
Commun. math. Phys. 10, 311—324 (1968)

Analyticity Properties of the Anisotropic
Heisenberg Model

G. GALLAVOTTI, S. MIRACLE-SOLE

Institut des Hautes Etudes Scientifiques
Bures-sur-Yvette

and

D E R E K W. ROBINSON

CERN — Geneva

Received June 1, 1968

Abstract, An upper bound Te for the critical temperature of a class of spin
systems which includes the Heisenberg ferromagnet is derived. The analyticity of
the free energy as a function of the temperature, the external magnetic field, and
the interaction potentials, is demonstrated in a domain which includes all tem-
peratures T > Tc For the isotropic Heisenberg ferromagnet in v dimensions we
find the poor estimate 2vJ/JcT0 = 0.0001. Some analyticity and cluster properties
of the reduced density matrices are also derived.

1. Introduction

It was first shown by RUELLE [1, 2] that, in the low density region,
one could derive analyticity and cluster properties for the correlation
functions of a classical statistical mechanical system from the Kirkwood-
Salzburg integral equations. His method consisted in interpreting the
latter equations as integral equations on a suitably chosen Banach space.
The method was developed by GINIBRE [3] who obtained similar results
for continuous quantum systems and, more recently [4], for certain
quantum spin systems or lattice gases. The idea behind GINIBRE'S
innovation is to reduce the quantum mechanical problem to a problem
formally identical to the classical one by the use of Wiener integral
techniques. These latter techniques allow one to represent the quantum
mechanical reduced density matrices in terms of classical correlation
functions over a space of quantum mechanical configurations which
physically consist of "clouds" of classical configurations.

In the case of classical lattice systems RUELLE'S method was
generalized to incorporate many-body forces [5] and improved to give
a much larger region of analyticity in terms of the thermodynamical
variables [6, 7].

The latter improvement originates from two sources. Firstly one
remarks that by taking into account the presence of a hard core condi-
tion and the fact that the configurations form a discrete set one may
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partially invert the Kirkwood-Salzburg type equations and obtain more
powerful relations. Secondly, one may use a "hole-particle" or "spin-
reversal" symmetry to extend domains of analyticity. It is the purpose
of this paper to show that similar improvements can be made to
GINIBRE'S approach to the quantum mechanical case because the
classical configurations occur as a discrete subset of the quantum me-
chanical configurations. Thus we have succeeded in proving for the
anisotropic Heisenberg model that, at high temperature, i.e., for
I Re/51 < β0 (β0 is a fixed number) and Im/? sufficiently small, one has
analyticity of the free energy in the thermodynamic variables.

2. General Formulation

Let Zv be a v dimensional cubic lattice and suppose that at each
point x ζZv there is a spin σx = {σψ, σi2), σ^3)). Consider a system con-
fined in a cubic box A containing N(Λ) points. We assume that the
Hamiltonian of this system is given by

HΛ = γ Σ [K{X - y) {<#> σf + o£> of} + J(χ - y) <xf σ<?>]
xm (i)

+ H Σ 4 3 )

xeΛ

where the potentials J (x) and K(x) are taken to satisfy
l | j | = Σ \J(χ)\ < + oo,

We also introduce J and K through the definitions

Following GINIBRE we introduce annihilation and creation operators
(2x2 matrices) ax, a£ by

and then note that in terms of these operators HΛ is equivalent to the
Hamiltonian

HΛ = - Σ κ(x ~ V) (aχ ~ ay) (aχ ~ av)
χ,y£Λ

x*y (2)
+ 2 Σ J(x - V) C^taxayay - μ Σ axax

x,yζΛ xζΛ
x=$=y

where
μ=-2H-J+K.

[Actually (1) and (2) differ by a term - (H + Kβ) N{Λ) and a second
surface term ΣΛ i.e., by a term such that \\ΣΛ\\IN(Λ) -> 0 as Λ -> oo,
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neither of which affect the following discussion of analyticity properties
of the free energy.]

The states of the finite system form a vector space ^ A in which one
may introduce a normalized basis labelled by the finite subsets of A as
follows. The vector 10)^ is defined by the condition:

a x W > Λ = Q f o r a l l x ζ A

and \X}Λ> with XcA, is defined by

\

If ψ is a function on the subsets of A a general vector [ ψ}Λ ζ J4?Λ is
given by

\Ψ)Λ= Σ Ψ{X)\X>Λ-
XCΛ

Denoting the first term in (2) by TΛ we see that its action on 34?Λ is
given by

(TΛψ)(X)

= ~Σ K{y) Σ M(XM w (x + y)) - 2ψ(X) + ψ((X/x) κj{x- y))}
y xζX

where the first summation is restricted such that all sets occurring are
subsets of A. If we denote the second two terms in (2) by UΛ i.e.,
UΛ = HΛ- TΛ we find

(UΛψ)(X)=U(X)φ(X)
where

J(χ-y)-μN(X).

