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Abstraet. This paper contains an investigation of spaces with a two parameter
Abelian isometry group in which the Hamilton-Jacobi equation for the geodesics
is soluble by separation of variables in such a way that a certain natural canonical
orthonormal tetrad is determined. The spaces satisfying the stronger condition that
the corresponding Schrodinger equation is separable are isolated in a canonical
form for which Einstein’s vacuum equations and the source-free Einstein-Maxwell
equations (with or without a A term) can be solved explicitly. A fairly extensive
family of new solutions is obtained including the previously known solutions of
de Sitter, Kasner, Taub-NUT, and Kerr as special cases.

1. Introduction

RoBERrTsON [1] and ErsENHART [2] have discussed conditions under
which the Hamilton-Jacobi equation and the corresponding Schrodinger
equation are soluble by separation of variables in spaces which admit
a complete set of mutually orthogonal families of hypersurfaces. This
paper also contains a study of spaces with separable Hamilton-Jacobi
and Schrodinger equations but under different conditions: firstly, the
investigation is restricted to ordinary four-dimensional space-time, while
being extended to include the case where the Hamilton-Jacobi and
Schrodinger equations under consideration apply not only to the motions
of free particles (geodesics) but also to the motions of charged particles
in a Maxwell field; secondly there is the more important difference that
instead of requiring that the families of hypersurfaces with respect to
which separation takes place be all mutually orthogonal, we require that
there be an Abelian isometry group, and that the separation should take
place in such a way as to define a certain canonical tetrad of orthonormal
(and not necessarily integrable) forms.

One of the purposes of requiring these separability properties for
a space is to obtain sufficiently strong restrictions on it to make detailed
study possible, but without imposing a high isometry group. Most of the
spaces which have been studied in detail in the past have had at least
three parameter isometry groups. The type of separability to be dis-
cussed here applies to spaces with (locally) two parameter Abelian iso-
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metry groups. Another reason for imposing these requirements in that
many of the most interesting global properties of spaces depend on the
behaviour of geodesics, and cannot be studied easily unless at least first
integrals of the geodesic equations can be found. If the space has an
isometry group of three or more parameters then a complete set of four
such integrals can always be found, namely the three corresponding
generalised momenta together with the derivative of metric distance with
respect to affine distance (which is constant of the motion in any case,
independently of any isometry). However if the isometry group has no
more than two parameters, a complete set of first integrals cannot be
found except in special circumstances, of which the only widely useful
case is that where the Hamilton-Jacobi equation is separable.

We shall be led to impose the considerably stronger condition that
the analogous Schrodinger equation is separable not because there is any
good physical reason for doing so but because it leads to a very simple
algebraical form for the metric, namely

Z Z Vi| 4
dﬁ:zgdﬁ+zrmtkﬁ{ﬂdw—%dﬂtvf{ﬂﬂw—gdﬂza)

where y, y are two ignorable co-ordinaters and A, u are two non-
ignorable co-ordinates and where A4,, P,, @, are functions of 4 only and
4,, Py, @, are functions of x4 only. The quantity Z is defined to be the
determinant

Z=P,Q,— P,Q, (2)

and it is necessary that the functions P;, P,, @, @, be such that Z takes
the form of a sum of quantities each depending on only one of the
variables A, u. Apart from this restriction (which means that only two
of them can be chosen independently) these four functions are arbitrary,
as are the two functions A4,, 4,. The simplest Maxwell field which pre-
serves the separability may be derived from a covariant vector potential
which in these co-ordinates takes the form

4 — PAX” -g P”XA d’lp _ QlX/.t ;— QuX/I dx , (3)

where X;, X, are two further arbitrary functions of the single variables
A, p respectively.

