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Abstract, It is proved that euclidean invariant states describing crystals are not
weakly clustering or equivalently that these states exhibit long range order. Further
it is shown that a decomposition of an euclidean invariant state into states all of
which are invariant for one specific space group, does not yield states with lattice
symmetry.

1. Introduction

The purpose of this paper is to investigate states describing crystals.
Our method will be that of the algebraic approach to statistical me-
chanics. In this approach one considers states as positive normalised
linear functionals on the quasi-local bounded observables which form
a C*-algebra 21. The euclidean group JE3 is represented as * -automor-
phisms of 21, its action on A ξ 21 is denoted by ocg [A], g ζ Ez.

The representation is moreover supposed to be continuous in the
sense:

Mm l«e[A] - A% = 0.

As is well known this last property is equivalent with the somewhat
more physical requirement of weak continuity i.e. continuity of the func-
tions φ{θίg[A]) for all A £ 21 and all states φ [1].

In equilibrium statistical mechanics one starts with a state invariant
for the euclidean group and one expects that a state describing a crystal
is caracterized by the fact that it can be decomposed into states with
lower (crystal) symmetry.

One has proposed several methods to perform this decomposition.
KASTLER and ROBINSON [2], restricting themselves to translations, made
a decomposition into TL extremal invariant states, where TL is the
subgroup of translations defined by:

Sjy being the discrete part of the spectrum of the unitary representation
of _R3 corresponding with the state φ [2].

Their analysis has been extended by ROBINSON and RUELLE to the
case of the euclidean group [3] (compare also [12]).
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One of the results of this paper is that these decompositions are
physically not very relevant. It will be shown that such a decomposition
of an euclidean invariant state into states that are invariant for a space
group H C E3, is a decomposition into states that are invariant for the
full translation group and delivers therefore no states with real lattice
symmetry (Theorem 1). The reason for this failure is in fact that one
cannot expect that all the decomposed states are invariant for the same
group H; in general each will be invariant for a space group conjugate
to JBΓ.

This is precisely what happens in two other, closely related, decom-
positions. The first one is a decomposition into primary (factor) states
[4] the other one in states that are extremal invariant for time trans-
lations [5].

The two decompositions are the same for states satisfying the Kubo-
Martin-Schwinger condition [6, 7]; for classical systems however only
the latter seems to be of interest [5].

In this paper we will not discuss further the kind of decomposition
that one has to make. We simply state that an euclidean invariant state
describes a crystal when there exists a decomposition into states ψλ

invariant for space groups Hλ.

We show then (Theorem 2) that such a state is not extremal invariant
for translations it is therefore not a clustering state or equivalently it
possesses long range order.

This fact is of interest since it is one of the keystones of LANDAU'S
argument for the non-existence of a critical point for the fluid-solid phase
transition.

It looks quite natural that a state describing a crystal has long range
order but there seems to be no rigorous proof of this fact [8].

2. Decomposition into H Invariant States

Let us start with introducing some more notations.
In the sequel 2ί will be a C*-algebra with unit element, α a strongly

continuous representation of the euclidean group Ez as *- automorphisms
of 21, α* the transposed of α in 21*, the dual of 21; φ will denote an
euclidean invariant state on 21.

As is well known the G.N.S representation furnishes us with a cyclic
representation π of 21 in L (J^) and a unitary representation U of Es such
that:

1) φ(Λ) = (Ω,π{Λ)Ω), Ω cyclic vector,

2) π(ocg[A])=U(g)π(A)U-i(g),

3) U(g)Ω = Ω.
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The elements of Ez will often be explicitly denoted by (a, R)
(a : translation, R : rotation) with the multiplication rule: (α, R) (b, S)
— (α + R(b)f R8). By STONE'S theorem we know that there exists a pro-
jection valued measure E on Rz such that:

We need the following lemma:
Lemma 1. The discrete spectrum of U(a, 1) contains only p = 0 or

JS(p) = Owhenp Φ 0.
Proof. Suppose E (p) 4= 0 for p = p 0 4= 0, then there exists a vector Ψ

with ||31 = 1 such that:

U(a9l)Ψ=e-i*o'aΨ for aii aζR*.

Let iϋ be a rotation then

ϋ-^O, R) ϋ{a, 1) £7(0, R) - ϋ(R~1{a)i 1)
hence

ίJ-^O, B) ϋ(a, 1) C7(0, jR) S7 = e - ^ 2 2 " 1 ^ Ψ
or

f7(α, 1) C7(0, B)Ψ=e-i^'R'1^ U(0, R) Ψ.

Because p0 #= 0 there exists rotations arbitrary close to 1 such that:

and for such rotations Ψ and £7(0, 22) Ψ are eigenvectors of Ϊ7(α, 1) with
different eigenvalues, hence (£7(0, R) Ψ, Ψ) = 0.

This implies then

which is in contradiction with the continuity of the representation U.
We remark in passing that with somewhat more elaborate tools it is
possible to derive a stronger result, namely:

Km (ψ, U(a, 1) Φ) = (ψ, P0Φ),

Ψ and Φ vectors of ^f and P o projection on the subspace of 3ti? formed
by vectors invariant under U(RZ, 1) [3].

