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Abstract. The Green functions of the anisotropic Heisenberg model are studied
by a method which was applied previously to the reduced density matrices. Integral
equations are used to prove the existence of the infinite volume limit of the Green
functions, and some analyticity properties with respect to the fugacity (or magnetic
field), the potentials, and the complex times.

Introduction

In a previous paper (1, hereafter referred to as I), we studied the
reduced density matrices (RDM) of a quantum lattice gas which is equiv-
alent to the anisotropic Heisenberg ferromagnet. We used a functional
integral representation based on a generalized Poisson process and proved
the existence of the infinite volume limit and the analyticity of the RDM
with respect to the fugacity and the potentials in the low fugacity (and
by symmetry, high fugacity) region. In this paper, we extend these results
to the Green functions (GF) of the system. We prove for the GF the
existence of the infinite volume limit and analyticity with respect to the
same parameters, as well as analyticity with respect to trie complex
times, in some domain. With respect to the fugacity and potentials, the
analyticity domain is the same as that of the RDM when all real parts
of the times are equal, and decreases when their differences increase.

In Section 1, for the sake of comparison, we present general arguments
that prove the analyticity of the GF with respect to the times for general
systems, including the present model with physical values of the para-
meters. In Section 2, we describe the functional representation of the
GF first for purely imaginary, and then complex times. In Section 3, we
extend to the GF integral equations that were used in I for the RDM,
and deduce from them our main results. We conclude in Section 4 with
a brief description of the corresponding results for related models that
were considered in I.
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1. General Properties of Green Functions

The purpose of this section is to make apparent which additional
information is obtained by the investigation of the following sections.
To do this, we derive general properties of the Green functions of quan-
tum systems in equilibrium, in the framework of Ref. [2].

We consider a system of identical particles in configuration space E,
which is either the ^-dimensional euclidian space (E = Rv] or a ^-dimen-
sional lattice (E = Zv). Let 3? be the Fock space, namely the (symmetric
for bosons, antisymmetric for fermions) tensor algebra constructed over
Lί(E}. To any bounded (open if E = Ev) region ΛcE, we associate the
Fock space jJ?(Λ)9 namely the tensor algebra (with appropriate sym-
metry) over L*(Λ), and the C*-algebra 21 (Λ.) = &(je(Λ)) of all bounded
operators in 3t?(A). 2ί(/l) is in a natural way a subalgebra of
We now define 210 by 210 = U 21 (A) and 21 as the norm closure of 210 in

). 21 is the (7* -algebra associated with the system.
We now define an equilibrium state at inverse temperature β and

a time evolution of the system as follows. To each bounded (open) ΛcE,
we associate a self adjoint operator H(Λ) in J^(A) such that, for any
α > 0, exp [— α H(A)~\ has a finite trace.

In particular, H(A) is bounded from below and has a discrete spec-
trum with finite multiplicities. We then define a state ρΛ on 21 (A) and
a time evolution in 2ί (A) by :

QΛ(A) = Tτ(Ae-PH<Λ)) (Tr e-WW)-1 , (1.1)

A~>AΛ(t) = exp[itH(A)]Aexp[-itH(Λ)] . (1.2)

We now make the following assumptions. Let A be any bounded (open)
region and A ζ 2l(/l). Let A! ^Λ, so that 21 (A) r 21 (/t'). Then, when A
becomes infinite in a reasonable sense, the following limits exist:

ρ(A) = lim QΛ.(A) , (1.3)
Λ — >co

4(ί)= lim AΛ,(t) (1.4)
Λ'— >oo

the second limit being taken in the sense of the norm in 21. We assume
furthermore that the limit is a (norm) continuous function of t. Here,
"reasonable sense" has to be defined in each specific case, depending
presumably on the method of proof of (1.3) and (1.4). It must imply that
for any fixed A, Λ' must contain A for A! sufficiently large.

