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Abstract. We give an integral representation for tempered distributions which
have more general support properties in x space, than those usually assumed in
the derivation of the Dyson formula.

The existence of such an integral representation is shoΛvn to be equivalent to
that of a suitable extension of an analytic function: namely, given an analytic
function on a section Ω of a domain of holomorphy Ω' extend it to Ω imposing on
it some growth conditions.

L2 space methods of L. HORMANDER are used to solve this problem of extension.
In order to apply these Hubert space techniques, it was necessary to prove two
important theorems on the growth of analytic function.

From the physical point of view the formula we obtained is an integral represen-
tation for the commutator of two quasi local fields.

Introduction

Let us consider the Fourier transform of the commutator of two

operators in the Haag Araki theory:

) , B (-!-)] Styd'x. (0)

In the above formula, A and B are local observables contained respec-

tively in the von Neuman algebras R(&A] and R(έ$B}.

A(x) = U(x)AU(~x)

B(x) = ϋ(x) BU(-x)

U(x) = e*(p>*) ,

P is the energy momentum operator [4], the scalar product (p, x) means

Poxo — Pιxι — P2X2 ~~ Psx3> and Ω is the vacuum state.
The tempered distribution / has the following properties:

a) its support is contained outside a region 8% which is roughly

bounded by two spacelike surface (for a precise description look at

Refs. [0, 1, 2] and especially pages 323-325 of Ref. [5]).

b) According to the causality condition, its Fourier transform

vanishes on the set1:

1 Let S and T be sets in RΛ, then S + T = {x ζ R n |α = s + t\ s £ 8, t £ T};
for any x, y ζ R4

x ~ y means (x - y)* = (xϋ ~ ?/0)
2 - (xl - ytf - (x2 - ytf - (x3 - y^ < 0 .
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Conditions a) and b) are close to those encountered in the Jost-Lehman-
Dyson representation [1,2]. On the latter case, indeed, condition a) does
not change and condition b) simplifies (one asks for the nullity outside
the light cone).

Our purpose is to extend the Jost-Lehman-Dyson representation to
tempered distributions which have properties similar to a) and b).

First we modify slightly condition b). Since A and B are local
observables &B — &A is a bound set in R4.

Define2 then W(α, β) = {x ζ R 4 |α ζ V~ r\ V$} for α > /S

D(£X5 jg) = fo ζ R 4 |χ ζ F^" w F^"} for α >

α, 0 ζ R4, and Kc = U r^ W(ρ, σ) [6].

Then, the boundedness of K implies the boundedness of Kc and if x is
space-like relative to K it is also space-like relative to Kc. Therefore we
can take K = Kg without altering the causality condition.

K being bounded, there always exists α, β ζ R4, α > β, such that ./£
is contained in W(oc, β) and consequently condition b) implies that the
support of the Fourier transform is contained in D(α, β). However we
will replace D(α, β) by D(α, - α) = D(α) with α - (α, 0, 0, 0). Such a
domain can be obtained by a suitable change3 of coordinates in x- space.

Secondly, because of technical reasons (Buos5 theorem) we have to
restrict condition a). The region & has to be symmetrical with respect
to a hyperplane pϋ = (7*. Henceforth from a given έ% region we will build
the largest &$ (3% region symmetric with respect to p0 = C*) region con-
tained in 0i. Notice that we can always take pQ = 0 by a suitable trans-
lation in p space which does not change the re-space support properties.

Under these assumptions, we shall prove the following:
Main Theorem. Tempered distributions satisfying the conditions
a7) the support is contained outside a region έ%s,
V) the support of the Fourier transform is contained in D(α) can be

written :
/(&)= / F(x-t t)dH (I)

C(Λ)

with

i) £7(α) = (t 6 R8|μ|| = ̂ fTfTTl ^ α}; * = (0, ί).
ii) $(x\t) belongs to ^"(R4 x R3).

ϋi) F ( x ; t) is, for "fixed t", a solution of the usual Dy sorts problem

_ F(x,t)^ f A ( x ' , σ ) < ψ ( x ) σ ' , t ) d σ , a ζ R+
2 α > β means (α — β)2 > 0 and α0 > β0

V-χ={x^ R 4 μ < «} F^ = {x ζ JRΛ\x > β} .
3 This change does not affect the region ^ whose border is described in terms

of invariants.
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ψ (x} σ; t) has compact support in t and is such that

f ei(u,x) ψ(χ)(Γ) t)d*X= 0

if there exists p £ &s such that (p — u)2 ~ a.
iv) suppΛ; ΐKC^α).
Equality (1) has to be understood as follow:
Let φ(x) ζ^(R4) then [3]

Denote by ε the map (x, t) -> (x, t). Because of condition iv) we have
a mapping

φ' = φQε: R4 X R3->^(R4) .

Therefore there exists ψ(y, t) ζ_^( R4 x R3) which coincides with
φ(y -\- t) on the support of F; this gives a meaning to formula (Γ).

Notice that iii) means the "support in #" of F(x\ t) is contained
inD(O).

In order to prove the usual representation, we can use two kinds of
approaches. One method consists in using a differential equation [0, 1,5],
an other one is related to the construction of an envelope of holomorphy [2].

It seems very difficult to use again the differential equations for more
general support conditions in #-space. On the other hand, we will show
that the validity of the integral representation (1) is still connected with
the resolution of a problem of functions of several complex variables.
More precisely, given an analytic function / on a linear section of a holo-
morphy domain we will have to find an extension of this function to the
whole space. This extension has, according to the support conditions
and the temperedness, to satisfy some bounds.

