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Abstract. A quantum logic structure for quantum mechanics which contains
the concepts of a physical space, localizability, and symmetry groups is formulated.
It is shown that there is an underlying Hubert space which mirrors much of this
axiomatic structure. Quantum fields are defined and shown to arise naturally from
the quantum logic structure. The fields of HAAG and WIGHTMAK are generalized
to this theory and an attempt is made to find a local equivalence for these fields.

1. Introduction

The two main methods of attack in axiomatic quantum mechanics
have been the c*-algebra [1] and the quantum logic [2] approaches. The
first of these inequivalent approaches uses the algebra of bounded ob-
servables as the main axiomatic elements while the basic constituents
of the second are the quantum propositions or, as they are also called,
experimental questions or events. In this paper we are concerned with
the second approach.

One of the main goals of the quantum logic approach is to postulate
enough physically verifiable axioms so that the structure of the proposi-
tion system reduces to the usual von Neumann Hubert space model for
quantum mechanics. In the author's opinion this goal has not been
achieved. In all such attempts axioms, such as completeness and
atomicity, have been imposed [3] although these axioms have little
physical justification. Even the lattice structure of the proposition sys-
tem seems questionable [4]. For this reason we shall not impose these
questionable axioms and use only postulates which seem physically
reasonable and justifiable and which hopefully can be tested in the
laboratory. Even so, as we shall see, we are very close to a Hubert space
theory as far as the structure of the axiomatic system is concerned. We
will also show that even in this abstract context many of the constructs,
such as localizability, symmetry groups, and quantum fields, which are
used in general quantum theory may be formulated and in fact arise
quite naturally.

2. The Axiomatic Structure

Suppose 8 is a quantum mechanical system. Let us now analyze S
and attempt to extract from it the physically relevant properties it
1 Commun. math. Phys., Vol. 12
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possesses. First of all one can ask many questions concerning 8, the
answers to which must either be yes or no. These correspond to the most
elementary observations on the system and the collection L — {a, b, . . .}
of these questions or propositions will be called a proposition system or
logic. We postulate that L forms an orthocomplemented partially ordered
set. That is, L possesses a partial order relation g under which L has
a first and last element 0 and 1 respectively, and a complementation ' which
satisfies (i) {a')' = α, (ii) a ίg b implies br ^ a'', (iii) αv a' — 1, and (iv)
V at exists if at J_ aP (i.e. at < dj) i Φ j = 1, 2, . . . If a, b ζ L, then a
and b are compatible (written a*->b) if there are mutually disjoint pro-
positions «!, 61? c £ L such that a = a1y c and b = bx v c. I t is easily seen
that if α <-> δ then ay b exists. Finally we postulate (v) if a,b, c are
mutually compatible then a<^b v c. The significance of these axioms
has been amply demonstrated in the literature. By performing repeated
experiments on these propositions one can determine the probabilities
that they are true. These probabilities will depend upon the initial con-
ditions or preparation or state of our system. We thus define a state as
a map m: L-+ [0, 1] such that (i) m(l) = 1, (ii) m(Vαf) = Σm(ai) if
(*i _L %, i Φ j = 1, 2, . . . We assume that there is a full set of states. That
is, (i) if a Φ 6 there is a state m such that m(a) Φ m(&), (ii) if α Φ 0 there
is a state m such that m(a) = 1. We denote some full set of states by
M and call the pair ϋ? = (L, M) a quantum logic.

It seems to the author that one cannot get very far by considering
££ alone. One must study the propositions L more closely and investigate
the properties with which these propositions are concerned. First of all,
our system 8 is concerned with a phenomena that takes place in some
sort of physical arena which we call physical space. Mathematically we
shall assume that physical space Sf is a locally compact Hausdorff space
with second countability. In a concrete physical situation Sf might be
three-dimensional Euclidean space, the surface of a sphere, or perhaps
four-dimensional space-time. Now many of the propositions in L are
concerned with the location of our system in SP. If such propositions
can be verified in the laboratory we call 8 localizable. Let B{£f) denote
the Borel sets in £P and if E ζ B(£f) let the proposition that 8 is located
in E be denoted by X(E). Thus X is a map from B(Sf) into L. We must
now decide what properties X should possess. I t is clear that our system
8 will be located somewhere s o Z ( ^ ) - 1 and if E, F ζ B{Sf) with E J_ F
(here this is the same as E r\ F = 0) then X(E) ± X{F). That is, the
propositions that SP is in E and F respectively are mutually exclusive.
If E J_ F then X(E\jF) is the proposition that 8 is in E or F and
should be the proposition which is true if 8 is in E or if 8 is in F; i.e.
Σ(E υ J ) = X{E)v X{F). Finally we strengthen this last axiom, for
mathematical convenience mainly, to X(\j Ej) — V.X(i£y, if Et _[_ Ej9
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*=f=y=l,2, . . .A map X: B(6^) -> L satisfying these three properties
is called a σ-homomorphism. Notice that if m ζ M then E -> m(X{E)) is
a probability measure which gives the probability that 8 is in E
in the state m.