Whilst TΛ is a double difference operator and a natural analogue of the
Laplace operator which would occur as the kinetic energy term in the
Hamiltonian of a continuous gas, UΛ is the natural analogue of the
potential energy arising from a two-body interaction 4 J (x) and a chemi-
cal potential μ.

The equilibrium statistical mechanics of the system, considered as
a lattice gas, is described with the aid of the pressure

PΔ(βμ, βJ, βK)

and the reduced density matrices

7 >
T r (e-βΞΛ TI< Π%). (3)

\ J
Tr(e

The thermodynamic predictions of the theory are determined by the
limits P(βμ, βJ, βK) and ρ(X, Y) of these functions as A -> oo. In the
sequel we will derive properties of the pressure P and the reduced density
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matrices ρ of the lattice gas. Our results can of course be immediately
translated into statements concerning the free energy, etc., of the spin
system by a simple change of variables and terminology.

The well-known symmetry of a spin system between spin "up" and
spin "down" becomes, in the lattice gas language, a "hole-particle"
symmetry and leads to the following result.

Symmetry relation. The thermodynamίc pressure P(βμ, βJ, βK) sat-
isfies the symmetry relation

P(βμ, βJ, βK) = P{- β(μ-2J+ 2K), β

3. Reduced Density Matrices

In this Section we establish the Ginibre representation [4] of the
reduced density matrices in terms of correlation functions on a space of
trajectories.

Consider the space KW of functions / from [0, j] to Zv. We refer to
elements ω of KW as trajectories. Each trajectory can be parametrized
by giving the starting point ω (0) = x, the number n of jumps of the
trajectory, the successive jumps sl9sz, . . .,sn9 the "times" t0, tl9 . . ., tn

spent in the positions x9 x + s1, . . ., x + s1 + + sn respectively.
Let us introduce on K^ a measure Plcy{dω)) concentrated on the

trajectories ω such that ω (0) = x and ω (j) = y, through the definition

sι,...,sn ti^O
Σsi = y-x (4)

where for n = 0 the product occurring on the right-hand side is replaced
by unity. We have

¥ (5)
ΣfΠy(dω) = l
Y

and the equality in (5) is valid if, and only if, ||.ίΓ|| = K i.e., if K(x) ^ 0.

Let J f and J f be the spaces defined by

J Γ = U K®, Jf=U X®n.

jinteger

For ω ζ KW we define the length l(ω) of the trajectory ω by l(ω) = j
and call a trajectory ω simple if l(ω) = 1 and composite if l(ω) > 1.

Each composite trajectory of length I can be regarded as the union
of I successive simple trajectories. If ω1} ω2, are two simple trajectories
we define the mean potential energy between ωx and ω2 by

1

J(ω1 - ω2) = f dt J(ω1(t) - ω2(t))
o
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where we take the convention J(0) = + oo in the integrand. We define
the mean potential between two composite trajectories by

where the summation runs over simple trajectories ωf, ω | which occur

in the decomposition of ωx and ω2 respectively. Let ω = {ωt,..., ωn} ζ CtiΓ

with ωi^C/F then we define the mean potential energy U (ω) of ω by
n

U (ω) = 4 Σ J (ωi ~ ωύ) — μ Σ I (ωi)

Next we introduce a measure on Jf* by the definition:

dω= Σ Σ ^-pίx (^ω) (6)

and the corresponding measure dω on JΓ by
1

dω = 2u —jdo)i. . . dcon . (7)

A second useful measure on JΓ is defined by

Pχγ(dω) = δNU)MY) Σ Σrt\&M(dω1)...Pil^M(dωn) (8)

where n = N (X) and the second sum runs over all permutations @P of
the points of the set Y.