For lattice systems, (1.4) has been proved under general circumstances
[3]. (1.3) has been proved under general circumstances for almost all
β [4], and for the specific models considered here, for all β in the region
we are interested in [I]. It follows from (1.3) and (1.4) that ρ can be
extended to a state on 21 and A -> A (t) can be extended to an auto-
14*
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morphism of 31. Moreover, for any family A19 . . ., An of elements of 210,
the following limit exists:

ρ(Al(t1) . . . An(tn}} = lim ρΛ(A1A(t1) . . . AnΛ(tn)) . (1.6)
Λ—>co

We now consider complex times ζj = tj + iθj(I ^ j ^ n). Let A3 ζ 2ί0

(1 ^ j ^ n) and /I be sufficiently large, so that A3- ζ 21 (yl) for ? = 1, . . ., n.
We define:

(1.6)

•Trie-*

where f 0 = £n. This is an analytic function of the ζs [5, 6] in the domain
& defined by:

Imζί < Im£2 < < Imζn < Imζ1 + β . (1.7)

It is continuous on the boundary and satisfies the Kubo Martin Schwinger
(KMS) boundary condition in the form [2, 6]

ΠASA(ζ,)\=QA(πAiΛ(ζύ ΠAsAζt + iβ)} (1.8)
*=1 / \ ? ^ A ?<^ /

for 1 ̂  k ^ 7i.
We shall now prove the following extension of some results in Ref. [2].

Theorem 1. Suppose that the limits (1.3, 1.4) exist. Then, when Λ be-
comes infinite, QA(ΠAjΛ (£,/)) tends to a well defined limit FAί ,,.AΛ(ζv >ζn)
which is an analytic function of the ζ$ in &. The limit is uniform in
ζ = {ζ1} . . ., ζn] on the compact sets in Qi. The limiting junction is con-
tinuous on the boundary, and satisfies the KM8 boundary condition:

^A^..An(^ ' ' • > ίn) =^Ak...AnA^..Alc^(ζ^ - , ζn> £1 + iβ> > Cfc-i ~f iβ)

(1.9)
An essential element of the proof is the following lemma:
Lemma 1. Let Av . . ., An be bounded operators in some Hilbert space.

Let H be a self adjoint operator such that Tre~xΞ < co for any α > 0. Then
for any αx, . . ., αn such that ocj ^ 0 for all j and Σ fy == ^^? l^16 following
inequality holds:

Tr
/ n

\ Π (

\j=l
(1.10)

\j-

Proof of the Lemma1. The proof goes by induction. The result is true
for n = 1. We assume it up to n and prove it for n -j- 1. To each As we

1 Another and more concise proof of the lemma is obtained by using a generali-
zation of HOLDER'S inequality to operators. [Cf. N. DUISTFORD and J. SCHWARTZ,
Linear Operators, Interscience, New York (1963), Lemma XI. 9-9-d, p. 1093 and
Lemma XI. 9-20-b, p. 1105.] We are grateful to D. RTJELLE for pointing this out
to us.
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associate a point (which we call again Aj) on a circle, in such a way

that the successive angles are AjAj+l = αί+1. We treat separately the
cases n even and n odd.

n — 2p: There are 2p -f- 1 points on the circle. Then there is at least
one j such that the diameter through Ay leaves p points on each open
semi-circle. In fact, let N(oc) be the number of points Ak on the semi-
circle [α, α + π). When α varies, N(<x) is constant except for jumps of
± 1. When α increases from some α0 to α0 -f π, N(oc) varies from some
q<2pj

rlto2pj

rl — q and therefore passes at least once in succes-
sion through the values p and p -f 1. The value of α for which .2V (α)
switches from p to p -f 1 or vice -versa solves the problem. We suppose,
after a circular permutation of the indices if necessary, that j = n + 1
= 2p + 1. We now apply Schwarz inequality:

|Tr(C7F)|2 < Tr(C7+t/)Tr(F+F) (1.11)
where :

U = An+1 e-a^HA1. . . AV &-&-«*-" — *ΛH (1.12)

The second factor in the RHS of (1.11) is of the same type as the original
expression, with only n — 2p factors. The first term is of the form:

Tr(A++1Au+1W) < μn+1||
2TrTF (1.14)

because W is a positive operator, Furthermore, Tr W is again an expres-
sion of the original type, with only n — 2p factors. Using (1.10) for n
factors then proves it for n -f 1 .

n= 2p -j- 1. Similarly, there is at least one j such that the diameter
through AJ leaves p points on one open semi- circle and at most p -f 1
on the other. Take j = n + 1 = 2p + 2. Applying (1.11) as above gives
2 factors with n + 1 operators in each. One of them is of the type (1.14)
and can be majorized similarly in terms of an expression with 2p opera-
tors Ak only, which therefore satisfies (1.10). The second one has
2p + 2 = n+ 1 operators and is therefore bounded only by:

Λ +

= sup 77 μ,n-i
j = I

Tr (1.15)

where the supremum is taken over all possible bounded Aj and positive
<x,j such that ΣOCJ = 2π. Now M is certainly finite. In fact, suppose for
simplicity that H ̂  0. Then:

M g Tr exp [- (maxα,) H] rg Tr exp ( ™ H\ . (1.16)
\ w -f- i /
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We obtain therefore:
I - 2Γn + l Ί

UH Tr ^ M Trexp(-2πJ?) . (1.17)

Taking the supremum over all possible A} and α5 in the LHS gives:

M2 ^ MΎτe~*nH (1.18)
and therefore:

Jί g Tre-^, (1.19)

since Jf > 0. Taking Aj — 1 for all j shows that (1.19) is in fact an
equality. This concludes the proof of the lemma.

Proof of the Theorem. The function defined by (1.6) depends only on
the differences between the ζ3 . It is therefore sufficient to consider

oΠAiΛtt.

for which the domain & reduces to:

0 < ImCi < < Imfn < β . (1.20)

This function has the following properties:
(1) It is analytic in <2) and continuous on the boundary.

n
(2) It is bounded on the closure of @ by JJ \\Aj\\. In particular, this

holds uniformly with respect to A. This is a consequence of the previous
lemma and the definitions.

(3) It converges pointwise to a continuous function of the t j y for
ζj = tj or ζj = tj -h iβ according to whether j ^ koτj>k, for 0 ^ k < n.
This follows from (1.5) and the KMS boundary condition (1.8).

Let now f(ζ) be a function of ζ which is analytic and non-zero, and
decreases sufficiently fast as |Re£| tends to infinity, in a neighborhood
of the strip 0 < Imf < β. Suitable functions would be (ζ + i)~n with
n ^ 1, or exp(— f2). From (1) and (2) it follows that the function:

O π AiΛ(ζ*) Πf(ζi) α-21)
7 = 1 / j = i

has a multiple Cauchy integral representation for which the domain of
integration lies in the region described above in property (3). This is seen
easily by induction. As an illustration, we write the representation for
n = 2. We drop the subscript A.

{f ψ^i β (ΛAM AM - f g±®% e (AM ΛΛ («))

~ ί V^7-/(w - v) /(-<>) e(^o(") ^ι(«)^a)} (1-22)
J υ b2 J
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All integrations run from — oo to -j- σo.
The proof of the theorem is now immediate. The existence of the limit

(pointwise) follows from Lebesgue's theorem, and the analyticity of the
limiting function from the integral representation. The other properties
follow easily.

Uniform boundedness of the functions was essential in the derivation.
The sequence of functions Fn(ζ) = exp[— n cosh ζ] in the strip
0 < Imf < 2ττ provides an example of the kind of pathology which is
thereby excluded. Failure of the lemma to hold for complex β or complex
values of the parameters in H prevents the extension of the method to
these situations, even if we know that the limit (1.3) exists under such
circumstances. This limitation will be circumvented by the method of
the following sections.

In the sequel, we shall be interested in Green functions. These are
functions of the type:

0(ζ1, ...,ζn) = ρ(TA(£ι) - Λ(CJ) , (1-23)

where T means time ordered product: more precisely the product is to
be taken in such an order that ϊmf increases from left to right. Such
functions are piecewise analytic for max(Im£3 ) — min(Imf,/) < β with
discontinuities whenever two IHK^ coincide. Due to the KMS boundary
condition they can be continued as periodic functions of all arguments,
with period iβ, and discontinuities whenever Im(f3 — ζk) = 0 (mod/?)
for some (j, k) [6].

The Green functions are obtained by piecing together functions of the
type (1.6), and Theorem 1 therefore applies in each connected component
of the analyticity domain.

2. The Green Functions for Complex Times and the Integral Equations

In this section, we apply the methods of (I) to obtain a representation
of the Green functions of the same model as functional integrals over the
paths of a generalized Poisson process. A similar representation has
already been obtained [7] for the temperature Green functions of con-
tinuous quantum gases, using the Wiener process. It constitutes a natural
extension of that used for the reduced density matrices.