The final task of this paper is to obtain the complete solution of
Einstein’s vacuum equations (both with and without A term) and of the
Einstein-Maxwell equations for the above system. The solutions are
obtained in a simple and explicit form, and fall into three families:
firstly the most general family [A], where Z depends on both 4 and u;
secondly a more restricted family [ 5], where Z depends on only one of
these variables, and which divides into two conjugate subfamilies
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[B_(+)] where the dependence is on A only, and [B(—)] where the
dependence is on u only; and thirdly a degenerate family [D] for which

Z is constant. These families may be tabulated as follows:

(4] ds= e+ ) [ G+ S
u
n Auldy — Rdyl* — 4,[dy + pdy]?
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In all of these cases the charge parameter e and the other parameters 4,
k, I, m, n, q, p determining the metric forms are arbitrary except that
they and the co-ordinate u must lie within the range where the quantity
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4, (which determines the over-all signature of the metric) is positive.
The parameter « is an arbitrary angle determining the complexion of the
electromagnetic field, and it has no effect on the metric.

This search was prompted by the author’s observation [3] that in the
Kerr solution and its charged generalisation the Hamilton-Jacobi equa-
tion is separable in the simple manner postulated here, and since it turns
out that the Schrodinger equation is also separable in these solutions,
they must be included in the above family. In fact they constitute the
special case of the set [A] for which A and ¢ vanish and for which 4
and n are both (strictly) positive. The other special cases where the
metrics given above coincide with previously known solutions are
enumerated in the final section of this paper, but more general investiga-
tion of the properties of these solutions is left for a subsequent discussion.

The forms [ B (<-)], although superficially more complicated then [4],
are actually merely limiting special cases of this more general form;
moreover the form [D] is obtainable by a further limiting process from
either [B(+)] or [B(—)]. This is explicitly demonstrated in the final
section where the form [4] is analytically extended to a form [A] which
combines [47], [B(+)], [B(—)] and [D] in a single formula. The inclusive
solution [A4] is the form given by the author [4] without derivation in
a previous note.

2. The Hamilton-Jacobi and Schrodinger Equations

Before describing the separability conditions which we shall use, we
must specify the precise form of the Hamilton-Jacobi and Schrodinger
equations to which we refer.

We start by considering a general space with co-ordinates z* and
metric (with positive Lorentz signature)

ds? = g,pda*da? , (20)
on which there is an electromagnetic field
F = F,pda* A daf (21)
satisfying the Maxwell equation
dF=0. 22)
The equation of motion of a particle of mass m and charge € is
A e R e s

which reduces to the geodesic equation when & vanishes.
In consequence of Maxwell’s equation (22) we can introduce a
potential
A=A4,dx*, (24)
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satisfying
F=2dA4 (25)
and in terms of this we can construct the Lagrangian
L=y gupaa® + 24, (26)

where * denotes ordinary differentiation with respect to an affine
parameter 7. This Lagrangian gives rise to the equation of motion (23)
provided that 7 is normalised with respect to the proper distance s by

§=mt, (27)
which is equivalent to imposing the normalising condition
JupB* 2P = — in? . (28)

When there is no charge the normalisation is unimportant except in
sign: positive, zero, and negative values of m? give respectively timelike,
null, and spacelike geodesics.

Introducing the momenta

Poc = gocﬁxﬁ + éAa (29)
derived from (26), and the inverse metric tensor
A ?
() = (32) (aor) (30)
we obtain the Hamiltonian
1 _ ~
=5 9P (P — 24,) (ps — 24y) . (31)

Since it does not involve the affine parameter explicitly, H is itself a con-
stant of the motion, and in consequence of (28) its value is given by

He=—yim?. (32)
Eq. (31) gives rise immediately to the Hamilton-Jacobi equation
a8 1 (38 s
Bty ﬁ(—ax—a—eA“) (W—eAﬂ) (33)

where S is the Jacobi action, from which, once it is known, the integrated
form of the corresponding geodesics or orbits can be obtained auto-
matically by the standard methods.