In order to solve this problem we will use the L2 space methods
developed by L. HORMANDER [8], which will permit us to obtain existence
theorem for analytic functions, with growth conditions at the boundary,
in pseudoconvex domain.

Therefore we will first show that the support properties for / are
equivalent to the existence of an analytic function in the envelope of
holomorphy Ω of a certain domain ω.

From the general requirements of field theory, this analytic function
must possess in ω some growth properties that we will extend in the
second part to Ω. At this stage, however, we will be confronted with the
difficult question of how growth conditions at the boundary change for
an analytic function when we continue it to the enveloppe of holomorphy.

In the third part, the validity of formula (1) is then shown to be
equivalent to

1 . the existence of a function F analytic in a domain which contains
Ω as a linear section and which restricts to / on Ω
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2. the fulfillment by F of some growth conditions.
In the last part, we will apply HORMANDER'S technique to solve the

problem defined by 1. and 2.

I. The Domains ω and Ω Associated with / and Growth Properties in ω

The support of / is contained in a domain D(α) which is regular [3].
We can therefore decompose / in two tempered distributions /+ and /~
such that

2. supp /+C {x 6 R4 |* ζ F±x ,τ0 > 0} ,

supp /- C {« ζ R41 a-1 ζ F~ α 0 < 0} .

Consider now e1^,®). If Imp ζ F+, that is to say if p ζ 21+, the restriction
of ei(v>s^ on F+ (in #) coincides with an element of ^(1R4). The action
of f+ on e*^*^ is well defined and the result depends analytically on p.

Therefore the Fourier-Laplace transforms /± (p) = (/± (x), ei(<p>x^y are
analytic functions respectively in T+ and T~. Note by b.v. /+(b.v. /~)
the tempered distribution boundary value of f+(p)(f~(p)} when Imp
goes to zero from inside F+(F~). As a classical result in distribution
theory we have

b.v. /+ - b.v. /- - J*7

where by 3F] we means the Fourier transform of the tempered distribu-
tion /.

From the support condition for the Fourier transform one gets that
for any φ(p)ζ&'( 1R4), with

This result implies that for any such φ

<b.v. /+, φ} = <b.v. /-, φ} .

We are in position to apply the "Edge of the Wedge" theorem [5, 7],
which states that there exists a function f(p}, analytic in the envelope

of holomorphy Hψl\ T+, T~) = Ω of ω = 3t \J T+ \j T~ with $ an
arbitrary small neighborhood of & in C4, such that

and the boundary values of f(p) on the reals from the tubes T+ and T~
are respectively b.v. /+ and b.v. /-.
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We now propose to give the growth properties of f(p) in ω. Since
/ = / + — /- we only need to know the properties of the Laplace transform
of a tempered distribution which support is contained in the light cone.

We present here a result which is due to GLASER [7].
Lemma. Let f+ be a tempered distribution with support in V+\ then

there exists an integer N > 0 and a continuous function G with support in
V+ and of polynomial growth such that f = Π^ $•

Proof. Define

)7 W Λ> (*) , (* ̂  1 > integer)

then for k ̂  1 , in the sense of distributions.

DΛ(*)=Λ-ι(s)
and

Q ΐ\(x] = Δκ(χ 0) , D ΔΛ(x; 0) = δ(x) .

Since /f is a tempered distribution over 1R4 with support in V+,
there exists an integer N' and a constant 0 > 0, such that for any

Therefore /+ can be extended into a continuous linear functional on the
Banach space obtained by completion of ^(R4) according to the norm
|| \\N>. But .Fjv '4! is a function which has continuous derivatives of the
N' first orders and D^'^^V + i = δ(x).

Define
Q(x) = f+*#2r + ί ( x ) .

G is a continuous function of x and there exists a constant KN> depending
only of N' and such that

\θ(x)\ = |/+*^ + 1(α;)| <CKχ,(l + lx\\)^'^

and/+= ΠN' + *G9 q.e.d.
The former demonstration was founded upon the fact that elements

of ^'(TR4) with supports in V+ form an algebra for the convolution
product. Distributions which have support contained in a set A (A C V+),
A being such that A -f V+CA, form an ideal of this algebra, therefore
supp G C A .

λVe now apply this result to f+(p)>

f+(P) = </+

5 e* (».*)> = <τα/+-, e*^35-"))

= τα/+,e ί ;^' a ;)e-^ ( ) α

j ζ T+ .
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τα/+ is defined by

<τJ+> ψ} = </+> τ-αφ> for any φ £ ̂

(τ_α9?) (a;) = φ(α - α) .
Thus

a ζ R α ; ζ F + 5 α ; > α C F+

Obviously ^4 + V+ C -4 and therefore

with supp 6r C ^4
From \G(x)\<C'(l + \\x\\)M follows

^ 2πC'\(p*)N'+2\ f dx0 f (1 + ||a?||)M e-^^^e'^^l
α 0

and if we call d ( p , T+) or (ί the distance of p £ T+ to the boundary of
T+ then

In the same way we can prove that

\Γ(P)\ < C- \(tf)\»- (l + i)l1ί~ellmp|α , P € T-

and, from the theorem of the Edge of the Wedge, we get :

C \(p*)\N (l + aef\^P\ , p 6 ω (2)

where the constants 0, JV and Jf are the suprema of those which appear
in the corresponding inequality /+ and /~~.

We now want to extend this majorization to the envelope of holo-
morphy Ω = H(ω).