The model is the same as in (I), as defined by (I, 1.1 to 1.6), namely
a quantum lattice system with point hard cores. The Green functions
are obtained by analytic continuation of the temperature Green func-
tions (TGF), which we consider first. They are defined for a finite system
as follows. Let xj = (rj9 iocj) and yό = (sj} ioc'j) (where 1 < j ίg m) be two
families of space-time points, where 0 ̂  α; , α; ^ β. The variables α, , α?

are real and have the meaning of inverse temperatures for the TGF. We
introduce factors i in the notation and refer to the ίoc as times, in anti-
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cipation of the general case. Meanwhile, the ocj} oc'j will be referred to as
"times". We define:

α(^) = exp (- oίjH) ar. exp (α, #)

= exp (- <χ$H) a+ ( ' }

The TGF are now defined by:

GΛ(x™, ym) = ρXΓα+ίjT) α(α;™)) (2.3)

where ρA is defined by (1.1), and the time ordering T in Section 1. As
a function of the variables oc3 and αj, 6r^ is continuous whenever all are
different. If for some (j, k), <Xj = αfc or αj = α&, G^ is still continuous, due
to the commutation relations (including the hard core condition). GΛ has
discontinuities whenever for some (j, k), ocj = α^. At such points, it is
convenient to define GA as the limit for ocj -> α# with ocj > ocj,. This means
that we choose the normal order in any dubious case, and has the
advantage that when all ocj and αj are equal, GΛ become the reduced
density matrices of the system.

We associate with the model a generalized Poisson process as de-
scribed by (I, 1.11 to 1.21). The TGF then have the following representa-
tion as functional integrals [7] :

_ m f
GΛ(x™, y») = & Π \Σ θ (αj - α* + jkβ)

* = ι (h

f P^a" Hkβ (dωk) exp [μ(z'k - ak + jkβ)]\ OΛ(X]

(2.4)

where ̂  means sum over all permutations of the τ/5 ; the step function
θ (x) is normalized to be left continuous (θ (0) = 0), and X is a family of m
paths ωk(l ^ k ̂  m) of the Poisson process, starting from the points rk

at "times" αfc and ending at the points sfc at "times" α^ + jjcβ
The family of functions GΛ(X) is given by :

QA(Σ) = Z-*f dYz«exp[-U(X+ Γ)]α^(Z+ Y) (2.5)

where the notation is the same as in (I, 2.4 to 2.6). In the present case,
the interaction term U (X + Y) is the integral from 0 to β of the classical
potential energy of whatever points are available at "time" t (mod β) on
the paths that constitute X and Y. The number of such points increases
(resp. decreases) by one whenever t passes through one of the α^ (resp.
αj). Notice also that the definition of GA differs from the corresponding
ρΛ (I, 2.4) in that the contribution of the open paths of X to the factor



Anisotropic Heisenberg Model 205

that contains μ has been taken outside of GA, which therefore depends on
μ only through z = e&μ.

We now consider the GF of the system for complex times. They are
obtained from the TGF by analytic continuation from ί α; to f 3 = tj + ί oc^
and from iocj to ζ'j = tj -f tαj , in each region where no two of the α5 and
αj are equal (mod β). We consider one such region. The TGF GA(xm, ym)
is then a sum of path integrals, where the paths have the α, and αj
(mod β) as starting and ending * 'times". Introducing intermediate sum-
mations over the positions on the various paths at all the α^ and α)
(mod β), we can write GA as a sum of path integrals in such a way that
in each term of the sum, all the paths have the same "time" interval,
starting at some α, or αj (mod /3) and ending at some other one. This
interval is at most β. In the present case, due to the presence of hard
cores and the discreteness of the configuration space, this sum is finite
for a finite system, so that no convergence problem arises. In related
models [I] where there is no hard core, the convergence follows from the
stability condition on φ\\. This will still hold after analytic continuation.
In any case, the analytic continuation of GΛ reduces to that of integrals
of the type :

Γ / Ί
•exp \2μ(γ' - γ) - f dt φ{l(ω(t) - ω(ί))

(2.6)

where γ < γf < γ -f β. Here we have considered for illustration the case
where there is only one piece of internal path ώ (to be integrated over
in order to get GΛ) and one piece of external path ω (to be integrated
over in order to obtain GA from GA). The argument extends straight-
forwardly to the case where there are several paths of each type.