Because of their great importance, the propositions X(E), E ζ
should occupy a prominent place in L. We say that a Boolean σ-algebra
B in L is state determining with respect to M if m1 (a) = m2 (a) for every
α £ B implies mt = m2, mv m2 ζ Jf. A σ-homomorphism X : B(£f) -> L
is s£αίe determining if its range is state determining. For example, let L
be the logic of all orthogonal projections on the Hilbert space L^{RX) of
Lebesgue square integrable functions on the real line R1. Let M be the
pure states corresponding to the non-negative functions in L2(RX) of
norm 1 i.e., if m ξ M then m{a) — (φ, aφ}, a ζL for some φ £ L2{R1)
with φ ^ 0, ||^|| = 1. Then (L, Jf) is a quantum logic. If we define the
projections X(E)f{λ) = χE(λ)f(λ), fζL^R1), EζB(R) it is easy to
check that X is state determining with respect to M.

We would also like X(E) to satisfy another property. Suppose we
know that S is located in E ζ B(<9*) when the system is in the state
m ζM. Knowing that S is in E we now ask the probability that S is
in F £B (£f). From elementary probability considerations, if m(X (E)) ={= 0,
we would expect this probability to be ?7i1(X(F)) — m(X(F r\ E))/
m(X(E)). However m1 may not be a state on L. More generally let B
be a Boolean σ-algebra in L, a ζ B and m a state for which m(a) Φ 0.
Then m1 defined on B by m1(δ) = m(b Λ α)/m(α) is a state on B. It
corresponds to the conditional probability in the state m given that the
proposition a is true and is called a conditional state on B. B is a con-
ditional Boolean σ-algebra if every conditional state on B is the restriction
of some state in M (on L) to B. Conditions of this type have been studied
in [5]. A σ-homomorphism X: B(^)->L is a conditional σ-homomor-
phism if its range is a conditional Boolean σ-algebra. For example, let L
be the orthogonal projections on L2(R1) and let B be the Boolean
σ-algebra generated by the projections X(E) = χE, E ζ B(Rλ) as in the
previous example. Let mψ be a pure state corresponding to the unit
vector ψ and suppose mψ(X(E)) Φ 0 for some fixed E ζ BiR1). Then
m{X(E)) = mψ(X(E n F))jmψ(X(E)) is a conditional state on B. Define
the function φ by φ(λ) = χE(λ) ψ(λ)l[mψ(X(E))]y2 and let mφ be the
corresponding state. Then mφ is a state on L and

mφ(X(F)) = / ^(A) dλ = - j ; ^ ^ / y (Λ) dλ
F Ff\E

In this way we see that B is a conditional Boolean σ-algebra. We thus
make the following
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Definition. A quantum mechanical system is localizable if there is
a state determining conditional or-homomorphism (called a position
σ-homomorphism) X : B(£f) -» L.

Of course there are systems that are not localizable [6]. However, as
indicated by the work of JATJCH and PΓRON [7] these systems may have
a similar structure involving a weaker kind of or-homomorphism than
the one we have postulated. In this paper we shall only consider
localizable systems.

So far, we have extracted three important concepts describing our
quantum mechanical system 8. These were the quantum logic ££ = (L, M)
physical space ^ , and the position σ-homomorphism X : B(S^) ~> L.
There is one more concept which all quantum systems seem to possess
and which we feel is important enough to single out, the concept of
symmetry. Intuitively, a symmetry on 8 involves some kind of a trans-
formation on 8 that rearranges some of the properties of the system. If
a is a proposition in L then after the symmetry transformation we get
a new proposition W (a) which is the proposition a concerning the trans-
formed system. Thus the symmetry induces a map W : L -> L. One can
convince himself that W should have the properties of a bijective
(7-homomorphism on L which we shall call an automorphism. The group
of automorphisms on L will be denoted by aut (L). In general a symmetry
usually comes from a transformation on our physical space £f. We say
that a group G is a transformation group on Sf if G is a locally compact
Hausdorff topological group with second countability for which there is
a map from G x S? onto £f denoted by (g, s) -> gs, g ζG, s ζ Sf which
satisfies:

(i) if svs2(z £?, then there is a g ζ G such that ^ = gs2 (transitivity)

ii) for all g ζ G, s ~> gs is a homeomorphism of S? with itself;

(iϋ) gi(02(
s)) = (9i92) (s) f o r a 1 1 9v 9*iG'>

(iv) g(s) = s for all s ζ £f if and only if g = e (effectiveness) where e
is the group identity.