II. Growth Properties of / in fl

We proceed in three stages. First we show that a function analytic
in co, bounded there by eα'Imι>l keeps the same bound in H(ω). Then, by
a suitable procedure of regularization, we suppress the polynomial growth
at infinity in order to apply the result on the exponential bound.

1. Functions Bounded Exponentially in a Domain of Jost-Lehman-Dyson

We just state the theorem, the demonstration of which is found
in Appendix I.
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Theorem I (BROS). Let f(p) be an analytic function in H(&; T+, T~)
satisfying the inequality

Ce«^, pζω

then it satisfies in Eψt\ T+, T~)

\f(p)\ <Ce<x\Im*>\ .

2. Elimination of the Polynomial Growth

In inequality (2), we can replace p2 by (p — p')2 — m2, by changing
the constant C if necessary. According to the conditions [5] imposed to
the region &, there always exists a pair (p', m] such that [(p — p')2 — m2]"1

is an analytic function of p in & \j T+ \j T~.
We then define

g (p) is analytic in & w T+ \j T~ and satisfis

We now want to get an estimate of the growth oίg(p)inH(&\ T+, T~)
after suppression of (1 -f l/d)M.

3. Regularization and Deregularization Procedure

The term l/d comes from the fact that f(q) is not a 0°°-function on
the boundary of the domain of holomorphy. We can suppress this
behaviour by smearing with test functions the boundary values of f(p).

i
Let χ(r) belong to Cg°(R+), with supp# ζ [0, 1] and f r χ(r) dr = 1.

o
Then χa(r) = χ(rlά), a > 0 satisfies / r χa(r) dr — α2.

For q ζ C4, ρ ζ R denote by D (q ρ) the polydisc {p ζ C4 1 \\p — q\\ g ρ}.
If D(q, a) C ω, from the analyticity of f(p) in ω we get for ri < a,

i- 0,1,2,3

f(p) = (2π)~4 f f ( p Q + r0 e
ίθ°, ...9pΛ + rΛ eiθ*) dθ0 . . . dθ,

= (α)/2^)-8 f f ( P o + r0 eίθ*, . . ., p3 + r3 eίθ*) χa(r0) . . . χa(rB)

- r0 dr0 dθQ . . . r3 6?r3 cZΘ3

if then we set

= (αJ/2ir)-"//(p - I - i
-O
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Let us define now Tφ^(p) by

+ l/αa-r)| 3

φ) = S I Hp-fiΠxaψηf + φdξ,. (3)

For every a > 0, this formula defines Tφ« (p) as an analytic function of

p in &a \j T+ \j T~, where

λvith

But 3#a \j T+ \j T~ is not a domain of holomorphy, therefore Tφ« (p)
can be analytically continued in to the envelope of holomorphy

H(&a w T+ w T-) of Jα w T+ w T-.
When Im£> goes to zero in the tubes T+ and T~, the convolution (3)

defines Tφ» (p) as a C°° function. It is the regularization of the tempered

distributions /+ and /- by the (7°° function ψη = fj Xa(Ϋ/tlf + ff)

fixed and \ηά\ ^ α.
We now introduce Fa (p)

/ / T*. (p - ίη) dη0, . . ., dη3 (4)
— α

F a ( p ) is analytic in4 \H(βa \j T+ \j T~)]a and f(p) = Fa(p) in

We show in Appendix II that for domains of the Jost-Lehman-Dyson
type, ^ being suffisantly "regular", there exists for a given ε(ε > 0),
small enough, an integer n independent of ε such that

\H(<% \jT+\j T-)]allntH($a w T+ \j T~)cΩ , a < ε . (5)

In the following we will go to the limit a = 0 in the different majoriza-

tions we will obtain. Therefore it is necessary that lim H(&a \j T+ \J T~)
α~»0

= H(M \j T+ \j T~). This equality means that "taking the envelope of
holomorphy" commutes in this case with taking the inductive limit or
lim H(DV] = ^(lim Dv). This result is obtained with the help of relation
(5). In fact we have HVCHV(D}CH(D] and the domains Hv (here

Hv = Ha = \H(£% \j T+ \j T~)]aιin) form an increasing sequence approxi-
mating H(D) from the inside. Therefore according to a well-known result
in (FuKS [9]), lim Hv = H(D) and the result, we need, follows.

4 Let K bo an open set in C4, [K]a means [K]Λ = (qζK D(q,a)CK}.
Obviously [K]aζK.
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In Appendix III we show that Tφ« (p) is bounded by M eα!Imp'/αw

in &a \j T+ \j T~, therefore, according to Theorem I, it has the same

bound in H(&a \J T+ \j T~), a being a fixed constant.
We extend this bound to Fa(p), with the help of (4):

\Fa(p)\ ^ M(π)-4α~(™ + 4) e^l^~θ\ p £ [H($a w T+ \j T~)]a (6)

and 0 = (Θ19 θa, Θ3) such that |0f| < α.
We now remove the α-dependence. Choose ε small enough so that

results of Appendix II can be applied. For any p £ H(& \j T+ \j T~)
there are two possible cases.

a) d > η + ηn.

d is the distance d(p,[H(&CUT+ ϋT~)) = d(p, dH) and ηn = ε. Then
according to the result of Appendix II we can find a number a, such
that (Fig. 1).

Fig. 1

a < ε ,

d <a

n~l) - C*ln a1/"

From alln < η we get

d(p, dH) < al/n(l + an~l/n) < al/n(

and ε being small enough, Oη < 2 and dn < 2 a.
Therefore, from (6)

\Fa(p)\ < M(π)-*2m+*d-n(m + *ϊ

or since a < ε, there exists Jf ' independent of a such that

1^(^)1 ^ M' d -«<™ + 4) eβl I mPl . (7)
b) d> η + ηn.

