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Abstract. For the case of Euclidean metric an elementary proof of the power
counting theorem is given.

1. Introduction

As is well known, Dyson's power counting theorem plays an important
part in the theory of renormalization [1]. For the case of Euclidean metric
a rigorous proof of this theorem was obtained by WEINBERG as a by-
product of his work on the high-energy behavior of Feynman integrals
[2]. The purpose of the present paper is to give a short, direct proof of
the power counting theorem which uses more elementary methods. We
restrict ourselves to the Euclidean case. An extension to the case of
Minkowski metric will be discussed in a forthcoming paper.

We will be concerned with integrals of the form

I(qμ)=fdk /(hq) (1.1)
J 77(9 +ft*)

where
q = (qv . . ., qn) k = (kv . . ., kn)

dk = dk±. . . dkn μ = (μλ, . . ., μn) μt ^ 0

with qi9 kt denoting Euclidean four vectors. P denotes a polynomial in
the components of ki and qit of degree g with respect to the kt. The four
vectors ls are of the form

l=(lv . . ., Q , K=(KV . . ., Kn) , JΓ,Φ 0 . ( L 3 )

G denotes a n w x m matrix.
For integrals of the form (1.1) the following version of the power

counting theorem will be proved in Section 3.

* The research reported in this paper was supported in part by the National
Science Foundation.
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Theorem 1. Let all masses μό =4= 0. The integral (1.1) is absolutely con-
vergent (a.c.) if

(i) the dimension
d= q-2n + &m (1.4)

of the integral is negative and if
(ϋ) for any four vector Q the subintegrals

iΛQqμ) = fdV . [9)

 2 (i.δ)

are a.c. The integral (1.5) extends over the hyperplane Hό defined by

h = 2" ^ ' *r Λ-q^Q (1.6)

^ ί ^ ίΛe volume element d V.
As a corollary of theorem 1 one obtains Weinberg's version of the

power counting theorem.
Theorem 2. The integral (1.1) is a.c. if (1.1) and any subintegral

'<*>">- / " - S ^ 0.7)

have negative dimension. H denotes a hyperplane in R±m described by a set
of linear equations

m

Σ d^k^u. (1.8)

The dimension of a rational integral is defined by d — d' + d" where d' is
the number of integration variables and d" the degree of the integrand with
respect to the integration variables.

To illustrate the method used in this paper we sketch the proof of
theorem 1 for the case that the polynomial P is absent. Integral (1.1)
then reads

So far as convergence properties are concerned we may as well consider
the integral

D denotes the domain of all Tc satisfying

Kf ^ 1 . (1.11)
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(1.10) is obtained from (1.9) by setting the external momenta q equal
to zero and excluding the singularities at K$ = 0. Apparently the inte-
grals (1.9) and (1.10) are either both convergent or both divergent
(a detailed proof of this statement will be given in section 2, see Lemma
5 b). Hence it suffices to prove theorem 1 for integrals of the form (1.10).
By an appropriate reordering of the momenta K3 we may write (1.10)
in the form

such that

KξφKf for i φ / .

We now decompose (1.12) into

i = Σ h
7 = 1

(1.13)

where Dό is the domain of all k satisfying

K* ̂  Kf ^ 1 . (1.14)

In order to estimate the term Ij we introduce new variables of integra-
tion t = (t± . . . tm) by a linear transformation

t = Ak (1.15)
satisfying

^ L l . (1.16)

The integral /3 then becomes

I, = dtj —i —- (1.17)

where the K{ are expressed in terms of the new variables

K^KM-^-Σdwk' (1.18)

U is the region of all tx with
cH\ > 1 (1.19)

and V is the region of all £2 tm

 w ^ h

K^A-Hf^ cH\. (1.20)
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Substituting for ̂  the expressions

U = c lίj % i = 2, . . ., m (1.21)

in the inner integral we obtain

/ . = cHm-l)-2n f d t i | ί i |4(m-l)-

U

with

*i=w- (L24)

The region F' consists of all t%,. . ., t'm satisfying

K^A-H') ^ 1 . (1.25)

By hypothesis (ϋ) the integral J(t[) is convergent. According to (1.24)
t[ is bounded for all tv hence J(t[) is bounded (Section 2, Lemma 2). Thus

Ij^Af dtλ |^|4(m-l)-2n . (1.26)

As a consequence of (i) the integral over tx is convergent. This completes
the proof of theorem 1 for P = 1.

In Section 2 some auxiliary Lemmas are derived. Section 3 contains
the proof of theorems 1 and 2 for an arbitrary polynomial P.