We may proved to the quantised analogue of the theory in the normal
way by treating the Hamiltonian and the momenta as operators. Thus
(31) becomes a Schrodinger equation if we make the substitutions

Heil; po=iper (34)

k4 %’
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and allow it to act on a scalar wave function ¥. Since the operators do
not commute the order must be determined by invariance requirements.
It may easily be verified that the equation

. oY 10 _ 1 10 _
i = (lgl‘m oo |91Y2 — eAa) 5 9*° (—‘“axﬁ - eAﬁ) ¥ (35)

with the abbreviation

g = det(g,p) (36)
is in fact invariant under co-ordinate transformations and under the
gauge transformations

A-A+etdy; VP->Veix, (37)
where y is any real scalar field independent of 7. Thus (35) is the Schro-
dinger equation analogous to the Hamilton-Jacobi equation (33). This
formalism represents a quantisation over the five dimensional space con-
sisting of the product of the original space-time manifold with the proper
time (or affine distance) line. The eigenstates of the Hamiltonian take
the form

1.

Y=oz ™y, (38)
where  is independent of the proper time s and satisfies the equation
(9155 12 — 24,) g8 (s~ 24p) p + 2y =0, (39)
which is simply the generalisation to curved space and charged particles
of the Klein-Gordon equation. (It is worth remarking that by this method
of derivation the generalisation is obtained uniquely, i.e. it would not be
permissible for example to introduce the additional term 1/6 Ry where
R is the curvature scalar, which would be required in order to make the
equation conformally invariant.) Five dimensional proper time quantisa-
tion schemes of this sort in flat space have been discussed by NamBuU [5],
FrEyNMANN [6] and GARROD [7], but for the purposes of this investigation

the physical interpretation is not important.

3. The Separability Conditions

In this section we shall describe the isometry and separability con-
ditions which will be imposed, and examine their immediate conse-
quences.

The first condition to be imposed is:

I. The space and the electromagnetic field are tnvariant under a two
parameter Abelian symmetry group.

This means that we can introduce a co-ordinate system with co-
ordinates A%, @2, in which the labels ¢, r run over the values & 1 in such
a way that the co-ordinates A* are constant on the surfaces of tran-
sitivity, while the co-ordinates @?" are dragged along by the operations
20 Commun.math. Phys., Vol.10
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of the group, and so are ignorable in the sense that they do not appear
in the expressions for the metric tensor or the Lagrangian or the
Hamiltonian.

It is convenient to let the indices run over the values - 1, 4- 2,
instead of running over consecutive integers as would be conventional,
because this makes possible a concise notation in which the index
variables may be used as multiplying factors to control signs. When used
in this way an index will always be bracketed and it will be understood
that it does not take part in the summation convention (e.g. (z) A* means
A or —A-1 in the respective cases ¢ =1, s = — 1). Thus the symbol &
bracketed in this way need not be confused with the unbracketed sym-
bol 7 used to denote the square root of minus one.

The summation convention will in any case be suspended for the
labels of the non-ignorable co-ordinates (for which the symbols 7, § will
be reserved) throughout this paper i.e. it is to be understood that there
will be no summations over them except those stated explicitly. For all
other indices and in particular for the labels of the ignorable co-ordinates
(for which the symbols r, s will be reserved) and for labels running over
all four co-ordinates values 4 1, + 2 (for which Greek symbols will
always be used) the use of the summation convention is to be taken for
granted.

The second condition to be imposed is:

II. The symmetry group s invertible with non null surfaces of tran-
sttivity.

By invertibility of the group (c. f. CARTER [8]) it is meant that in
addition to the continuous symmetry group there is a discrete symmetry
under simultaneous reversal of the directions of the Killing vector fields
generating the continuous isometries. It is shown in the above reference
that the invertibility implies that the group is orthogonally transitive,
ie. that the 2-surfaces of transitivity of the group are orthogonal to
a second family of 2-surfaces. This means that it is possible to choose the
ignorable co-ordinates @27 to be constant on these orthogonal 2-surfaces.
The assumption that the surfaces of transitivity are non-null guarantees
that we can obtain a locally non-degenerate co-ordinate system in this
way. In such a co-ordinate system the invertibility is manifest in the
absence of cross components of the metric tensor between the ignorable
and non ignorable co-ordinates.