One can choose any a < ηn = ε and according to (5),

w T+ w T-) ,

therefore #) ζ [H(&a \j T+ \J T~)]a and the majorization (7) is valid with
a constant M" independent of p for d(p, dH) > η -}- ηn.
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Finally for any p in [H($a \j T+ w T~)]a we have:

with M independent of ε.
We deduce from this result that

1 \n(m + 4) lτ ,
-jj e

α'Imί)l for pζ[H(&a\jT+\jT-)]a (8)

since we have a bound which is independent of a, it is possible to pass
to the limit and

In collecting the various results we get

Theorem II. Let f (p) be an analytic function of p in έ% \J T+ w T~
fullfilling the inequality

M

then, for 0t sufficiently regular, it fullfils in H (2& \J T+ \J T~)

'. (9)

M' being a constant which depends only of M and of the regularity of &.

III. Conditions of Validity of Formula (1)

We now give a set of properties for the Fourier transform of F equi-
valent to the validity of formula (1). Our main tool will be the Paley-
Wiener-Schwartz-Hormander [6] theorem which connects growth prop-
erties to support conditions.

Theorem. Let K be a convex compact subset of lRn. Let H be the support-
ing function of K. Let fbea distribution with support in K. Then its Fourier
Laplace transform obeys the following inequality:

α) |/(p)|ί£ 0(1 + \\p\\)N

 es(^>, p ζ €n

where N is the order of J and H(p) = sup^ # (p, x).
Conversely every entire function analytic in O satisfying (α) is the

Fourier -Laplace transform of a distribution with support in K.
Suppose now the validity of formula (1), the support in 'V o f F ( x , t)

being contained in Z>(0), we can decompose F(x, t) in F^(x, t) [3,5]
such that the support in 'V of F+(x,t) [resp. ff~(x9t)] is in V+

(resp. V~), the support in "£" remaining unchanged, and:

F(x',t)=F+(x'9t)-F-(x;t).

For p belonging to T+ (or T~) the action of e*<^) e~ί(M) on F+(x, t)
(x, t)] is well defined and the result depends analytically on p and s.
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Hence, we define the analytic (entire in s) functions

F+(p, s) = (F+(x, t), eϊ^*^ e~ί(8'^y , p £ T+ ,

According to condition iϋ) of the main theorem for any φ (p) ζ £f (1R4)
with supp φC& and for any s ζ C3, one has:

therefore we can apply the Edge of the Wedge theorem for functions
depending analytically on s, and consequently there exists a function
F(p, s) analytic in Ω x C3 whose restrictions on T+ and T~ are respec-
tively F+(p, s) and F~(p, s).

Now, from formula (1) we get

F(P, «)!.-„ = /(?), Pζβ (10)

According to the Paley- Wiener theorem conditions iv) implies :

\F (̂  *)\<C(p) (l + ||s|])^eαl lmsl (11)
f o r f e s ) 6 β χ €3.
This inequality restricted to s = p gives

\f(p)\ < C(2?) (1 + \\p\\)L e«\Im*\ for p ζ β .

This result is consistent with the growth properties, we directly found
for / (since |p2] ^ \\P\\2) if @(p) is polynomial in p.

We have to remark that the conditions imposed on F(χ-, t) in the
main theorem do not in any case imply the unicity of the formula. In
particular the orders (relative to x or ί, or both) are not specified for the
distribution F.

Different types of growth can be proposed, which are compatible
with (9) and (11). For instance5

α) \F(p, s)| < C (l + ~)M' (1

β) \F(p, s)\ <θ(l + ~]M\l

+ \\s\ **

γ) \F(Pί s)| < C l + - (1 + M2 + ||p - s||

the exponents A are chosen in such a way they are compatible with (9).
Therefore from formula (1) we get the existence of a function of p

and s,F(p, s), analytic in Ω x €3, whose restriction to s = p is f(p) and
which satisfies α), /?) or γ) with suitable exponents.

Conversely, if we know F (p, s) satisfying the former properties, one
can prove that there exists between J(x) and F(x, t) [reconstructed from

5 In these inequalities d means either the distance to Q Ω in C4 or the distance
to C (Ώ X C8) in C7, since they are equal.
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F(p, s)] a relation of type (1). The important step, in this proof, is to
recover the support in "f" by the help of the Paley- Wiener theorem.

This proves :
Theorem III. A sufficient condition for the validity of the main theorem

for an f as in Theorem II is the existence of a function F (p, s) analytic in
Ω x C3 and such that :

2)

A being such that A ^ N.
We have stated this theorem with the choice of a α-type growth

condition. We shall henceforth confine ourselves to this growth condition.

IV. Existence Theorem for F (p, ίΓ)

At this stage we will use the technique of L. HORMANDER following
essentially the article: "Z2 estimates and existence theorems for the 9
operator" [8].

First we need a function φ plurisubharmonic in Ω such that

with d VΩ the Lebesgue measure on Ω.
From the estimate (9)

,> e-2α|Imp| / d \2M /

J l/(p)l2τrTH p^ dVβ

is finite. We have added an extrapower n to (1 -f- ||^||2) in order to insure
the convergence at infinity (if m = dimc Ω, 4 π ^ w - j - ε ( ε > 0)).

This inequality implies that f(p) ζ J^0>0) (φ, Ω)6 with

φ(p) = 2α |Imp| + 2Jf ; sup(- logd + log(l + η), log^-ffl

+ 2(N + n)log(I + \\p\\*),

η being an arbitrary strictly positive number.