The usefulness of the above definitions is demonstrated by the follow-
ing representations due to GINIBKE [4]. Define ZΛ(βμ, βj, βK) by

ZA{βμ, βJ, βK) = Σ Γ Pχx(dω) e-W«>
XCΛ

where the prime on the integration symbol denotes that the integration
is restricted t o ω = {ωx, . . ., ωn} such that each ωt is simple and con-
tained in Λ. Ginibre has shown that this function can be written as

ZA(βμ, βJ, βK) = Tr(

where ΣΛ is a surface term [i.e., ||2^||/iV(yl) -> 0 as A ->- oo].
If one further defines reduced density matrices using the Hamiltonian

β(HA+ ΣΛ) one finds [4]

QΛ(X, Γ) = 4 r Σ Γ PXVS,YVS ^ω) e-β* (-) . (9)
Λ SCΛ

Introducing functions ρΛ by

^(»)=i / dω'e-wv*) (10)
^A ωfCΛ

one has ρ^(0) = 1 a n ( i after some rearrangement one finds that

ρΛ(X, Y) = f PχY (dω) ρΛ(t>>)
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Note that the ρΛ defined by (10) are identical to classical correlation

functions defined for a system whose configuration space is Jf\ Further

note that this configuration space has the physical interpretation as

a space of "clouds" of classical configurations and the set of classical

configurations is contained in tf as a discrete subset namely the subset

of families of simple trajectories with no jumps.

4. Integral Equations

We next proceed to derive integral equations for the correlation func-
tions ρΛ. Let us order the trajectories of ω in the lexicographic order of
their starting points. If ωx is the first simple trajectory of ω we may
then write

ϋ(ω\J ω') = U(ωW\J ω') + 4 Σ J(ωx-ω)

+ 4 Σ J{ω1-ω')- μ

where ω^ is the set of composite trajectories obtained by subtracting
ωx from ω.

If J ( ω ! — ω2) = + oo we will say that the trajectories ωx and ω2

overlap and we will write ω1 r\ω2 φ 0; if J(ω1 — ω2) < + oo we write

ω i r\o)2 = 0. If J(ω) = + oo, namely if ω overlaps the empty trajectory,
we say that ω is self-overlapping.

Now, using (10) and (11), we find

I dω'e-W^viyj"') for

ω'QΛ

(12)
where

UHω) = 4 Σ J(oh-ω), z = e^

and K1 (η) is defined as follows

K1(η) = 0 if ω1r\ηφ

= Π ( e - 4 J ( ^ - ^ > - 1) if ωx ΓΛ η = 0 a n d ηφQ.
η ζη

Next, to obtain integral equations we use the following identity

ίΰi Γ\ a>' = 0
ω' C Λ

= / dω'e-W^viv*') (13)
ω' CΛ

+ f dω"{-\)N(ωfn> f dω'e-W
all mr ΓΛ

ω"CΛ
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where N(ω") is the number of composite trajectories of ω" and

ω2 Γ\ ω" =}= 0 means that each of the composite trajectories of ω " must
overlap ωv

Combining (12) and (13) we find

δΛ{ω) = ze-βϋl^\ρΛ(ω^) + / dω'(- l)N(a>/) ρΛ(ωW \J ω')
I all

o>! Γ\ ω' Φ 0

+ / dη K1^) \ρΛ(η\J ωW) (14)

dω'(- l )^ ω l > ρΛ(ωM w η\J ω')Ίl .
all

These integral equations are basic to the rest of our analysis and differ
from those used by GESΓIBKE insofar we have explicitly taken into account
the fact that ρA (ω) = 0 if the trajectories contained in ω overlap. This
distinction gives rise to the second and fourth term in (14) in a classical
lattice gas similar terms arise when one takes the hard core conditions
explicitly into account [6, 7].

To use the above integral equations we follow the method developed
by RUELLE and GINIBKE. Introduce a Banach space $aτ of functions φ
over the non-empty sets of (composite) trajectories ω vanishing on
overlapping trajectories with the norm

where l(ω) and n{ώ) denote the number of simple trajectories and the

number of jumps in the set ω respectively. Clearly, if ω = ω' \J ω" then

l(ω) = I{ω') + l(ω") and n{ω) = n{ωf) + n(ω").

Define the following operators on δ.στ:

<p(ω)

(XΛΨ) ( ω ) = φ(<») i f ω

= 0 if ωdΛ

(E φ) (ω) = f dω' ( - 1)^ <*'> φ (ωW W ω')
all

ωx Γ\ β>' Φ 0

if ωW φ 0

if ωW = 0
22 Commun.math.Phys.,Vol.lO
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and

{Gφ) (ω) = / dηK1^) [φ(ω^\J η)

dω'{- l)N^ φ{ω<U\J η\J ω')] .
all

Further we introduce the vector α ζ S'Gτ by

α(ω) = l if ωW Φ 0

= 0 if ω ^ = 0 .