2. Auxiliary Lemmas

It will be convenient to consider more general integrals of the form

(2.1)

depending on additional four vectors p{. In (2.1) the notation (1.3) is
used and

P = (Pi - Pn)

n

Π eό^c(lj^ό) (2-2)

= If + μf , μj^ 0 .

We further introduce the notation

P { k * (2.3)
E{hqμ)

23 Commun. math. Phys., Vol. 10
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The following Lemma states that the values of the external momenta q
are irrelevant for the convergence of the integral /.

Lemma 1. Let all masses μι Φ 0. Necessary and sufficient for the ab-
solute convergence (a.c.) of I(q, p, μ, V) is the a.c. of 1(0, p, μ, V).

Proof. The statement follows from the inequalities

(2.4)

where

Using the same estimates we obtain

Lemma 2. Let 8 be a set of vectors qt which is bounded in i? 4 m. Assume
^ Φ 0. Then there exists a constant C independent of qt such that

I(q,P,μ,V)< Cl(0,p,μ,V). (2.6)

Lemma 3. Let Q(xx. . . xm> zx. . . zn) be a function of xv . . ., xn and
a polynomial in zx of degree dx

Q(x1. . . xmz1 . . . zn) = Σ ' ' ' Σ ^h...iM - - aJ 41 K: ' (2 7)
H = 0 in = 0

We use the notation

x = (xλ . . . xm) , z=(z1... zn)

dx = dxx . . . dxm .

(a) Let zΨ\ . . ., zΨ1^ be d{ + 1 different values for the variable z. If

J(z) = fdxQ(x,z) (2.8)

v
is absolutely convergent (a.c.) at the (dx -f 1) . . . (dn + 1) points

z = z<*i *»> = (2^1) . . . z£»)) 9 iχ = o, . . ., dx (2.9)

then the integrals
fdxailt.Λn(x) (2.10)

converge absolutely.

(b) // the integral (2.8) diverges absolutely for a single value

z = a = (a1 . . . an) (2.11)

it diverges absolutely for almost any (zi . . . zn).
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Proof, (a) The coefficients in (2.7) are given by [3]

"IL..Φ)- Σ °ii...iMh...i»Qlp>*h-in)) ( 2 1 2 )
h...3n

where the Ci1...injL...jn depend on the parameters (2.9) only and are
determined by a generalization of Lagrange's interpolation formula to
several variables. Hence

(b) For n— \ statement (a) implies that

/ Q(x, z) dx
v

is either a.c. everywhere or at d different points a t most (d denotes the
degree of Q in the variable z). Hence (b) is correct for n—1. Assuming
t h a t (b) is correct for n — 1 we will prove it for n. The divergence of
(2.8) a t (2.11) implies t h a t

f Q(x,z9 . . ,,zn^an)dx
v

is absolutely divergent (a.d.) everywhere except for

where Ό is a set of measure zero. Let now (z±. . . zn_^) $D(an) then

JQ(x9z1. . .zn-τan)dx
v

is a.d., hence
/ Q(xiz1. . .zn^.1zn)dx

V

is a.d. at zn except for at most dn + 1 different values

Zn = ίf (% Zn-l) , « = 0, . . ., <X ^ ίn .

Hence (2.8) is a.d. except for either (% . . . 2W_1) ( D ( α J or zn — f^
(zt. . . 2w_i). This, however, is a set of measure zero.

The purpose of the following Lemmas 4 and 5 is to show that the
mass terms in the denominators are not relevant for the convergence of
the integrals (2.4) provided the zeros of the denominators are properly
excluded from the domain of integration.

Lemma 4.

I(S,P,μ,DQ)£l(9,P,0,I><), (2.13)

I(q, p, 0, Dq) ^ CI(q, p, μ9 Dq) . (2.14)
23*
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G is independent of p and q. Dg denotes the region of all k satisfying

e ^ * , ft, 0) ^ r 2 , j=l,...,n (2.15)

where r is a given positive number.

Proof. Eq. (2.13), (2.14) follow respectively from the inequalities

£ 1 , (2.16)

ς 1 + -4"for e^kqjO) ^ r2 . (2.17)

Lemma 5. Let all masses //3 Φ 0.
(a) The integral

is ax. if and only if

is a.c.
(b) The integral (2.18) is a.c. if and only if

I(0P0D)= fdk^0L (2.20)
Ώ

is a.c D denotes the set of all k satisfying

Kf = ej(k00)^r2, j=l,...9n. (2.21)

Proof, (a) I t is obvious that the a.c. of I{qpμ) implies the a.c. of
I(qpμDq). We will show that the a.c. oίl(qpμ) follows from the a.c.
of I(qpμDq) for m integration variables kx . . . km. As hypothesis of
induction we assume that the statement has been proved for all integrals
of the type (2.18) with less than m variables of integration.