Now if a transformation group 6? is a symmetry for S it must induce
automorphisms on L. We are thus led to our next

Definition. A symmetry group on (Jδf, S?, X) is a pair 9 = (G, W)
where G is a transformation group on £f and W is a group homo-
morphism W : (?-> aut (L) (i.e. Wgιffz = WgίWffz) such that

(1) g-> m(Wg(a)) is continuous for every m ζ M, a ζL;

(2) X(gE) - Wg(X(E)) for all g ζ G, E £ B{^) (invariance).

Condition (1) is a natural continuity requirement while (2) is an in-

variance condition which gives the natural interpretation that Wg (X (E))

is the proposition that 8 is located in the set gE.
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This completes the background for our axiomatic structure. We shall
call a four-tuple (j£f, ^ , X, &) as denned above a quantum system. We
take the viewpoint that the important physical properties of a laboratory
experiment are described by a quantum system (J£, S?, X, <£).

3. The Underlying Hubert Space

In this section we show that corresponding to any quantum system
8 — (J£, SP, X, @) there is an underlying Hubert space that mirrors
most of the structure of S. A crucial reason for the existence of this
Hubert space is that there exists a non-trivial σ-finite quasi-invariant
measure μ on Sf. [A measure μ is quasi-invariant if μ (E) = 0 if and only
if μ(gE) = 0, g £ G, E ζ B(S?).] This measure is constructed by trans-
ferring the Haar measure on G to Sf in a fairly straightforward way. As
a result of this transference, the in variance of the Haar measure is lost
leaving however the weaker property of quasi-invariance. It can be
shown that any other quasi-invariant measure on £f must have the same
null sets as μ1. Let L2(μ) be the Hilbert space of μ square integrable
functions on Sf. If μx is any other quasi-invariant measure then it is
easily seen that L2(μ) and L2(μ1) are unitarily equivalent via multiplica-
tion by the square root of the appropriate Radon-Nikodym derivative.
One can show that this unitary transformation preserves all the structure
that we shall construct. For this reason the structure is determined by
any quasi-invariant measure μ which we shall keep fixed throughout
the sequel.

If m ζ M is a state, then it has been shown in [9] that the measure
m(X(m)) on B{£f) is absolutely continuous with respect to μ. This follows
using (2) and does not require that X be state determining or conditional,
only that X be a σ-homomorphism. Thus by the Radon-Nikodym theorem
there is a function / ζ Lx (μ) such that / ^ 0 and m (X (E)) = f f dμ for

E

all E £ B (Sf). If we define m — + f1^2, then m ζ L2 {μ) and m is the unique
(a.e. [μ]) non-negative function in L2(μ) such that for all E ξ

m(X(E))= fm2dμ. (3.1)
B

It easily follows from the state determining nature of X that the map
m -> m from M to L2(μ) is one-one; however it is not onto. From (3.1)
we see that statistically the location of our system is given by vectors
in a Hilbert space. Since this statistical information is all that can be
obtained in quantum mechanics the Hilbert space describes the location
completely.

1 For a discussion on quasi-invariant measures and their relation to group
representations see [8].
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pi Now let Fo be the complex vector space generated by M; that is,
Fo is the linear span of the vectors of the form m. Now Wg £ aut (L)
can also be thought of as a map from M onto M denned by (Wgm) (a)
= m(Wg(a)), m ζM, a ζL. Then Wg induces a natural transformation
Wg on M defined by Wgm = (Wgm)^. This map is well-defined since
m -> m is one-one. We next extend TF̂  to F o by linearity.

Theorem 3.1. The map g -» TF̂  is α continuous unitary representation
of G on Fo and Wgf{λ) = /(grU) (dμjdμ)1/* for all f ζ Fo. f T&e notation
ivill be explained in the proof.)

Proof. To show that g -> TF̂  is a representation we have

The Tinitarity follows from

(Wgm, Wam) = / {Wβmf dμ =

We now find the explicit form of #,,. For all E

= / ((W>O

= m(X(gE)) =

f {λVgmf dμ = / ( ( W > O ^ = (Wβm) (X(E)) = m[Wg(X(E))]
E B

Where ^^ is the measure defined by ^ ( ^ ) = μ(g-χ(E)) for all E
Now since μ is quasi-invariant we see that μg is absolutely continuous
with respect to μ, so again by the Radon-Nikodym theorem

4 f ^ foral1 ^
E

We therefore obtain

f(ftgti)*dμ = j mHg-n)^(λ)dμ = f {m{g-n) {d
E E E

It then follows that Wgm(λ) = m(g-1/J) [dμgjdμ)1l'2'(λ). Continuity now
follows by a standard argument.

Now let V = Vo the closure of Fo. Then F is a Hilbert space in
L2(μ) and since Wg is continuous on a dense subset of F it can be
uniquely extended to a unitary operator on F. We thus see that the
states M of our quantum system are represented by certain vectors jSί
in a Hilbert space F and that the symmetry group ^ is represented by
a unitary representation Wg on F.