We have replaced — log -. , by sup I — logίZ -f log(l + η), log -- J

in order that plurisubharmonic functions appear. We show in Appendix
IV that φ (p) is plurisubharmonic.

We will show that there exists F(p, s) analytic in Ω x C3 and which
belongs to L2(φ(p, s), Ω x C3) with:

φ(p, s) - 2α |Ims| + 2M' sup - logd -f log(l + η), log ~

_ + A log(l -f W 2 + lisp) .
6 / £ L(p ) (99, Ω) means / is a differential form of type (p, q) and φ being

a function locally bounded from above, measurable in Ω, f\f(p)\2 e~φ d VQ exists.
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The coefficient A will be specified later. We show in Appendix IV that
φ is plurisubharmonic and that its lower bound of plurisubharmonicity
is given by eχ with :

We can consequently apply Theorem 2.5.1 of Ref. [8] modified for our
purpose.

Theorem IV. Let φ be a plurisubharmonic function in Ω x C3 and φ
be a plurisubharmonic function in Ω, Ω being a pseudoconvex open set in
C3, such that

\φ(P,*)-ψ(p)\^C for | p - s | g l , pζΩ, s ζ C 3 . (14)

Then for any function u analytic in Ω such that

f \u\2 e-vdσ < + oo
Ω

da where is the Lebesgue measure on Ω, there exists an analytic function U
in Ω x C3 such that U = u in Ω and

f |C7|2e-^(l + ||^||2-f |lsp)-9^F^ K f

K being independent of u.
The difference between this theorem and that stated by HOBMANDEB

lies in the fact that relation (14) is different and Ω is not the whole space.
We sketch here a demonstration of Theorem IV.

1°) Extension of f(p) to Fl(p, s-J analytic in Ω x Cr

Let

Fι(P> *ι) ̂  f(P) χ(Pι ~ sι) ~ (Pi - *
with

such that
f 1 \Pl -s, < 1/2

To prove the existence of F^ (p, sj we have to prove the existence of ψ.
From the analyticity of Fτ it follows that

Jc

where z is a point in Ω x Cα, i.e.

which can be rewritten

~-

There exists such a g since, when \p1~ s ̂  <l/2, dχ = 0. Thus, g is
a differential form of type (0, 1) satisfying Sg — 0. We show now, that
17 Commun. math. Phys.}Vol. 11
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there exists a form ψ of type (0, 0) in Ω x Cj such that dψ = g. We need
the following theorem (UORMANDER, Ref. [8], Theorem 2.2.1').

Theorem V. Let Ωf be a pseudo-convex open set of Cn, let φ be a pluri-
subharmonic function on Ω' and e%, χ ζ C(Ω'), the lowest bound of pluri-
subharmonicίty of φ. Then for any g ζ Lfp,q) (Ό'j loc)7 q > 0 and such that

Ω'

one can find a form ψ ζ Lpsq_l(Ωf, φ) such that

-vdV^ f \g\* e~(v+v dV .
Ω' Ω'

In our case we choose φ and φ given by (12) and (13), with A = 2 (N -f- n)}

then they satisfy relation (14) (see Appendix IV).
Define

φ(p,s1) =

Now let us estimate / \g\2 e~φι d VΩ x Cι

f f f
Ω [\pί-81\\<l

f f

in the unit disc. This result shows thatwith c j, the upper bound of

g £.L^0)1) (Ω x C1? ψi) with φ1 strictly plurisubharmonic.
By choosing

with

we can apply Theorem V and, from it, we get the existence of ψ (p, s-^

ζ ^fo.o) (^ x ι̂> ^i) sucn ̂ at dψ = 9
There exists consequently, an analytic function Fl(p, sj in Ω x C1?

which restricts to / (p) on the hyperplane s^ = p± and satisfies

2°) We can make again the same construction with, now, F^ (p} <%)
as initial function. Step by step we arrive to F(p, s). Therefore we can
state the

of Ω.
L2 (Ω, loc) is the space of functions square integrable on any compact subset
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Theorem. Let f(p) be an analytic function inΩ, domain of holomorphy
in C4, satisfying

\t(p)\ ^ Ce«l to»l (1 + lpl*)V (l + ̂ -)M', P £Ω

then there exists a function F(p, s) analytic in Ω x C3 such that

2) / \F(p, s)|2 e-'fr ) (1 + \\p\\* + l|sf)-9 dF < + co

with φ(p,s) = 2α|Ims| + 2 JT sup(- logtZ + log(l + J7),log^t

+ 2 ( Λ r + n ) l o g ( l + W« + |βH.
From inequality 2) we can deduce a majorization for F in Ω x C3

From the positivity of the integrand it follows that

/ \F(p, s)|2 e-*<*. >(! + bl2 + I s||2)-9 d V < + oo
c,

almost everywhere in p.
By CAUCHY'S integral formula this implies that

is bounded for almost every P. But the continuity of F and the semi-
continuity of φ implies this for every p. Therefore we have

Theorem V. Let f(p) be an analytic function in Ω domain of holo-
morphy in C4 and satisfying

\f(p)\ <S C e«^el (1 + \\p\\*)» l + , p

then there exists a function F(p, s) analytic in Ω x C3 such that

l)F(p,8)\. _ p

2) lί ίp, 8)| <

ε being any positive number.
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Appendix I

In a preliminary version of this work, we needed a theorem of BROS
concerning functions bounded by eαl lmp°l in a domain of JOST-LEHMAN-
DYSON. We give here a proof for functions bounded by eαl l m pl which is
very close to the BROS' one.
17*
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Theorem (BROS) . Let f (k) be a function analytic inΩ = H(3t\ T+, T~) 8

ivhich satisfies

\f(k)\<Ce«W k^p + iq kζdl\jT+vT-. (1)

Then it satisfies in Ω
\j(k)\ ^ C e«W . (2)

Define F(w, k) = [C e~iw - f(k)]~l with 10 = u -f ίv, C being the posi-
tive constant of inequality (1). F ( k , w) is analytic at any point (w, k}
such that f(k) is analytic and C e~iw — f(k) different from zero. From the
hypothesis, tins last condition is fulfilled if

k € ̂  w T+ w T- ,
\e~iw\ ^ e α W or v ̂  α|g| .