We first observe that the number of linearly independent forms
among Kx. . . Kn must be m. (If it were less than m the integral (2.19)
would diverge.) The factors eό of the denominator are now renumbered
such that

II • ., J? (2-22)

represent all different quadratic forms among the If. Let s be any subset
of (1, . . ., c) including (1, . . ., c) itself and the empty set. To every s we
define Xs as the set of all k satisfying

If g r2 for j ζs
1 (2.23)

If ^ r2 for j $ s .
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The integration domain i?4m of (2.18) is the union of all sets Xs

Bim = U I , . (2.24)
S

The intersection Xs r\ Xs> has measure zero provided s φ s'. Correspond-
ing to (2.24) we split the integral I(qpμ) into

I(qpμ) = Σl(<IPμXs)- (2-25)
S

By an appropriate reordering of e± . . . en the region Xs becomes

Xs = YSi π YSι

where YSi consists of all k satisfying

If^r2, ? = ] , . . . , α (2.26)

and YSo contains all k with

l?^r2, ? = α + l , . . . , c . (2.27)

We can further arrange that

tft, . . ., Ka, Ka+19 . . ., Kb(a <oc,b^ c) (2.28)

form m independent linear forms of the k such that Ka+1, . . ., i£α are
linear combinations of Kx . . . jfiΓα and that ^Γ6+ l5 . . ., Kn are linear com-
binations of (2.28). Let now Zlq be the set of all K = (ϋ^ . . . Ka) satis-
fying (2.26) for given q. Let Z2qχ be the set of all K = (Ka+1 . . . Kb)
satisfying (2.27) for given q and K. With (2.28) as integration variables
I(qpμXs) takes the form

f^ί^, (2.29)

= J ^ _ L ^ (2>S0)

where

EM(lcqμ)= Π ^

'~\ (2-31)

EW{kqμ)= Π e,{kqμ,).
j = α + 1

For the integral (2.30) we will now derive an upper bound which is
independent of K. To this end we make use of the hypothesis that

HΆVμD*) =

- P{h(KK), p) (2.32)f
(k(K), q,μ) J W»(k(KK), q, μ)

Z
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is a.c. In the second line Z'lq denotes the region of all K satisfying

lf^r\ 7 = 1 , . .., α .

Since (2.32) is a.c. the subintegral

fdK **&*>>*> (2.33)
J E™(k(KK),q,μ)

Z2QK

is a.c. for K ζZ'lq up to a set Σ of measure zero [4]. Applying the hypo-
thesis of induction to (2.33) we find that

E™(k(KK),q,μ)

is a.c. in Z'lq up to the set Σ. By Lemma 1 also

fdK-IMS^~ (2.34)
J E™(k(KK),q,μ)

fdK
J E™(k(0K),q,μ)

is a.c. in Z'lq up to the set Σ. According to Lemma 3b (2.35) must be
a.c. for any K. Applying Lemma 1 again we obtain a.c. of (2.34) for any
K. Furthermore (2.34) is majorized (Lemma 2) in Zlq by a multiple of
(2.35). Expanding P with respect to the components of Kl9 . . ., Ka we
find (Lemma 3a) that (2.35) is bounded in Zlq. This proves that each
term I(qpμXs) in (2.24) is a.c. and hence also I(qpμ).

(b) Statement (b) follows by combining (a) with Lemma 1 and
Lemma 4.

Lemma 6. Let

P(kp)= Σ PΛ^V) (2.35)

be the decomposition of the polynomial P into homogeneous parts Px of
degree oc with respect to the Jc{. Then the a.c. of

(2.36)

implies the a.c. of
r P thvλ

(2.37)

Proof. According to Lemma 5 b it is sufficient to prove the statement
for

J - f
- j

E(kOO) '
D

D
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We have

where D' is the set of all 1c satisfying

e,(*00) 2Ϊ ~ .