We now consider the position σ-homomorphism X. It seems that the
most natural way to transfer X to F is to define the projection-valued
measure X from B(Sf) into the set of projections on F by X(E) — projec-
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tion on the closed span of {m : m(X (E)) = 1} = proj sp {m : m(X (E)) = 1}.
Notice 2{E) ^ proj {/ ζ L2(μ) :f = 0 a.e. [μ] on J&'}- T n e following pro-
perties of it are easily verified, (i) ί£(6f)= F, (ϋ) if E A-F, then
X($) 1 J^JF7), (iϋ) if ECF, then J£(j0) rg 1{F), (iv) j£(J0') ^ l W >
(v) HE ±F then ί ( # w ^ ) ^ 1(E) v JΓ(JF).

Unfortunately, j£ need not be a σ-homomorphism on F. In the
following case it is not only a σ-homomorphism but a position σ-homo-
morphism. A σ-homomorphism X : B(Sf) -> L is said to be smooth if for
any 22 ζ B{^) with μ(i2) φ 0 we have X(i2) φ 0. Since quasi-invariant
measures have the same null sets, this definition is independent of the
quasi-invariant measure μ. In many physical situations this condition
can be arranged to hold if it does not hold already. For example, if our
system is confined to a box we can take our space to be the interior of
the box instead of the entire three dimensional space. A quantum system
(J^, y , X, %?) is smooth if X is smooth. In the next theorem we use the
fact that X is conditional for the first time.

Theorem 3.2. // (Jδf, Sf, X, &) is a quantum system then the following
statements are equivalent: (1) X is smooth) (2) V = L2(μ); (3) 3£(E)
= proj {/ 6 L2; f - 0 a.e. [μ] on W}.

Proof. Suppose (1) holds and EζB(^) satisfies μ{E) Φ 0. Let
mζM satisfy m(X(E)) Φ 0. Then mx defined by

m^XiF)) = m(X{F r\E))lm(X{E))

is a conditional state on the range & (X) of X and is therefore the restric-
tion to &(X) of a state which we again denote by mv Then % satisfies

J m\ dμ = m^XiF)) - m(X(E r\ F))lm(X{E))
F

Therefore ?% = rhl\m{X(E)γi* - χEζV, so mχE ζ F. If m{X{E)) = 0,
then m = 0, a.e. on !£ so again fhχE = 0 ζV. We have thus shown that
if E £ J5(«^), m ζ if, then m ^ £ F. Thus if / ζ F we have ^E/ ζ F. Since
multiplication by characteristic functions form a maximal set of projec-
tions it follows that F is either L2 (μ) or all the functions in L2 (μ) which
vanish on some measurable set Λ. Suppose μ(Λ) Φ 0 and finite. Let
m ζM satisfy m(X(Λ)) == 1. Then / m2 dμ — 1 so m is not zero a.e. on

A

Λ which is a contradiction. If μ (Λ) = co we can use a standard σ-finite-
ness argument. Thus F = L2(μ) and (1) implies (2). To show (1) implies
(3) again suppose (1) holds. We have seen before that

t(E) C proj {/ d L2(μ): / = 0 a.e. [μ] on E'} .
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Now suppose h ζ L2(μ) and h — 0 a.e. [μ] on E'. Then since (2) holds h
is a point-wise limit of a sequence ft of linear combinations of m's. But
now χEfi -> h. Since from before mχE is in the range of ί£(E) we have h
in the range of X{E) and thus (3) holds. We leave it to the reader to
show that (2) and (3) imply (1) so that all the statements are equivalent.

Denote the logic of all orthogonal projections on L2(μ) by L. We see
by our examples in Section 2 that if X is smooth then X is a position
σ-homomorphism on £.

Now Wg induces an automorphism on L defined by Wg P — ffl'g PW^1

for all P ( £ .
Theorem 3.3. // {£?, £f, X, &) is a smooth quantum system then

X(gE) = W^l(E) for all g £G,E ζ B{^) and (G, Wg) forms a symmetry
group on L.

The proof of this theorem depends upon the following useful.

Lemma 3.4. If gl9 g2 ζ G, then ^ (λ) = *£*- (g^λ) ^f- (λ)

a.e. [μ\.
Proof. Using standard properties of Radon-Nikodym derivatives and

integral change of variables we have for E ζ

= / — 7 — ~ - (A) Q

= fdμ,M) =

gl1 E

The lemma then follows.
Proof of Theorem. For / ξ L2 (μ) we have

(W°X(E) f) (λ) = ( ^ ^ ( S ) ΐf,-1/) (A)

= (1(E)

= (dμgldμ)V*(λ) χE{g~n) f(λ) (dμ^Jdμ) (g^λ) .