Thus _F(w, &) is analytic, in particular, in a neighborhood of the union
of the following three regions :

the tube T+ = {(w, k) v >a\q\, q ζ V+}

the tube T~ = {(w, k} \v > oc\q\, q£V~}

the real region ̂  = {(w, k)\v = Q , g ^ O , k = p ζ&} .

Consequently .F(ttf, A;) is analytic in the envelope of holomorphy of

^ W T+ w T~, where ̂  is the intersection of a complex neighborhood
of ̂  (in C5) with the convex envelope T of T+ w !Γ~. We are going to

show that the envelope of holomorphy of ̂  u T+ u T~ is :

First, we restrict ourselves to the case where the ά-space is 2-dimen-
sional, and prove the following lemma.

Lemma. We consider in the space C3 of variables w = u -f iv,

ϊτ/- - {(w, Ci, C2) v > α |̂ i - ^2| , T?! < 0, ?72 < 0}

the region

»' = {K d, f 2 ) | v = % = % = 0 (f1? ίa) 6^}

^ bounded with space-like curves and h-convex in the space (ξl9 ξ2).
Let T' be the convex envelope of Tf+ vj T'~ and Ω' the domain of DYSON

associated to 0i' and to the tubes

{(fι>ίa) |%>Ma>0} and {(ζl9 Ca) |^ < 0, η, < 0} .
Then, the enveloppe of holomorphy of T'+ w T'~ w &' is the intersection of

8 We remember that 0t is h- convex, which means that every branch of admis-
sible hyperboloid (in DYSON'S meaning) cuts 3% along a connected arc. Under these
conditions ^ coincides with the set of all the real points of Ω.
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Proof. Tr is the union of T'+, T'~ and the tubes

TI - {(w, fι> C2) |«» α |*7ι - *?2 |> *?ι > 0, ^2 < 0} ,

^2 = {(w, £ι» £2)h> α 1% ~ *?2|> *7ι < 0, ??2 > 0} •

Tj can be looked at as the convex envelope of the union of the edge

4 = (% = 0, *7ι>0, v = α | % - ί 7 2 | ) of T'+,
and the face

Φ - (ηz < ϋ, 7h > 0,v ^ α |tyι - ifcl) of 2"- .

Consider, then, ^4 as belonging to the boundary of the tube

Θ - {(ιv, £i, £2) 1 *72 > 0,77! > 0, */ = v -<%(%- f f g ) < 0}

and Φ as belonging to the boundary of the opposite tube. We are lead

to calculate the envelope of holomorphy of Θ \J — Θ w £%' and to restrict
it to the tube 2\ (cf. Lemma 4, Ref. [10]).

This envelope of holomorphy is easily obtained by looking at £%' as
a union of cubes

{«! < ξ1 < bl9 a2<ξ2<b2, - c < u' = u - α(|j - |2) < 0} .

Since C can be taken arbitrarily large, independently of al9 a2, bl9 b2,
each of those contributions lead to a domain of holomorphy which is the
product of the complex plane of the variable w' = u' + iv' by the domain
of DYSON of the space (ς1; ζz) relative to the region {θj < ξ1 < b19

a % < ξ2 < b2} we consider. By taking the union over all the squares of
this type contained in &', we get, as it is well known, the domain of

Dyson Ω''. Thus, the envelope of holomorphy of Θ \J — Θ W &' is
{(w> £u ζ2) I (ίι> ζ%) 6 Ώ'} and its restriction to T^ belongs to the envelope

of holomorphy of T'+ w T'~ w $'.
The above results together with similar ones for T2 complete the

proof of the lemma.
Now, let us return to the four dimensional case.
Let (w, k) belong to T r\ {(w, k) | k ζ Ω}. We want to show that this

point belongs to the envelope of holomorphy of T+ \j T~ \j &Γ

Since k ζ Ω, there exists a doubly inadmissible hyperbola which con-
tains k more, since the region ̂  is assumed to be symetrical with respect
to the plane k0 — 0, this hyperbola h can always be chosen in such a way
that its plane is parallel to the kQ axis (the reader is referred to the
geometrical description of the domains of Dyson [1, 2]). Let us cut, then,
the figure by the three dimensional complex plane generated by the plane
of this hyperbola and the &0-axis. In this section of the five dimensional
space, one can consider the section T'+, T'~, &' of, respectively, the
regions T+, T~9 ̂  by applying the lemma, one finds that the envelope

of holomorphy of T'+ \j T'~ \j &' is T' r\ {(w, k) \k ζ Ω'}. The point
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(w, &), we considered up to now, is by construction in Ω'', it remains for
us to show that it is in T'. If so, the point (w, k) belongs to the envelope

of holomorphy of T'+ \J T'~ \j £%' and therefore "a fortiori" to the

T+ w T- \j $! ones.
Knowing that by hypothesis (w, k) ζ T, one draws from (v, q) the line

parallel to the qQ axis; one shows easily (Fig. 2) that it meets T+ and T~
at two points (v, q+) and (v, q~) such that q is on the segment [q+, q~].
Now, it is clear that the points (w> p + iq+) and (w, p -f iq~) belong-
respectively to the tubes T'+ and T'~ (since by construction, these tubes
are in a plane parallel to the kQ axis).