According to Lemma 4 the a.c. of (2.40) implies that

/

is a.c. Hence (Lemma 5a)

E(kθμ)
D'

ΓdkΣQ*P*
J dk^E{k0D

is a.c. Using again Lemma 4 we get that

/ E(k00)
D

is a.c. for all values of ρ. Applying Lemma 3a we obtain the a.c. of

3. Power Counting Theorem for Euclidean Metric

After the preparations of the preceding section it is not difficult to
prove the power counting theorem in the general form of Theorem 1. In
the notation of section 2 the integrals (1.1) and (1.5) take the form

(3.1)

(3.2)

The problem is to prove the a.c. of (3.1) provided the dimension of (3.1)
is negative and every subintegral (3.2) is a.c. Introducing new variables
of integration t = (tx . . . tm) by (1.15—16) we can write (3.2) in the more
convenient form

=fdta... dtm /^X^ (3.3)

according to Lemma 5b it suffices to prove the a.c. of the integral
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with D defined by (1.11). We reorder the e3- such that

R\, . . . , K l , c < n ,

represent all different quadratic forms among the Kf. In the following
we formally split I(q) into various parts and prove that each term is
separately a.c. First we write

i(q)= Σ
i (3.5)

= f= fdk P(kq)
E(kOO)

where Dό is defined by (1.14). With the set (1.15—16) of integration
variables I* takes the form

IM = fdtλ fdt2. . . dtm E{

(

AS1]^)

0) (3.6)
v v

where U and V are defined by (1.19) or (1.20) respectively. Next we
decompose the polynomial P according to

P(A-1t,q)= Σ Tx{tq) (3-7)
α = 1

into parts Tx which are homogeneous in t2, . . ., tm of degree α. Further-
more

TΛ(tq)= βΣ Taβi_βA(tq) (3.8)
βU...βA=l

where Txβit^βi is homogeneous in (t^, . . ., (^)4 of degree βv . . ., β4

respectively. We thus obtain for the integral (3.3) the decomposition

= Σ ^«A...ft(?)
}«βi.-.βt

)ah...βλi) = fdtlfdta... dtm

U V

Making the substitution (1.12) in the inner integral we obtain

h lh\° fd% . . . ί C - J = | ^ £ | . (3.10)
U V

with (1.24) and F' defined by (1.25). The integer a is

or = 4 ( m - 1) + Λ + Σ β{-2n

^4:<m + q-2n-4: = d-4:.
Hence we have

σ ^ - 5 . (3.11)
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In order to prove the a.c. of the integral (3.10) we now derive an upper
bound for the inner integral

T(t>π\^ fat' Jt' T*βi...ββ''g)

J(t q ) - J at2.. .dtm E,A-if 0 0)

Setting

0)

v

«A...,».β &?) (3-13)
we obtain

I ^ A . .AJ ^ G
 |S«Λ...ΛI . σ =c -c + - + ω (3.14)

So we get the following estimates for the integral (3.12)

/' n\\ < Π f fit' rlt' ^ l
*i q)\^O J dt2... dtm

<G fdt' dt' ^...βM -Z
VV

(because of Lemma 4)

< r" f fit' at' \s"βi'"β*^' - - ^ ^ 1<Cxj dt2...dtm E{A-H,f0>μ)

The last integral (3.15) still depends on the four vector t[ which, however,
is bounded. Applying Lemma 2 with respect to t[ we obtain

\T(ί'n\\<Γi frit' rlt' l̂ «ffi •-04 (*2 • C g)l /q Ί β\
K (?i ίJI = °2 J ah - - atm W^E~777ζ~Lή (o.io;

with (72 independent of tx. ZΓ; denotes the value of E at t[ = 0.

11', 0, ^) for ί( = 0 . (3.17)

We have thus found an upper bound for J (t[ q) which is independent of
tι. It remains to prove that the integral

B(rϊ,A— frit fitdtm

^ i /̂ fe - - *mg)l

converges. To this end we start from hypothesis (ϋ) which states that
the integral (3.3) is a.c. Using Lemma 1 we obtain a.c. for

/ ^ Γ . I V (3 19)

By Lemma 6

μ ^ X μ ) (3.20)
is a.c. Finally Lemma 3 a implies the a.c. of

ίrJf fit ^ i - ^ f e ' ^
J dt* ' *"* Hi<h...tmμ)
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We have thus proved that the right hand side of (3.18) converges. Inserting
(3.12), (3.14) and (3.18) into (3.16) we obtain

\Rjκβl...βi(q)\^O2AB(qμ) (3.22)
with

A= \c\af\t\adt.
u

Since σ ^ — 5 this integral converges. This completes the proof of the
theorem.

For the proof of Theorem 2 we remark that the statement holds
already if H is restricted to special hyperplanes of the form

h = Qh> -->hΛ = Qι. ( 3 2 3 )
with ljl9 . . ., ljχ linearly independent. In this form the theorem follows
from Theorem 1 by induction with respect to α.
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