By the above lexaτnii ̂  (λ) ̂ ^-(gΉ) =-^~ = 1 a.e. [μ]. Hence

(WsX(E) f) (λ) = ^(g- 1 ! ) /(λ) ^ %9£(A) /(Λ) = X(gE) f(λ). It is now
easy to see that the other axioms are satisfied so that (G, Wg) forms
a symmetry group on L.
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Letting & = (£, &) and % = (G, W9) we see that the structure of
a smooth quantum system (££, £f, X, @) is fairly accurately mirrored by
the Hubert space quantum system (J&, &*, 3t, Φ) induced by it. This
mirror is not perfectly accurate however, for the following two reasons.
Except for the propositions in the range of X there is no isomorphism
between L and L so the propositions in general are not represented by
L. Secondly, there is no provision for distinguishing between pure and
mixed states since all of the states in M are mapped into pure states in M.

Let us now consider the simple example of a three dimensional non-
relativistic quantum mechanical particle. In this case the physical space
6? is taken to be four-dimensional Euclidean space Sf = {(x, y, z, t) :
x, y, z, t ζ R1}. The transformation group of symmetries G is taken to be
the group of rotations and reflections in space together with the space-
time translations. The quasi-invariant measure on S? becomes the
actually invariant Lebesgue measure μ and the underlying Hubert space
becomes L2(R*). The coordinate functions fx, fy, fz, ft a r e defined by

fx(x, y, z, t) = x, . . ., ft(x, y, z, t) = t. If X is the position c-homomor-
phism, the coordinate observables fx(X), . . ., ft(X) ar© cr-homomorphisms
b a s e d o n Btf1) d e f i n e d b y f x ( X ) (E) = X{f~λ (E)), ...,ft{X) (E)

= X(ff1(E)), E ζ B{RX). The induced coordinate observables on £2(i24)
become fx (X) (E) = X (/-1 (E)) = χE, . . ., fz (X) = χE. (The time coordi-
nate observable is usually not considered.) Now E -> χE is a projection-
valued measure on L2(R*) whose corresponding self-adjoint operator is
multiplication by the independent variable. We thus have the coordinate
operators Ax, Ay, Az given formally by Axf(x, y, z, t) = xf(x, y, z, t,)

Ayf = yf, Azf = zf. The representation Wg on L2(R*) is given b}̂  Wgf(s)

= f(9~ls)> f 6 ^2(^4)> 9 ζ. ̂  since in this case -~ = 1. Thus the represen-
CL j.1

tation of the group of translations is Wgf (x0, y0, z0, t0) = f (x0 — x, y0, z0, t0),

. . ., Wtf(x0, y0, z0, tQ) = f(x0, y0, z0, ί0 — t). These are one parameter group

representations of unitary operators and by STONE'S theorem they have

the form Wx = e~~ιxPz, . . ., Wt = e~ίtPt where the infinitesimal genera-

tors Px = — i y - , . . ., Pt = — i-^j: are the momentum-energy operators.

4. Quantum Fields

In this section we show that the concept of a quantum field arises
naturally from that of a σ-homomorphism and in fact under certain
circumstance these concepts are equivalent. We first need some pre-
liminary definitions. A σ-homomorphism based on B(R1) is called an
observable. A collection of observables is compatible if their ranges are
compatible. I t can be shown [10] that a collection of observables is
compatible if and only if their ranges are contained in a common Boolean
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σ-algebra. In this section we shall assume that L is separable; i.e., every
Boolean σ-algebra is generated by a countable number of elements. It can
then be shown [10] that any Boolean σ-algebra is the range of some
observable. A Boolean σ-algebra in L is maximal if it is not properly con-
tained in a larger Boolean σ-algebra. A set of compatible observables is
maximal if the union of their ranges generates a maximal Boolean
σ-algebra. A set of compatible observables Θ is a complete set of compatible
observables if an observable x satisfying x <-> Θ implies x ζ Θ. Note that
a complete set of compatible observables is maximal but the converse
need not hold. It is easily seen that any set of compatible observables
is contained in a complete set (and hence maximal) of compatible ob-
servables. The above definitions can also be applied to σ-homomorphisms
based on any Boolean σ-algebra.

Let y be a physical space and let X:B(f9
?)-^L be a σ-homo-

morphism (not necessarily a position σ-homomorphism). If / : Sf -> R1 is
a measurable function we define the observable f{X) by f{X) (E)
= X(f~1(E)), E ζBiR1). It is shown in [10] that all the observables in
a compatible set are functions of a single observable and if the range of
an observable x is contained in the range of an observable y then x is
a function of y. Now suppose that x and y are compatible observables.
Then there is an observable z and Borel functions u and v such that
x = u{z), y = v(z). We define the sum and product of x and y by x + y
= (u + v) (z) and x y — (u v) (z) respectively. It is shown in [11] that
these are well defined, i.e., independent of u, v, and z. The expectation
or average value of x in the state mism(x) = f λm[x(dλ)] if the integral
exists. An observable x is bounded if m(x) exists and is finite for every
state m. It is shown in [11] that m (x + y) = m (x) -f- m(y) whenever
these exist.