The analytic continuation of (2.6) with respect to γ and y' is obtained
most easily by using a parametrization of the paths which does not
depend on γ and γ'. Let t = γ't' -f γ(l — t') and ω'(ί') == ω(t),
ω'(t') = ω(t). Let n(ω) (= n(ω'}} and n(ω) (Ξ= n(ω'}} be the number of
jumps of ω and ω respectively. Then from the definition of the process
and relations such as (I, 1.21), it follows that:

•exp [-2 Jf0(l -f γ - γ1)] (γf - y)«<«>)+«<») (2.7)

• exp \2μ(γ' - γ) - (γf - γ) f dt' φ^(ω' (t1} - ώ' (t'))]

where MQ is given by (I, 1.3).
This is in an obvious way an analytic function of γ and γ', since now

the path integration no longer depends on γ, γ' . The analytic continua-
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tion to complex ζ and ζ' with Imf = γ and Imζ' — γ' then gives:

I(ζ, ζ') = / Pl,s (dω') f Plt, (dω') exp[-2Jf0(l + i(ζ' - ζ))]

• [ i ( ζ - ?)?«•)+«(«> exp[-2ψ(C' - C) (2.8)

It is convenient to come back to a parametrization of the paths where
the (now complex) time runs from ζ to f, thereby obtaining:

ϊ(ζ,ζ') = fPζ

r-
ζ(dω)fP^(dω)

Γ r Ί (2.9)
• exp - 2iμ(ζ' - ζ) + i f dt φl{(co(t) - ω(ί))

L : J

where the new time t is defined by :

f = Γ ί ' + ί(l-ί') (2.10)
and where :

ω(ί) = ω ' ( f ' ) » (2.11)

/ F'-^ (ίω) = / Pl

r>s (dωf) [ i ( ζ - ί')?(ω) (2.12)

• exp [-ΛΓ0(l + ί(f '-£))].

Notice that for fixed ω', this provides independent analytic continuation
of both the integrand and the measure.

Piecing together integrals of the type (2.8, 2.9) gives the representa-
tion of the GF we are looking for. Let ζj = tj + ί ocj and £? = tj -f i αj be
the complex times associated with the points rj and s}- to build the space-
time points Xj = (TJ, ζj] and yj = (sj} ζj). We assume that all the α^, α^ are
different and lie in [0, β]. Let .Γbe the polygonal contour on the complex
cylinder (== complex plane mod iβ) of the time variable ζ, with vertices
at the points ζs and ζj taken in the order of increasing imaginary parts.
Γ is oriented in the sense of increasing Im ζ. The representation of QΛ

is then obtained by modifying (2.4, 2.5) as follows:

1 I ? k

_ (

GA (*m, ym) = y Π \Σ θ (4 - αfc + jtβ) f P%- ft + «» f (d ωk)

ζk + ίjkβ)]\ GA(X) (2.13)

where :
GA (X) =Z~lfd7z* exp [i U(X+ 7)] OCΛ (X + T) . (2.14)

Now the time parameter of all the paths runs along the contour Γ9

all the path integrations are correspondingly defined by (2.12) on each
segment of Γ, and U is obtained from U by replacing the integral from
0 to β by the contour integral along jΓ. The integration associated with
the contour Γ as described above will be called hereafter integration
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along Γ. It satisfies the following invariance property, which is obvious
when expressions as (2.6) are written in their original operator form. Let
Γ and Γ' be two polygonal contours on the complex cylinder of the
variable ζ, with Imf always increasing along Γ and Γ'. We say that Γ'
is a refinement of Γ(Γ' D Γ) if all the vertices of Γ belong to Γ'. To each
X is then associated a minimal contour Γ(X) which is the one described
above. Now the representations (2.13), 2.14) still hold if the integration
is taken along any Γ' ^)Γ(X). (In particular the integration in Z is con-
tour independent.) Intuitively, the only important property of the con-
tour is that it passes through all end times of X.

Up to now, we have restricted our attention to Green functions by
considering contours Γ along which Imf increases. Such contours we call
monotonous. We now show that this restriction is unnecessary in the
present model. In fact, the operator that simulates the kinetic energy
and is used to define the stochastic process is bounded (for a finite num-
ber of particles). The path integral can be defined for any complex value
of the time parameter (in sharp contrast with continuous systems for
which the kinetic energy is represented by the Laplace operator). There-
fore, in the present model, all path integrations (2.13, 2.14) remain well
defined for an arbitrary, i.e., non-monotonous contour.