The lemma above will however be sufficient for our purposes.
We now prove the following theorem.
Theorem 1. Let φ be a state invariant for Ez and let there be given

a decomposition of φ:

φ = f ψxdμ(x)
x

where X is a compact space and μ is a Radon measure on X. Further it

is supposed that the map x -> ψx{A) is continuous for fixed A ζ 21 and that

ipx is invariant for a subgroup H of E3 that contains at least three non-

coplanar translations al9 a2, α 3 . Then ψx is invariant for all translations

when x ζ supp(μ).
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Notice that the decompositions in [2] and [3] fulfill indeed the con-
ditions above, X being EjH and ψx = otgip,g contained in the equivalence
class x.

Proof. We take φD == / ψx dμ(x) for D a measurable set of X. Then
D

clearly φD ^ φ, hence there is a vector ΩD^& such that φD{A)
— (Ωj), π{A) Ω) ([9], 2.5.1). Since ψx is invariant for H, φD is invariant for
H and therefore

U(g)Ωj> = ΩΌ for g ζ # .

In particular we have

U{aitl)ΩD = ΩD ( i = l , 2 , 3 ) .

Remembering now the spectral resolution of U

one has:
E (0 \jpx \j p2 \j - - •) ΩD = ΩD .

Where the Pj are the points of the dual lattice i.e.

pj at = 0 mod 2π (i = 1, 2, 3) .

The dual lattice is discrete, since av α2, α 3 are non-coplanar. When we
use now the σ-additivity of the measure E and Lemma 1 we deduce:

E (0) ΩD = ΩD or βjp is invariant for U(a, 1), aζB* .

Hence φD{^a,ϊ) M — -4) == 0 for all a ζR3 or explicitly:

This can only be true for every measurable set D when ψx{oc(a>i)
= ^(^4) for almost all xζX (e.g. [10], 25 E).
Since we assumed the map x -» ^(-4) to be continuous the equality holds
in fact for all x ξ supp(μ) (e.g. [11], III , 3).

This ends the proof of the theorem.
We notice that one can consider this theorem as a generalization of

a theorem of ROBINSON and RUELLE ([3], Th. 2) which states that an
euclidean invariant state that is furthermore strongly clustering cannot
be decomposed into states invariant for H in a non trivial way.

3. Long Range Order

We start the proof of the presence of long range order for states
describing crystals with a definition and a lemma:

Definition. Let ψ be a state on 21 then ηRy) and ηψ are defined
respectively by:

ώ a; B(R) ^{

and ηψ(A) = Km ηRψ(A) whenever this limit exists for all A £ 21.
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It is clear that whenever ηψ exists it is a state invariant for all
translations.

Lemma 2. Suppose ψ is invariant for a space group H and let the
lattice be generated by av α2, α3. Then η ψ exists and when A is the elemen-
tary cell and v(Δ) its volume then:

f oc[aΛ) ψ(A) da .

When furthermore ψ is not invariant for the full translation group then
η ψ is not euclidean invariant.

Proof. The first assertion is easily seen to be true because one can,
by making use of the invariance of ψ for av α2, α3, reduce the integration
over cells inside B(R) to an integration over the elementary cell situated
at the origin. There remains then only an integration over cells at the
surface of B(R) that are only partly in B(R) but the total volume of
these cells is of the order of the surface of B(R)\ therefore this gives
a contribution that vanishes when we divide by i23 and take the limit
R -> oo (notice that |α^(-4)| is bounded by ||-4||). The second assertion
is a direct consequence of Theorem 1 since the integration over Δ satisfies
all conditions of this theorem.

We have gathered now all preliminairies to prove the following
theorem.

Theorem 2. Let φ be a state on 21 invariant for the euclidean group E*.
Suppose φ can be decomposed into crystal-states i.e.

with A a measure space (μ (Λ) = 1 take -4 = 1), Suppose further that for
almost all λ ζΛ there is a space-group HλCE for which the state ψλ is
invariant and that the ψλ are not invariant for the full translation group.
Then φ is not extremal invariant for translations.

Proof. We prove this by explicitly constructing a decomposition into
translation invariant states.

The invariance of φ for E3 gives:

l f daf*\aΛ)ψλ(A)dμ{λ).

iR) ΛΛ

When A is fixed oc[aιi) ψλ(A) is a function from B(R) xΛ to G. This
function is for fixed a measurable in λ (otherwise the decomposition would
not make sense).

Furthermore the fact that the euclidean group is continuously re-
presented implies that the function is uniformly continuous in a for all
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λ. This is sufficient to guarantee that the function is measurable on the
product space because one can approximate it arbitrarily close by func-
tions that are piecewise constant in a and therefore measurable.

Since the function is moreover bounded (by ||̂ 4||) and its support has
finite measure it is integrable on B(R) x A. We may apply then Fubini's
theorem (e.g. [10], 36 C) and interchange the order of integration:

φ(A)=-- fdμ(λ) φπEΆ f oc\a>1) ψλ{A) da = Jdμ(λ) ηλψλ{A) .
A B(lί) A

We now take the limit R -> oo, this exists for all crystal states (Lemma 2)
hence for almost all λ: lim VRW^{A) = ηwλ(A).

R> oo

Moreover all the functions ηR ψλ (A) are bounded from above by ||̂ 4|j hence
we may use Lebesgue's bounded convergence theorem (e.g. [10], 26 Ό)
and interchange the limit R -> oo and the integration over A resulting in:

= fdμ(λ)ηΨί(A)
A

Now ηψλ is invariant for translations but still not invariant for the
euclidean group (Lemma 2). Therefore ηψλ cannot be a multiple of φ
and we achieved a non-trivial decomposition of φ into translation
invariant states.

The presence of long range order in φ or equivalently the absence of
cluster properties follows from this fact by standard arguments (e.g.
[1,2]).
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