Now if X : B(£f) -> L is a σ-homomorphism then X induces a map
/ -> Xf = / (X) from the set of measurable functions on £f into the set
of observables on L. The following three properties are easily verified,

(i) Xf <-> Xg for any measurable / and g

(ϋ) X is maximal if and only if {Xf : / measurable} is a maximal set
of compatible observables;

(iii) XΛf+βg=aXf+βXg, Xf.g = XfXg, for any α, β £R\ /, g
measurable. Now let \i be a pointwise Cauchy and dominated sequence
of measurable functions. (Jt is dominated if there is a g £ Lτ (μ) such that
|/̂ | <̂  g.) Using the dominated convergence theorem we obtain;

(iv) m [ | Z / < - Z / i | ] = / |/<(λ)-/ J(λ) |m[Z(ίλ)]->0 as i,j-+oo for
all m £ Jf.

If K is an algebra of continuous functions on £f which is dense
relative to the supremum norm in the space of all continuous functions
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on £f we define a K-field to be a map / -> Yf from K into the set of
observables on L which satisfies

(i') Γ ^ Γ , for all/,</£.£;
(if) {Yf'.f ζ_K] is a maximal set of compatible observables;

(in') Yaf+ββ = XYf+βYg, Yt.g = Yf Ye, α, β ζB\ f, g ζK;
(iv') if fi is a pointwise Cauchy and dominated sequence in K, then

Yj. is weakly Cauchy [i.e. (iv) holds].
We have seen in the previous paragraph that if X is a maximal

(T-homomorphism, then / -> Xf = f (X) is a ϋΓ-field for / ζK. We shall
now show that under a particular circumstance any iΓ-field comes from
a cr-homomorphism in this way. A quantum logic (L> M) is state separable
if there is a sequence of states mέ ζ M with the following property: for
every sequence xό of bounded observables on L which satisfy lim m^Xj)

= 0 for i = l , 2 , . . . , we have lim m(xj) — 0 for all m ζ M.

For example if L is the logic of all orthogonal projections on a sep-
arable Hubert space H then L is state separable. To see this let φt be
a complete orthonormal sequence in H. Then if A{ is a sequence of
bounded self-adjoint operators and Km (ώ^ AjφΛ = 0, i = 1, 2, . . ., it

j—>CΌ

follows that lim (i, Ajφ} = 0 for every φ ζH.

In [11, 12] it is shown that a complete set of bounded compatible
observables Θ is metrically complete with respect to the spectral norm.
We noΛv show Θ is weakly complete in the state separable case.

Lemma 4.1. // (L, M) is state separable, then a complete set of bounded

compatible observables Θ is iveakly complete. That is,

lim m(\xi — Xj\) = 0 , xif Xj £ Θ ,

for every m ξ M implies there exists x ζ (9 such that lim m{\xi — x\) — 0

for every m.

Proof. It follows from our previous discussion that there is an ob-
servable x such that y ζ Θ if and only if there is a Borel function u such
that y = u(x). Let xi ξ Θ be weakly Cauchy. Then there exist Borel func-
tions ιιί such that xt = u^x) and

/ \Ui — Uj\ m[x(dλ)] = m[\Ui(x) — Uj{x)\] -> 0

as i, j -> σo for every m ζ J f. In particular this holds for the m{, i^\,2,...,
in the definition of state separable. Denoting the measure E -> mi(x{E))
by mix, since L1(mlx) is complete, there is a function vt such that u{ -> υx

in mean [mlx\. It follows that there is a sub-sequence u\ ~> vλ a.e. [mlίC].
Now again since

/ \u\ - u}\ ?n2[x(dλ)] = m2[\u}(x) - u}(x)\] -> 0
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as ί, j -> oo there is a subsequence u\ of uj, and a function v% such that
u\ -> ί g a.e. [m2a.]. Since wf -> % a.e. [mlx] we must have two measurable
sets Rl9 R2CRX such that mlx(R1) = ^205(^2) = 0 a n d %? -** vi o n -^ί a n ( ^
wf -^ V2 O n -̂ 2* I ^ e n n e 2̂ °̂ ^ e Vl = V2 O n -̂ 1 ̂  2̂> Vl O n ^2 ^ -^L V2 Oϊϊ

Rτ r\ R'z and arbitrary on Rλ r\ R2> Then uf -> y2 except for a set of mlx

and m2x measure zero. Continuing, we get a sequence uf -> vn except for
a set of mlx, . . ., m,nx measure zero. Let v = lim vn and notice that this

n~+oo

limit exists except for a set N of mlx, m2x, . . . measure zero. We then
have for the diagonal sequence u]\, lim vβ — υ except on i\7. If we put

n—>oo

y = v (x) we have

™>i \u}(x) - 2/1 = / 1^ ~ 1̂ ̂ < [^(^λ)] -> 0

as / -> 00 for ί = 1, 2, . . . Thus if ε > 0 is given we have

™*[k - */|] ^ m z [ | ^ - 4 W | ] + mάHiz) -y\]<ε

for '̂ sufficiently large and this holds for i = 1, 2, . . . (j may depend on i,
of course). Since (L, M) is state separable we have m[\xj — y\] -> 0 and
α;; -> ̂  weakly.