This would not lead very far in general. In fact, the decrease of Imf
along some part of Γ means that one uses operators of the type exp ( γ H )
with γ > 0. Now, if the potential energy becomes unstable under a change
of sign, which is the case in related models [I] without hard core, this
will behave catastrophically, causing for instance the divergence of the
series that define GΛ and GΛ.

In the present model however the hard core ensures stability by
restricting the configuration space, and the interactions remain stable
upon a change of sign, so that operators of the form exp (γH) (γ > 0) are
allowed, and one can use non-monotonous contours Γ. For finite systems,
one then obtains entire functions of the ζ^ ζj, which are analytic con-
tinuations of the GF, as follows. Let ζj9 ζj be 2 m complex numbers in
a prescribed order, and Γ a (polygonal) contour in the complex plane
which is periodic with period ίβ, oriented in such a way that t increases
by iβ along one period, and which passes in one period through all the
points ζj, ζj in the prescribed order. One then defines GΛ (xm, ym) by
(2.13. 2.14) where now all integrations run along Γ, and with the modifica-
tion that in the θ-function, Im£ has to be replaced by a parameter that
increases along Γ. In other words, the sum in (2.13) runs over all the
points ££ (mod iβ) which are later than ζk on the periodic contour Γ.
If for some k, ζk = ££, the term where ωfc reduces to a point is to be taken
or left aside, according to whether ζ'% comes after or before ζk in the
prescribed order of the ζ j y ζj.
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The entire function thereby constructed is the analytic continuation
of that part of the GF that is obtained when all the ζίf ζj lie in some strip
γ < Im ζ, ζ' < γ + β, and the prescribed order coincides with that of in-
creasing imaginary parts. It is therefore identical with the thermal
average of the product of the a(Xj), α+(t/3 ) taken in the prescribed order
of the ζs and ζj.

The method and results of the next section will apply to these more
general functions, for the model with hard cores, and only to the GF
for related models without hard core (I, see also Section 4).

3. Integral Equations and Results

In this section we write down integral equations for the ΘΛ that
generalize those of [I], obtain bounds and analyticity properties of their
kernels, and derive from them the results mentioned in the introduction.
The model is the same as in [I] and the previous section, and although
we shall speak in terms of GF, the results apply to their analytic con-
tinuation as described at the end of Section 2.

The Kirkwood Salzburg (KS) Eqs. (I, 2.7) extend straightforwardly
from the RDM to the GF and become :

QA (X+ω) = OCΛ (X + ω) exp [iff (ω, X ) ] f d Yz«K (ω, Y) 0Λ (X + Y) .

(3.1)

Here ω is a path or piece of path starting at time ζ and ending at time
ζ'. The integration runs along any contour Γ^>Γ(X -f ω), and ζ and ζ'
belong to one period of Γ. f and K are defined respectively by :

F(ω,X) = fdtΣφ\\(ω(t}-ωi(t}) (3.2)
ζ i

where the integral runs along jΓ, and the sum over whatever paths are
available in X in the time interval (ζ, ζ'), and:

K(ω, ω) = exp \i f dt Σ 9>||(ω<(f) - ω,(ί))l - 1 (3.3)
L Γ i J

where the sum runs over all elementary paths that build the composite
path ω. Other notations are the same as in [I]. For a given X + ω, there
is a great arbitrariness in the choice of ω for which one can write
Eq. (3.1). We shall reduce it by the following rule. Let ω0 be any path
in X -f ω, starting at some £0 and ending at some £Q. Then ω shall be
the part of ω0 obtained when the time varies (in the sense of orientation
of Γ) from £0 to the first of the points Co + ijβ which it reaches [and to

We now consider a fixed (polygonal) contour Γ and the set off all equa-
tions of the type (3.1) such that Γ(X -f ω)C.Γ, and with the previous
restriction on the choice of ω. The time parameter of a typical path ω
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varies from some ζ ζ Γto some later time ζ' ζ Γ. Let j+ (ω) be the smallest
integer j such that ζ ' does not occur later than ζ -f ijβ on Γ (if ζ' = ζ
+ i?β, then ?+(ω) = ?'). Let f and τ be real strictly positive numbers,
to be chosen later, and define for any ω :

(3.4)
Let:

Δ(X) = Π Δ(ω). (3.5)
ωζX

Let $ be the complex vector space of functions h(X) of families X of
paths with parameter running along Γ. The subspace $ Δ of those Hi for
which

I I & H - sup A (X)-1 \h(X)\ < oo (3.6)
x

is a Banach space with (3.6) as the definition of the norm. The family
of Eqs. (3.1) is then a linear equation in $ of the type :