Thus in the co-ordinate system so defined the Hamilton-Jacobi equa-
tion (33) splits up in the form

R Mo I
o o) (o)
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We shall be concerned ultimately with solutions of the vacuum Ein-
stein and Einstein-Maxwell equations, and for such spaces the results of
PapapETROU [9] and CARTER [8] show that the space must automatically
be invertible wherever the surfaces of transitivity are non-null in any
region connected to a locus where one of the killing vectors generating
the group vanish, as on a symmetry axis. Thus if the isometry group
postulated in condition (I) corresponds to the space-time being stationary
and axisymmetric (these being the most physically natural circumstances
which would produce a two parameter Abelian group), then condition (II)
imposes no further restriction at all as far as solution of the vacuum
Einstein and Einstein-Maxwell equations are concerned.

We now introduce the primary separability condition:

III. The Hamilton-Jacobi equation is soluble by separation of variables
in the simplest possible way, i.e. the solution S takes the form of a sum of
terms depending on one variable only, and on substitution of this form, and
tf necessary after multiplication of the whole equation by a suitable separating
factor, the Hamilton-Jacobi equation breaks up into a sum of terms each
depending on only one of the non-ignorable co-ordinates.

The dependence of S on the affine distance and on the ignorable
co-ordinates can be obtained at once. Choosing the A’ to be the non-
ignorable co-ordinates in terms of which separation takes place we obtain
the form

S - L+ 7 350 w

where the constants @,, are the values of the conserved momenta p,,
and where each function S depends only on the single variable A¢. From
now on any function to which a single suffix ¢ is attached will by im-
plication be a function of A only, and a prime will be used to denote
total differentiation of such a function with respect to A%
On substituting (41) into (40) we obtain
— WU = 3 Ugh (S, — 24,) (5] ~ 24,)
X (42)
+ Ug2r,2s (@27 - éAm‘) (¢2s - éAzs) s
where we have introduced an as yet arbitrary multiplying function U.
Condition III states that it is possible to choose U so that this equa-
tion breaks up into a sum of terms depending on one or other of the
variables A only (independently of the values of @,,). It is clear that the
left hand side will have this property only if U itself does, i.e. we must
have

U=Y U3 (43)

It should be noted that in an equation of this type, of which we shall
have several, the function on the left hand side determines the functions

20*
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on the right hand side only up to an additive constant which may be
transferred between them. We can also deduce at once that we must have

9 =0, (@=*7)), (44)

since otherwise the presence of a term containing the cross product S;S;
would be inevitable. A mixed term involving S;2 can only be avoided if

the coefficient of S;2 is a function of A% only, i.e. we must have
Ugit= A,(4) . (45)

[It may be remarked at this point that by a co-ordinate transformation
in which A? is replaced by a function of itself, A; would be altered by a
factor which could be any strictly positive function of 1?, and we might
be tempted to make such a transformation in order to set |4;| equal to
unity. However we shall retain the functions A; as freely adjustable
quantities, since it will turn out later that a slightly less obvious nor-
malisation is much more convenient.]

When & vanishes, the only remaining terms in (42) which have not
yet been considered are those involving @,,®D,, and in order that they
shall break up in the required manner we need

ngrzs = Wrs s (46)
where the functions W7s take the form
Wrs= 3 Wis(A?) . (47)