These definitions allow us to write (14) as an integral equation on the
space $aτ in the form

eΛ = zχΛ« + *χΛe-βΌl[-E + F+G}ρΛ. (15)

Next, we wish to rewrite these equations by introducing a decomposition
of E into two parts Ex and E2; the decomposition is chosen such that
(1 + ze-u1 Ex) is invertible and E2 is small for small values of β. Expli-
citly we have E = E1 + E2 where

^( ω i ) ,0 ψ(ω) '

A rearrangement of (15) then yields

1

where (16)

In order to apply to these integral equations the methods of RUELLE
it is necessary to find the region of z and β for which the norm of 3tf in
$στ is less than unity. In this region one can then demonstrate that as
Λ-> oo lim ρ^ (ω) exists uniformly for ω contained in any bounded region
and also that | |ρ^| |σ τ is uniformly bounded.

In fact as | |α | | σ r = 1/σ it follows from (16) that if \\Jί?\\στ < 1 then

Estimation of the norms of the various integral operators introduced
above can be made in a straightforward, but nevertheless complicated,
manner using the explicit form of the measure dω in terms of the para-
metrization of the trajectories, i.e., Eqs. (4), (6) and (7) are used (see
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also GINIBRE [4]). For example one finds

| |^| |σ r ^ sup—L-^-expj / \dco\ σι <ω> τn (ω> \

319

••>}
(18)

where we have introduced

λ - _ σ e / ( D 0 O ) +
σe )-f i _ σ e2β(τ\\κ\\-κ)

and the third step in (18) is valid if 0e*HτW-K) < χ? the fourth if eλ < τ.
One finds the following results:

ΪXΛΪar =

and

\\E

where

P*β\\J\\

e-βm

-F

-λ),

if 1 ^ logr - λ ,

fF (<y, r) = Max I — sup

•'τ)=τ(1+v)[θχp
where

and these estimates are valid under the following conditions

P <* 7* Γf p * P \J> W K W — J£) •<•*" 1 PTlfi

Thus under these conditions

where

22*

(19)

e4/ί| |J|1 {/a(σ, r) + fβ(σ, τ)} + fr(σ, τ) (20)
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5. Analyticity and Cluster Properties

Let us define Si to be the set of values of the activity z, the inverse
temperature β, and the potentials J(x), K(x) for which there exist σ, τ,
satisfying the inequalities (19) and such that

T h e o r e m 1. If for β^ 0,z^ 0 either

or

then the thermodynamic pressure is an analytic function of z, β, J(ή, K(ή.
In particular there exists a Bo > 0 such that the pressure is an analytic
function of z, β, J(ή, K(•) for

2 2=0, βjJl<B0, and β\\K\\<B0.

Proof. The first statement of the theorem follows from the same
arguments used by GINIBRE; the second statement follows from an

Fig. 1. The analyticity domain of the pressure obtained in Theorem 1 for fixed J(.)
and K(.) is indicated by the shaded region

examination of the set Si. Let us study the form of Si for J( ), K( ) fixed.
Let σ be a function of \z\ such that σ < I and

z e-βUi(ω)

< l

and let τ be a function of β such that as β ->- 0 we have τ(β) -> oo but
βτ(β) ->0; in this limit λ-+λ0, /^->0 and /#->0. It is immediately
clear from (20) that given z one can find a positive function f(z) such
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t h a t if β<f(\z\) o n e h a s fj^(σ(z)9 r ( β ) ) < 1. T h e c u r v e f(\z\) c a n b e
chosen decreasing. Using the symmetry relation of Section 2 we find the
second condition of the theorem and this takes the form

The nature of the curves are shown in Fig. 1. The shaded region in this
figure depicts the values of β and z for which analyticity has been derived.
(In the above, analyticity is understood in the same sense as in GINIBRE'S
paper, namely there exists a complex neighbourhood of 2 where one has
analyticity in the usual sense.)

Theorem 2. For (z, β, J ( ), •£"(•)) £ 2f the infinite, volume reduced den-
sity matrices exist, are analytic functions of z, β, /(•)> £{')> and satisfy the
cluster property

where d(X, Y) denotes the distance between the sets X and Y.
Proof. The analyticity of the reduced density matrices in the cited

region was implicitly used in the proof of Theorem 1 and is a consequence
of the analysis of the integral equations. To prove the cluster property
we proceed as follows. Define χ by

X(Xlt Γ J I X , , Γ2) = e(Xxyj Σt, Γαw Y2) - ρ(Xlt Tx) ρ(Xt, Γ2) .