QΛ = AΛ(a+XQΛ) (3.7)

where AΛ is defined in [I] (cf. I, 2.11), a is the vector in $Δ defined by
a(ω) = 1 if j+(co) = 1 and a(X) = 0 otherwise. It satisfies ||α|| = ξ-1.
J*? is a linear operator, easily extracted from (3.1). Notice that A, $ A

and S£ depend on jΓ, which we keep fixed. We now show that under
appropriate circumstances, £? is a bounded operator in SΔ. Let
where US is defined by (I, 1.4) and let:

£ = / d | f | (3.8)
Γ

where the integral runs over one period of Γ. Let h ζ $Δ. Then:

\&h(X+ ω)\ ^ exp[Lψ + f\dω\ \z\Ά (ω) |£(ω,ω)|] \\h\\ A (X) (3.9)

where j is the number of elementary paths that constitute ω(j = j+(ω)).
Now the choice of ω in X -f ω and the definition of A ( X ) are such that
A (X + ω) = A (X) A (ω). Moreover j+(ω) = 1 and Zl (ω) = f exp [τn(ω)].
We then have to compare the exponential in the RHS of (3.9) with
A (ω). By the same method as in [I], one obtains for the last term in
the exponent the bound :

oo

f\dω\\z\Ά(ω)\K(ω,ω)\^ Σ (I* SY f 1̂  (Λω)\
? = ι

• exp[τw(ω)] (n(ω) + Γ1 n(ω) -f exp(L^)) . (3.10)

Jδf will be a bounded operator if ξ and τ satisfy :

(ω)] (3.11)

= Σ (1*1 SY exP \3(β Re M0 + LM 0)1 (3.12)
?
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where M0 and M are defined by (I, 1.2, 1.3). This can be written as:

ξ<-^_Ύexp[-(βΐle(MQ + μ) + LM e*)] . (3.13)

Comparing (3.9, 3.10, 3.13), we obtain:

||Jgf|| < ξ-lQxp[Lφ + τ(Q*pLφ + LMeτ)] . (3.14)

In particular £? will have norm less than one provided :

LM eτ)] . (3.15)

We therefore have proved the following result :

Lemma 2. Let $Δ be defined by (3.4, 3.5, 3.6), for fixed Γ, ξ and τ
(ξ > 0, r > 0). Let ^0(L, ξ, τ) be the (open connected) set of those (μ, ψL]
that satisfy (3.13). Then, for all (μ, φ±, φ^ ζ^0(L, ξ,τ) x 3&, Ϊ£ is a
bounded operator in $ Δ ana its norm satisfies (3.14).

The following result is proved by the same method as in [I].
Lemma 3. Under the assumptions of Lemma 1, 3? is norm analytic in

(μ, φ±, 9?||) for (μ} φ±, φ^ ζ^Q(L, ξ, r) X @.
We now state the main results.
Theorem 2. Let £Δ be defined by (3.4, 3.5, 3.6) for fixed Γ, ξ > 0,

τ > 0. Let 2? ΞΞ 3F(L, ξ, τ) be the (open connected) subset of C x 38 x 3$
consisting of those (μ, φ _ j _ , MI) that satisfy (3.13, 3.15). Then, for
(μ, φ±, 99,,) ζ ̂ :

(I) The Eq. (3.1) has a unique solution GΛ in $ Δ, obtained by iteration.
The solution is a norm analytic function of (μ, φ^, φ\\) in ̂  . It coincides
within & with (2.14), and satisfies:

\\GΛ\ ^{ξ- exp[Lφ + τ(eLΦ + LM e*)]}-* . (3.16)

(II) The infinite volume equation:

(3.17)

has a unique solution G in $Δ) which is also analytic in JF and satisfies
(3.16). G is invariant under the group y of translations that leave the
lattice invariant.

(Ill) When Λf becomes infinite in the sense of Theorem (II, 1),
\AΛ(GΛ> — G}\ tends to zero. The convergence is uniform with respect to A
for fixed (μ, ψj_, φ\\) and uniform in μ on the compact sets for fixed (φ^, φ\\).

The proof is the same as in [I] and the comments that follow
Theorem (I, 1) apply also to the present case. One can furthermore
include at this stage analyticity properties of GΛ(X) and G ( X ) with
respect to the end times of X, by using a parametrization of the type
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(2.10, 2.11) with fixed ω', and allowing for deformations of Γ, with L as
an upper bound on its length.