7

The conditions (43) to (47) are necessary and sufficient for a metric
satisfying (I) and (II) also to satisfy (III) when the charge ¢ vanishes.
The metric is fully determined by the ten single variable functions U,
A;, W3, all of which are unrestricted in form, the covariant metric tensor
being given by
dst = U{Zi‘%‘ﬁJr W,.sdzpzqua“}, (48)
% i

where we have introduced the notation W, for the inverse matrix of W7s.
In order that the separability should continue to hold when the
charge ¢ is present, we need restrictions on the vector potential. The term
linear in 8;, namely — 224;4,8; can be a sum of unmixed terms only if
A; is a function of A¢ only. If A; is a function of A’ only, it gives no
contribution to ¥, and therefore without loss of generality, by a gauge
transformation, we may express this condition in the form

4,=0. (49)

The terms involving the momenta @,, will be unmixed for all values of

these momenta only if
Ay =W, Y2, (50)
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where the functions Y” have the form

Yr=3 Y. (51)

The only term which remains to be considered is the one quadratic in the
potential, which will have the required form only if

W, Y'Y= 20, (52)
where 2 has the form
Q= Z Q, (%) . (53)

Thus (49) to (51) are necessary and sufficient conditions for a Maxwell
field in the space with metric (48) to continue to satisfy the separability
condition IIT in the presence of charge. The field is explicitly determined
by (49) and (50) in terms of the four single variable functions Y%, which
however are not arbitrary but must satisfy the stringent conditions (52)
and (53).

For general values of the functions W7%¢ the system (51) to (53) is so
restrictive that the only possible solution is the trivial one where the
functions Y7 vanish, i.e. where the Maxwell field vanishes. However, in
special cases wider classes of solution will be possible. Condition (IV) will
in fact give one of the simplest restrictions on the quantities W7$ (short
of making them all functions of one variable only) which makes non-
trivial solutions possible.

IV. The separation required by condition I11 takes place in such a way
that the terms containing derivatives with respect to the ignorable co-
ordinates separate as the sum of two squares each depending on only one of
the non-ignorable co-ordinates.

It is clear from Eqs. (40), (42), (46), (47) that in so far as the case
where the charge vanishes is concerned, condition IV is equivalent to the
pair of equations

W,=0, (54)
where we have made the definitions
W; = det(W?%s), (55)

since the Eq. (35) are necessary and sufficient for it to be possible to
write W%¢ in the form

Wi =&, V7, (2 V*:(49) (56)
where ¢; is an indicator taking one of the values + 1 according to the
sign of the trace WZ” in order that the new single variable functions
V% shall be real. On substitution of (56), the contravariant metric tensor
takes the extremely simple form

(o) = w2 el + o[ e

7
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while the covariant metric tensor takes the slightly more complicated
form

ast= U X B 1 S (07 dgirp, (58)
where we have introduced the determinant
V =det(V7), (59)
and used the fact that the inverse matrix V,? of V7, is given by
AR LLaC (60)

At this stage it would still be possible to simplify the canonical expressions
(67) and (58) by variable co-ordinate scale changes so as to reduce the
functions 4; to the values 4 1.

The forms of the metric expressions (57) and (58) show that condition
IV implies the existence of a natural orthonormal tetrad, which in
general is canonically determined in a unique way by the separation. The
determination will be ambiguous only in the case where transfers of
constants between the functions W3, W3, can be made in such a way
as to preserve the conditions (54); this will usually be impossible, but
there exist special cases when the pairs of functions V1, V-1, are func-
tionally related in a certain well defined manner.

When charge is present under the above conditions the Hamilton-
Jacobi equation (42) reduces to the form

— 20 = 3 {482 + &, [V, Dy, — e V73 Ay, 12 . (61)
[

It is obvious that condition IV will be satisfied for all values of the
charge if V7, 4,, has the form

VriAzr = 'Ei(;{i) (62)
and it can easily be checked that it cannot hold in any other circum-
stances. This is equivalent to satisfying the system (51), (52), (563) by
setting

Yo, =¢ V5 5, (63)
which demonstrates that condition IV does indeed make possible a non
trivial solution. By (60), the potential components themselves take the
form

