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Abstract. We show how to reduce the Plancherel theorem to one lemma which
is proved by elementary means.

1. Introduction

The theory of Fourier transformations on Lie groups though being
rather young and still incomplete has recently attracted the attention
of theoretical physicists. They are interested in particular in the basic
theorem on the inversion of the Fourier transformation, the so-called
Plancherel theorem. The groups, physicists are mainly concerned with,
are the homogeneous Lorentz group SL(2, C), which belongs to the
classical simple Lie groups, and the group SU (1,1) which is non-
classical. The proof of the Plancherel theorem for classical groups has
first been established by GELΓAND and NAIMARK [1]. In its original form
it is extremely tedious. Later on Gelfand himself found a more elegant
proof which exploits the connection between the Plancherel theorem
and integral transforms of the Biesz type [2]. Both proofs are repeated
in [3]1. HARISH-CHANDRA [4] dropped most of this dead weight and
reduced the proof to a few lemmas. For the convenience of the physicists
we undertake in this note to prove the Plancherel theorem for classical
groups with, a minimal number of elementary arguments, which in par-
ticular keep all constant factors under control.

Actually we perform the proof explicitly only for the complex uni-
modular groups 8L(n, C). The orthogonal and symplectic groups can be
treated quite the same way. Even for the non-classical group $£7(1, 1)
the Plancherel theorem can be proved in this fashion [5]. In the case of
the homogeneous Lorentz group the correctness of our lemma can
directly be inspected and the whole proof of the Plancherel theorem
becomes pedestrian. Since our proof is simple even in the case of a general
group SL(n, G), we refrain from separately dealing with the case
SL(2, C) which is of greatest interest for physicists.

1 In fact GEΠFAHD proves two Plancherel formulae which differ by a constant
factor, compare [3], Eq. 26.83 and ibid. App. I l l , Eq. 2.42. Our proof agrees with
his second result [2].
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2. Notations and a First Reduction

Let x(a) be a function on SL(n, C) with compact support and de-
rivatives of all orders, e be the unit element of SL(n, C). The Plancherel
theorem in the simplest of several equivalent forms is (see [3])

•I + CO + OO -f OO + OO

— — oo

By χ we denote a representation Tχ

a of the principal (non-degenerate)
series, we can fix the meaning of this symbol by a 2%-tupel of numbers

χ = {mv m2, . . ., mn; ρv ρ2, . . ., ρn)

where the mt are integers and the ρ$ are real. We normalize these numbers
for convenience by

mx = ρ i = 0 .

The weight function ω (χ) is defined to be

co (χ) = Π l(ρ9 ~ Qaf + K ~ ^α)2]
n > v > Q ̂  1

K^ is the Hilbert-Schmidt operator

K*=fx(a)T*dμ{a)

(for the normaHzation of the invariant measure dμ(a) see below). Its
trace is [3]

T r Z * = / dμ(δ) χ(δ) f x(z~>- kz) dμ(z) dμ' (k) ,

where δ,z,k are elements of 8L(n, C) of the typical form

o
For any complex variable w we use the notation

Dw = dt^ c£w2, w = w1-\- iw2, — σo < w1? 2
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Then the measures dμ(δ), dμ(z), and dμ (k) are defined by

dμ(z) = Π DziS,
%>j

dμ'(k)= Π Dμii9
i<j

dμ(δ) = Π iλtl^Dλt.

We note that dμ(z) and dμ(δ) are invariant on the respective subgroups.
In addition

dμz(k) = β{k)dμ{δ)dμ{k)

is left invariant on the subgroup K of matrices k if

If a = kz we have in this normalization

dμ(a) = dμt{k) dμ(z) .

χ(δ) is the "infinitesimal character" for the representation χ,

A representation of the principal series is obtained in the following
fashion. We characterize the right cosets of the subgroup K by the
matrices z. We introduce transformations of these cosets z due to group
elements a ξ SL(n> C) by

za = kza .

The principal series results if we set

where δ is the diagonal part of k, χ(δ) and β(k) are as defined earlier,
and the functions / (z) constitute an £2-spaee with respect to the measure
dμ(z).

Now we make one reduction of the Plancherel theorem which is
standard. With the short hand G(δ) for the inner integral in TrϋΓg we
can write

TrK* = fdμ{δ)χ{δ)θ(δ).
We notice that

n ( w i ) _

(-4)2 LLχ(δ),

L being the differential operator

L— ΓT (} - ? — 2 δ ^ ΓTλ d

H Mi) 33 ~ Λα 3 3 I XI Λs j y
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Partial integrations followed by summations over mi and integrations
over Qi reduce the Plancherel theorem to

{LLG(δ)}δ

This assertion is proved in the subsequent section.

3. Further Reductions and a Lemma

We introduce a function x(ά) with compact support and derivatives
of all orders in the 2n2 real variables of a, which coincides with x(a) on
the submanifold det a = 1. f(b) be its Fourier transform such that

Inserting this expression into G(δ) yields

I <m

[ n
Σ λs hs

8=1

where we use the notation

p<q

The operation LL can be exerted on G(δ) as follows. First we notice that
the dependent variable λτ enters G(δ) symmetrically with the other λi

and that we may therefore replace L by the operator

II \λv ^Λ — λq 2* I

i.e. formally include the differentiation with respect to λv This operator
A acts like

Λ exp Π
n

e xP Σ

as can be inspected by induction with respect to n, if we write A as
a Vandermonde's determinant

d

d Y'2
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This gives

{LLG{δ)}δ

ϋ

Udμ(z) Π \Kv-hutf Π δ(hr,)\
( n^p>q^l n^r>s^l J

where δ(. . .) are two-dimensional delta functions. Thus our proof will
be completed if we have shown that

fdμ(z) Π \K*-h<\* Π *(*„) = n!.
n7

This we call our lemma. The condition for a coset z to be stationary
under the action of a group element a is

(zaz^ij = 0 for i > j .

The integral in the lemma defines therefore an average over all the
stationary cosets for any given element a = b.

The lemma is proved in two steps. We write

h = z' + V - e

and show first that the Jacobian between z' and z is

Π (Ka - Kv) -

Second we prove that for any given b (apart from a set of 6-measure
zero) the equation

V = zbz-1

has exactly n\ different solutions z. Both issues are easily settled.
By straightforward computation we derive the relation

which if multiplied with zsm, s < I, and summed over m yields

f z l^k^δ h -δ h
m = l S m dZlm V SQ SQ P

At z' = e we obtain this way

= 0 , p>l,

which implies

= π
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In addition we have the result

q,m

φ-1

Π (ha ~ Kv) >

from which our assertion follows immediately.
The second part of the proof of our lemma makes use of the fact

that a matrix b with distinct eigenvalues (almost all b are of such type)
may be decomposed into the product

where for a given order of the eigenvalues, s is unique up to a left factor

δv Moreover we may split up s uniquely as

s — hxz

again for almost all b, the ambiguous factor δλ being absorbed in kv

This yields
k' = zbz-1 = if 1 δJ^ .

Given the order of the eigenvalues of b, z is unique. Since there are n\
different orders of the eigenvalues, for almost all b there exist n! different
solutions z as asserted.
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