We now consider the GP themselves.

Theorem 3. For (μ, φ±, φ^ ζ^(L) = U ^(L, ξ, τ) and for any set

of complex times that can be picked up by a contour Γ, the length of which
does not exceed L, the GF (2.13) tend to well defined limits G(xm, ym) in
the sense that:

sup sup \GΛ. (xm, ym) - G(xm, ym)\->0 (3.18)
r,8ζΛ £j,ς'

when Λ' becomes infinite in the previous sense. Both GΛ and G are analytic

functions of (μ, φ±, φψ in ^(L) and satisfy the inequality:

\G(Λ}(xm,ym)\ ^ (ξ - exp[Lψ + τ(eL(!> + LM eτ)])~lm\
(o. ιy )

• (τ exp [- β Re(M0 + μ) + L\ M0 + μ\\Γ .

Furthermore, GΛ and G are analytic functions of the complex times under
the same restrictions. G is invariant under the translation group ^.

The last exponential in (3.19) follows from crude estimates of integrals
along fractions of the contour jΓ. Analyticity (in Sup. norm or for fixed
rm, sm) with respect to the times follows from the analyticity of G men-
tioned after Theorem L The order in which the times appear on Γ
depends on the function considered, as described in Section 2. (It has to
be that of increasing imaginary parts (mod β) in models without hard
cores). The times appear in the definition of the analyticity domain only
through the length L of Γ. For a given family of times, the best Γ is
the polygonal contour with vertices at these times in the prescribed order.

Summarizing, the analyticity domain is the set of those (μ, φ±, φψ
and times for which, for some τ > 0 :

Jf0) + LM (τ 4- 1) eτ + Lφ + τeL*] < - ^ - y . (3.20)

From the symmetry between occupied and empty sites, we obtain :
Theorem 4. All previous results hold with μ replaced by:

-ψ±(r)) (3 21)

We have not tried to obtain the best possible bounds on & '. Minor
improvements are obtained easily by using the bound (I, 1.29) instead
of (1, 1.30) and/or by separating real and imaginary parts of the potentials
and the times.

4. Conclusion

We first compare the results of Sections 1 and 3. In Section 1, we
have obtained analyticity in the times in domains of the type (1.7), but
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only for physical (real) values of μ, φL and φ\\. In Section 3, we have
obtained in addition analyticity with respect to μ, φL and φ\\, and for
the present model, we could dispense with the time ordering condition.
On the other hand, the analyticity domain in the times is now much
smaller. This is not surprising, since for complex parameters, the operator
exp(itH) is no longer unitary for real ί, and therefore not uniformly
bounded when \t\ becomes large. In any case, even for real parameters,
the method of Section 3 does not make use of the unitarity of this
operator, and the analyticity domain in the times still does not extend
to arbitrarily large values of |Ref|. On the other hand, for the TGF
(L = β), the analyticity domain in (μ, φλ, φ^ is the same as for the
RDM, as can be seen by comparing (3.20) with (I, 2.22, 2.23).

We now describe the results obtained by the method of Section 3 for
the related models described in I.

(1) Fermi Statistics and Point Hard Core. The hard core plays no role,
since multiple occupancy of a single site is already forbidden by the Pauli
principle. The results can be slightly improved by modifying the defini-
tion of $ Δ and the choice of equations. In the definition of the analyticity
domain, (3.20) can be replaced by:

exp [β Re (μ + MQ) + L M + (τ + 1) Lφ] < ̂ y . (4.1)

(2) Boltzman Statistics and Point Hard Core. The method is the same
as for Bose statistics. (3.20) should be replaced by:

exp [β Re(μ + M0) + LM(τ+l)eτ + Lφ + τ(I + (e*° - 1))] < τ

where :
c= max 1 9?,, (r) I . (4.2)

In both cases, one can still dispense with the time ordering condition,
and the symmetry between occupied and empty sites (expressed by
Theorem 4) holds.

(3) Models Without Hard Core (^(O) < oo). The last two properties
are lost in these models, and in particular, the results apply only to Green
functions, corresponding to monotonous contours Γ. Moreover, for com-
plex <p||, the conditions on the variables ζ which define the analyticity
domain are slightly more complicated, and cannot be described in terms
of the length L of Γ alone.
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