Therefore we have proved that the function

F(w,k) = [Ce~iw - f(k)]~l

is analytic for k £ Ω and (w, k) ζ T.
This last condition can be written

υ>κ\q\. (3)

Thus for k ζ Ω, condition (3) implies:

or

Remark. From the demonstration of the auxilliary lemma, it was
obvious that the inequality is true in a 2-dimensional space, without any
restriction to symmetrical region. This restriction appears, however,
unavoidable in the four dimensional case.
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Appendix II

\ T+, T-) = Ω and its "Translated" Parts

1. Two Dimensional Case
Distance of the points (real or complex) on one hyperbola from a point

on another one.
We assume that the centers of the hyperbolae are on the line x0 = 0

and that the asymptotic directions make an angle of 45° with the x axis
(Fig. 3).

( X n

Fig. 3

Define

Let us take a point P = P (XQ, x) on Jtf^ and try to have an estimate of
the distance d(P, P'} between P and P' ζ 3$?%. More precisely, we want
the best possible majorization of infp^^ d(P, P').

Let (α, δ) be the coordinates of P. Since one tries to majorize

infp,6^2 d(P, P') one can take for P' = P'(J/PT^2

; & -f u).
Thus

d* (P, P'} = u*+(a- yW^uγ with α = }JW~+m* .
Finally " "

consequently

hence
d*(P,P') ^

For complex points, we have

(The i/'s are used for the imaginary parts.)
Let P be the point (XQ = a, x = b, yQ = c, y = d). The a, b, c, d obey

2 + d* = m2 and ac = bd.
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A parametrization of points of ffl2 is given by:

x0 = n ch φ cos θ y0 — εn sh φ sin θ
ε2 = 3 .

x — u •= εnsh φ cosθ y = n ch 99 sin$

Therefore one can set:

2/0 = c , ίc — % == 6
thus

and
α2 -f <i2 — m2 -j- c2 -f- δ2 = J.2 .

Define

α = A cosσ , ;t'0 --- A' cos^ ,

d = A sin(7 , y = A' sin ̂  ,

but

therefore

c/b = y/xQ — d/a = tgσ = tgy; or a =
and

^2(P; P') = (α - χ 0)
2 + (6 - ,τ)2 + (c - ytf + (d

= cos2σ (^ ~ A'Y + %2 -f sin2σ (A - ^

- w2 + (A - A')z

but

(A - A'Y - (j/n2+"C2"+ δ2 - |/?n2 -f c2 -f-"δ2)2 ̂

Thus

inf d*(P, $e^ < u2 -\- (m - n)2

which shows that this formula is valid for real or complex points.

2. Four Dimensional Case

The boundary of Ω is given by the set of all the real or complex points

obtained by cutting the hyperboloids bi-tangent to ̂  (in our case 0ί^

being symmetrical, the vertical of points of contact is parallel to the

#0-axis) with planes going through the points of contact. The boundary

is therefore the union of all the hyperbolas cut on the hyperboloids by

planes revolving around the vertical of points of contact [11].

We know that if ^'C^ then Ω'ζΩ. We have assumed that the

boundary of ̂  is made with space like surfaces, such that 8% is ft-convex.
fM being symmetrical, if follows that the only cusp-like points (of order q)9

of dέ% are in the plane XQ =-- 0.

9 We say that a point of a manifold is of order q if every section, going through
this point, by a 2-plane parallel to the x0 axis is a curve which has a contact of
order at least q with its tangents at this point.
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We are going to show that each point of the boundary of

a \J T+ \j T~~) is within a distance, from the complementary of Ω,

less than "α" raised to a specific power, and conversely.

First, let us go back for a moment to the two dimensional case. Let

# and <£' be two curves which are mutually tangential at a point of order q.

We suppose that in a neighborhood of this point they are smooth curves.

We call ̂  the region inside of the "angle" of contact (Fig. 4). Let ̂ α

be the retracted region obtained with balls of radius a (a is less than some

ε connected to the size of the neighborhood).

n

Fig. 4

Locally 0ί is given by \y\ <xq and ̂  = y — XQ y ^ 0. Then

- 7 = -
I/I H- q*x

The point of retrogression of the "translated" curves is given by Y = 0
X ^ (2α)]/«.

Thus we have

Let us now return to the four dimensional case. Let p be a singular

point on the boundary of &. We assume that there exists an ε such that

at least one of the sections of ̂ , by 2-planes passing through p, is regular

everywhere else in a circle of radius 2ε, centered at p. That condition

insures us that there is no nearby singularities in any directions. This is

obviously the case when 0k is symmetrical, since singularities are only

in the x0 = 0 plane.

Consider then a section of 9^ (the boundary of ^) by a 2 -plane

π parallel to the α;0-axis and look at the neighborhood of a regular

point A. The hyperbola J^A is a boundary hyperbola tangent in A to

d&. Its center is on the line x0 == 0. We call x the other axis in the 2-plane

π. It is easy to see that if ffl A — XQ — (x — u) — m2 (Fig. 5), then there

exists in the same plane a hyperbola tangent to the section of d&a and

of equation x% — (x — u')2 ~ m'2 with u — u' ζ Θ(a) and m — m' ζ@(a).