Theorem 4.2. Let (L, M) be state separable and let f -> 7/ δe α K-field.
Then there is a unique σ-homomorphism X : B(£f) -> L swc/ι that Yf = / (X).

Proof. The Boolean σ-algebra ^ generated by the ranges of Yf for
all / ζ K is maximal. There exists an observable x Λvhose range is B such
that the Y/s are Borel functions of x. That is, for j ζ_K there is a %
such that Yf = uf(x). Let χE be the characteristic function of E ξ B(Sf).
Then there are functions /$ ζ jfiΓ bounded by ^^ which converge to χE

pointwise. Since the //s satisfy the hypotheses of (iv') Yf. is a weakly
Cauchy sequence. By Lemma 4.1 there is a Borel function v such that
Yf. -> v(x). We now define Y%E = v(x). I t can easily be shown that this
extended Y which may now be applied to characteristic functions is well-
defined and satisfies (i), (ii), (iii) and (iv). We now define X (E) = Y%E({\}).
We now indicate how to show that X is a or-homomorphism. Since one
can show

it follows that if E J_ F, then X(E) ± X(F). Also, if E 1 F then

- X{E) v X(F) .

The rest of the proof is left to the reader.
Corollary. // X:B{5f)-^L is a maximal σ-homomorphism and

Yf = f(X)> f ζK. Then Y is a K-field and X is the unique σ-homo-
morphism satisfying Yf — f(X), f ζ K.
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Let 0 - (G, Wg) be a symmetry group on (Jδf, ^ , X). Recall the
invariance of X is given for g ζG, E ζ B(S^) by

X(gE) = WgX{E) . (4.1)

If / is measurable and g ζG we define the function g (/) by g (/) (λ)
= f(g~xλ). I t is now easily seen that X satisfies (4.1) if and only if the
corresponding K-field Y satisfies Yg ( / ) = Wg Yf for all f ζK.

Let us now consider the concrete example of relativistic quantum
mechanics. The physical space becomes Minkowski space-time and the
transformation group G is taken as the inhomogeneous Lorentz group
or Poincare group. In this case K is usually taken as the test function
space consisting either of the infinitely differentiable functions with
compact support or the infinitely differentiable functions of rapid de-
crease. We will now generalize the concept of fields as they are usually
used in quantum field theory. By a Wightman field [13] on K we mean
a collection of maps Aλ, . . ., An from K into the set of observables on L
with the following properties:

(1) AM) <-> AΛg), i = 1, 2, . . ., w; /, gr ζ K;
(2) A i ( a f + β g ) = « A i ( f ) + β A i ( g ) , i = 1 , 2 , .. . , n ; f , g £ K ,

(3) WgAt(f) = A^gd)) (invariance);
(4) if an observable x satisfies x <-> Ai(f), i = 1, 2, . . ., for all / ζK,

then x = oil for some oc ζR1 (irreducibility) (7 is the identity observable
defined by I ({1}) = 1);

(5) if the supports of / and g are space-like separated then
Ai(f) <-> Aj(g), i = j — 1, . . .,n (local compatibility).

The invariance condition in (3) is for a so-called scalar field. For
a tensor field one would have an n X n matrix representation of G,

n

such that WgAj(f) — Σ ^jkiy"1) Ak(g(f)). In this case however one
fc = l

Λvould have to define what is meant by the sum of non-compatible
observables [14].

If D is a subset of a logic L we define Dc by Dc = {a £ L : a <-> D}.
It is easy to see that Dc is a sublogic of L. The following properties are
also easily verified.

(Cl) DCDCC;
(C2) Dc = Decc;
(C 3) if A C £ > 2 > t h e n ^ i C J5!
(C 4) if W ζ aut (L), then (Pf D) c - if D c .
By a Haag field [1] we mean a map # from the open subsets °lί of

space-time Sf with compact closures into sublogics H(A) of iy (A ζ °tt)
with the following properties:

(a) if ΔΛ C A2 then H (Δ±) CH(Δ2) (isotony)
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(b) if Δx and A2 are space-like separated then H(A^) <-> H(A2);
(local compatibility)

(c) ΓU H{A)]c c - L (irreducibility)

(d) H(gA) - WgH(Δ) (invariance)
where Δ,ΔvΔ2ζW.

