-
(3 3) (3.4)/(3.5)

aoσ12 + Θσ12 + (Θ2 - θ^βg + σ^βi - (723i32 + 2rq = 0, (1 2)

aoσ13 + θσa 3 + (θj - 03)β2 + σ23ί33 - σ^^ + 2gr - 0, (13)

d<As + ^^23 + (Θ8 - θa)βι + ̂ 12^2 - ^13^3 + 2r2 = 0 (2 3)

A + μ + 3α2 + g2 + σf 2 + σ?3 + ̂ 3 - Θ& + Θ2(93 + 0108 . (3.5)
10 Commun. math. Phys.,Vol. 12
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