The distance is therefore majorized by α2. We can convince ourselves

of the uniformity of this majorization, that is to say, for any regular

point of 9^, there exists a constant C^ such that d2(A, d&a) ^ C^a2.
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Consider now in the plane XQ = 0 the case of a singular point of order
n. In one of the 2-planes, the extreme hyperbolae degenerate into cones

Fig. 5

of vertices A and B. We thus get,

d*(A, d&a) < CM a*/n ,
therefore

H(<%a; T+, T-) :>[#(«; T+, T~)-\alln

since any point of the boundary of H (& T+, T~] is at most at a distance
of order α1/^ from the boundary of H(&a\ T+, T~).

Appendix III

Majorization of Tφ^ (p) in &a \j T+ \j T~

and

From the results we have obtained for / (p) in the tubes

with m depending of N (see formula 2) and &a \j T+ ^J T

I l9 ? * l lm = = SUP

where

Σ

stands for
a \»8

If we set

then

_V° / M ' 1 . . . /_LV
β / UfJ \3f .7

i a
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but the derivatives of χ are bounded since % is a C°° function, therefore

v ζj a

and terms of || ψη\\m are of the form

Hence || g^lU < ̂ m ~^r which is the majorization required.

Appendix IV

Plurisubharmonicity of φ and φ

We recall that φ is plurisubharmonic in Ω (an open set in Cw) if in
the sense of distribution theory the quadratic form

is positive definite for any z in Ω and any t = (tv . . . , tn) in Cn. It will
be strictly plurisubharmonic if there exsits a positive function c (z) ζC (Ω)
such that

Σ ¥*-*£>=- φ(*)-c(*)Σ*ιtsj,k GZjϋZf. j

is positive definite for any z in Ω and any t in Cn.
Since φ and φ are the sum of three different types of terms, we have

to check that each of those terms are plurisubharmonic.
1. Ω and Ω x C3 being domain of holomorphy — \ogdΩ = — logdΩx Cs

is a plurisubharmonic function. A supremum of plurisubharmonic func-

tions being subharmonic, sup I — logd -f- log(l -f η), log - —I is pluri-

subharmonic.
2. log(l + ||s||2 -f- \\p ||2) or log(l -f- ||^p||2) are strictly plurisubharmonic

functions.
After some elementary calculation one gets :

Σ Ά a^iogd + N1 + ll^ll 2 ) ^ -(i + iJί'+Hv 2 = to s)
3. |Ims) or |Imjp| are strictly plurisubharmonic functions..

One obtains:

Σ |Ims| *'** =

+ PP δ(\Ims\) + \\t . Im^p (δ(\ϊms\) + |Ims| ό'dlms))) .

Terms in δ and δ' are positive on any positive test-function and
||ί||2 — || ί . Ims||2 ^ 0 (Ims is for a vector of direction Ims and of norm 1).

The denominator in |Ims| is non singular since integrable in a three
dimensional space. The last term vanishes identically.
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Therefore φ and φ are strictly plurisubharmonic and if we define

χφ(z) = log2(N +n)-2 log(l + H2) ,

Now we show that

\φ(p>s) — φ(p)\ ^ £ f°r IP — sl ^ i p €^ s ζ €3.
We give a bound for the three kind of terms previously considered

1°) A = \\lmp\ - |Ims||

- |Ims|2

|Ims| |Ims|

*Σ
2°) 5 = |log(l + W + ||sp) - log(l

3°) Since the distance in Ω is equal to the distance in Ω x C3, the

difference vanishes.

Therefore there exists a constant C(> 0) such that

\ψ(P>s)- φ(p)\ <C .

References

0. DYSON, F. J.: Phys. Rev. 110, 579 and 110, 1460 (1958).
1. OMNBS, R. : Contribution to : Relations de Dispersion et Parti cules Elementaires.

DE WITT and OMNES, Eds. Paris: Hermann 1960.
2. BROS, J., A. MESSIAH, and R. STORA: J. Math. Phys. 2, 5, 639—651 (1961).
3. SCHWARTZ, L.: Theorie des Distributions (2 Vol.). Paris: Hermann 1957 — 1959.
4. STREATER, R. F., and A. S. WIGHTMAN: PCT, spin, statistics and all that.

New- York: Benjamin 1964.
5. VLADIMIROV, V. S.: Methods of the theory of functions of several complex

variables. Boston: MIT Press 1966.
6. HORMAKDER, L. : Supports and singular supports of convolution. Acta Math.

110, 3—4, 279—302 (1963).
7. EPSTEIN, H. : Thesis (non published) and 1965 Brandeis University Summer

Institute in Theoretical Physics, Vol. I.
8. HORMANDER, L. : L2 estimates and existence theorem for the 9 operator. Acta

Math. 113, 91 — 152 (1965); or An introduction to complex analysis. In:
Several variables. Princeton, N. J. : D. van Nostrand Comp. Inc. 1966.

9. FTJKS, B. A. : Theory of analytic functions of several complex variables, Vol. 8
and Vol. 14 of Translations of Mathematical Monographes.

10. BROS, J., H. EPSTEIN, and GLASER: Nuovo Cimento 31, 1265 (1964).
11. — C. ITZYKSON, and F. PHAM: Representations integrales de fonctions analy-

tiques et formule de Jost-Lehmann-Dyson. Ann. Inst. Poincare 5, 1 (1966).

R. SENEOR
Centre de Physique Theorique
de ΓEcole Polytechnique
17, rue Descartes
F 75 Paris V