Now suppose Av . . ., J n i s a Wightman field, and T{Δ)^{M[Ai{f)y.i
= 1, . . .,w, s u p p / C ^ I C A ^ £ ^ , where ^[4<(/)] is the range of ^(Z) .
We now define a map i? from tfl into the set of sublogics of L by H(A)
= T(A)CC and show that // is a Haag field.

(a) If 4 c Λ then {/ : s u p p / c Λ K {/ : sπpp/C/J2} so T{Δλ) C T(Δ2).
It follows from (C 3) that H{ΔJ C # (Λ)

(b) If Zlx and A2 are space-like separated it follows from (5) that
and T{Δ2)C ^ ( 4 ) c Using (C 2) and (C 3) we have

c c and T ( 4 ) C C C ^ ( ^ 2 ) c = T{Δz)
ecc. Hence

(c) It follows from (4) that ΓU H{Δ)λc - {0, 1}. We then have

{}
(d) It suffices to show that T(gA)= WgT(Δ) since then by (0

^ [WgT{A)]cc = WσT(Δ)ce= WgH{Δ). Now

: i = 1, . . ., ^, supp/C/1}

< = 1, . ., n, supp/C/1}

= 1, . . ., n, supp^C (7^} = T(gΔ).

This correspondence between the Wightman field Av . . ., An and the
above Haag field H is called a ZocαZ correspondence. One might ask if H
is a given Haag field, is there a Wightman field which is a local corre-
spondent to H [15] ? This appears to be a difficult problem and we shall
obtain only a simple partial result. We will need the following.

Assumption. For a given Wightman field Al9 . . ., An there are
σ-homomorphisms Xv . . ., Xn in 6? such that Ai(f) = /(Xz ), for any
/ e z , i = i,...,w.

This assumption is motivated by our correspondence between /^-fields
and σ-homomorphisms given at the beginning of this section.

If H is a given Haag field let us find a necessary condition for there
to be a Wightman field which is a local correspondent to H. Suppose
Al9 . . ., An is such a local correspondent. Then

H(Δ) =

= {Xi{E):i= 1, . . .,n,EcΔ,E
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Thus a necessary condition is that there exist σ-homomorphisms
X1,...,Xn such that H (A) = {Xt(E): i = 1, . . ., n, E C Δ, E ζ B{^)}cc.
W leave if to the reader to show that this condition is also sufficient.

Bibliography

1. HAAG, R., and B. SOHROER: J. Math. Phys. 3, 248 (1962). — HAAG, R., and
D. KASTLER: J . Math. Phys. 5, 848 (1964). — SEGAL, I.: Mathematical
problems of relativistic physics. New York: American Math. Soc. 1963.

2. PIROK, C : Helv. Phys. Acta 37, 439 (1964). — JAUCH, J., and C. PIRON:
Helv. Phys. Acta 36, 827 (1963). — JAUCH, J . : Foundations of quantum
mechanics. Reading, Mass.: Addison-Wesley 1968. — MACKEY, G.: The
mathematical foundations of quantum mechanics. New York: W. A. Ben-
jamin 1963.

3. ZIERLER, N.: Pacific J . Math. 12, 1151 (1961). — BODIOU, G.: Theory dialecti-
que des probabilities. Paris: Gauthier-Villars 1964. — GUNSON, J. : Commun.
Math. Phys. 6, 262 (1967) and the first reference in 2 of this bibliography.

4. MACLAREN, M.: Argonne National Laboratory Report, ANL-7065 (1965). —
GUDDER, S.: Rev. Mod. Phys. 40, 229 (1968).

5. POOL, J . : Baer *-semigroups and the logic of quantum mechanics (1968)
(preprint).

6. NEWTON, T., and E. WIGNER: Rev. Mod. Phys. 21, 400 (1949). — WIGHTMAN,

A.: Rev. Mod. Phys. 34, 845 (1962).
7. JAUCH, J., and C. PIRON: Helv. Phys. Acta 40, 559 (1967).
8. MACKEY, G.: Amer. J . Math. 73, 576 (1951); — Ann. Math. 55, 101 (1952); 58,

193 (1953).
9. GTJDDER, S.: J. Math. Phys. 8, 1848 (1967).

10. VARADARAJAN, V.: Comm. Pure Appl. Math. 15, 189 (1962). — POOL, J . :
Report SUI-63-17 (1963), State Univ. of Iowa. — RAMSEY, A.: J. Math.
Mech. 15, 227 (1966).

11. GUDDER, S.: Trans. Am. Math. Soc. 119, 428 (1965).
12. — Can. Math. J. (to appear).
13. WIGHTMAN, A.: PCT spin and statistics, and all that. New York: W. A. Ben-

jamin 1964.
14. GUDDER, S.: Pacific J . Math. 19, 81 (1966).
15. MISRA, B.: Helv. Phys. Acta 38, 189 (1965).

STANLEY GUDDER

Department of Mathematics
The University of Wisconsin
213 Van Vleck Hall
Madison, Wisconsin 53706, USA