From the bound (17) and the definition (8) we find
/ σ.e2/3(τll£||-iD \N(X)

\ρ(X, 7) | rg J V ί Z ) ! ^ )

[With a suitable introduction of moduli signs this bound and those of
the previous Sections hold for (z, β, J(-), K(')) in a small complex neigh-
bourhood of ^ . ] Now given (z, β, J(ή, K( )) ζ@ one sees that there
exists a small complex simply connected neighbourhood of the interval
(0, z) in which χ is uniformly bounded and z analytic. GΓNΊBRE has
however proved that χ has a power series expansion of the form

whose radius of convergence is independent of Xx Yτ, X2Y2. Further he
demonstrated that

lim χ(Xl9 ΓJZa, Y2) = 0

within the circle of convergence of this power series. This implies that

Km C1(X1, Y^Xz, 72) = 0 .

We are now in a situation analogous to that of [8] and the proof proceeds
as in that reference. (See also [9].)
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Note that the spin reversal symmetry relation that we have used to
extend the analyticity region of the pressure is quite general but our
inability to handle surface effects in the reduced density matrices makes
it impossible to extend the analyticity properties of these matrices by
symmetry arguments.

Although the cluster property we have derived is much weaker than
that of GINIBRE it is valid in a larger domain. For fixed /(•)> K( )
GESΓIBKE'S domain of analyticity in β, z and the present domain are
indicated in Fig. 2, in the hatched and shaded regions respectively.

Fig. 2. The domains of analyticity of the reduced density matrices obtained by
GINIBBE and by the present authors are indicated by the hatched and shaded

regions respectively

In the algebraic approach [10, 11] the reduced density matrices
determine a Zv invariant state ρ over the C* algebra 21 generated by the
creation and annihilation operators.

Corollary. Under the conditions of Theorem 2 ρ is extremal Zv invariant
and is a Ej state in the sense of [12].

6. Comments

In Theorem 1 we have demonstrated that the free energy is an
analytic function at high temperatures for the model under consideration.
One model of particular interest which is contained in our class is the
isotropic Heisenberg ferromagnet. This latter model is defined by setting
J(x) = K(x) ^ 0 and in this case a numerical calculation1 yields ana-
lyticity if

β \\J\\ ^ 0.0001 .
1 We are indebted to W. KLEIN for carrying out this calculation.
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Thus in v dimensions with nearest neighbour interactions of strength J
we have an upper bound TG for the critical temperature Te given by

f ^ = 0.0001.

Previously [7] we considered the Ising model, defined by setting K \-) = 0,
and obtained in the nearest neighbour case 2

which may be compared with the value given by numerical calculations
[13] in three dimensions 6JlkTc = 1.3. One immediately realizes that
the complications of the quantum formalism greatly affect the value of
the bound Ί\ the above estimates are however independent of the nature
of the lattice provided it is a Bravais lattice and 2 v is replaced by q, the
number of nearest neighbours.

We conclude with several remarks. Firstly it should be noted that
the reduced density matrices for which we have derived results are those
defined by (9) as A -> σo and not the original ones introduced through (3)
as A -> oo. The difference between these two sets of matrices is due to
the presence of the surface term ΣΛ in (9). The matrices (3) are defined
using hard wall boundary conditions and the introduction of ΣΛ corre-
sponds to a change of boundary conditions. Whilst the free energy can
be proved to be independent of boundary conditions no proof exists that
the same property holds for the reduced density matrices. In the clas-
sical case this independence can be proved but the proof requires the
introduction of a space of many-body potentials and the derivation of
analytieity of the free energy considered as a functional of these inter-
actions.

To carry through a similar proof in the present setting one would
have to consider more general Hamiltonians than those we have dis-
cussed, namely one would have to handle Hamiltonians of the form

X,YCΛ xeX yζY
(X) N(Y)

where J (X Y) is a translationally invariant function over pairs of finite
sets of Zv. Although we have not discovered a technique for handling
such general Hamiltonians the methods of this paper can be apparently
generalized to cover the following case

HΛ = Σ K{x - y) a+ av+
x,yζΛ XcΛ xζX

where we assume Σ \K(x)\ < + oo, JΓ |^"W| < + °° This should
αψo oex

follow from the combination of the present techniques and those of [5, 7].
2 Due to a misprint this number was given as 0.4 in [7].
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