A= X (i) V=7, 5, (64)
K1

Thus when conditions I to IV are satisfied the metric must be reducible
to the form (58) which depends on the eight arbitrary single variable
functions U;, V7, 4; (of which the last pair is really redundant) and the
Maxwell field is determined by (49) and (64) which involve the two further
arbitrary single variable functions .=;.
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By determining a canonical orthonormal tetrad, condition IV reduces
the system to a form in which it is comparatively simple to calculate the
curvature and Einstein tensors, as will in fact be done in the next section.
Nevertheless, in order to obtain the Einstein and Einstein-Maxwell
equations in a form which is easily soluble, some further simplifying
restriction is desirable. A suitable restriction is obtained in a very con-
venient manner by requiring that the separability condition (III) be
strengthened to apply to the Schrodinger equation (16):

(II18). The Schrodinger equation is separable in a manner analogous
to that required for the Hamilton-Jacobi equation by condition II1.

We shall first show that (IIIS) is indeed a strengthened form of (III)
ie. that (III) automatically holds when (IIIS) does.

Since ¥ is analogous to e~¢S rather than to S itself, condition (ITLS)
demands that the solution be expressed as a product of functions each
depending on one variable only, not as a sum. As in the previous case
the dependence of the solution on affine distance and the ignorable co-
ordinates can be seen as once, so we obtain the form
i (—;—W’ T — &, (pi)

7 ITY.(%) (65)

as the analogue of (41). When this form is substituted, the Schrodinger

equation reduces to

— U 2544 L' 4
—m2U = — Z 2§ T4 E Ugii =8 ~ 4.
" < i ~ E A A

= XU (g i) 7 (g )

(66)

—2 Ugii(2ied; - +zé~%— e2A;A;
oAI

+ Ug?r2s(D,, — 24,,) (Dys — 24,))

as the analogue of (42). By reasoning precisely analogous to that used
in the Hamilton-Jacobi case we can check one by one that the con-
ditions (43) to (47) and (49) to (53) are necessary in this case, thus con-

firming that (III) is indeed a consequence of (IIIS).
However, Egs. (43) to (47) and (49) to (53) are not sufficient in the
Schrodinger case. By Egs. (43) to (47) we have

4
b~ T (67)
K3

where we have introduced the abbreviation

W = det (W9 (68)
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and on substitution of all these conditions, (66) reduces to
U — — L8 }_ifj_[ _U_zéi_]

m*U = );Az{% —5w [P W

+ Wrsd,, D, — 26 YDy, + 8292 .

It is clear that the only additional requirement to be satisfied is that the
co-efficient of ¥; shall be a function of A% only, and it is obvious that
a necessary and sufficient condition for this is that the quantity U24,/W
inside the logarithm should consist of the product of a function of ¢ only
and of a function independent of A?. This condition will be satisfied for
both values of ¢ if and only if the quantity U?/ W is itself a product of
two functions each depending on only one of the non-ignorable co-
ordinates. It is convenient at this point to make use of the freedom to
adjust the functions A; by a form preserving co-ordinate change so that
they co-incide (except possibly in sign) with the two functions so defined.
Thus we may set

(69)

U2=8WHZ'AZ', (70)

where ¢ is an indicator taking one of the values 4 1 in order to allow for
the fact that the signs of the quantities A; cannot be altered. Condition
(70) determines each of the quantities A; to within a constant factor.

Thus conditions (I), (IT) and (IIIS) will be satisfied if and only if the
metric can be reduced to the form (48) subject, not only to (43) and (47)
as before, but in addition to the much more stringent restriction (70)
while the Maxwell field is given by the system (49) to (53) as before.

It is clear that condition (IV) has exactly the same content when
applied in conjunction with (IIIS) as it does in conjunction with (III),
i.e. it is equivalent to (54) and (62). Since Eq. (56) implies

W= Ve, (1)

it follows that when condition (IV) holds the additional condition (70)
for (IIIS) can be written in the form

—— VI A (72)

[By choosing the appropriate signs for the quantities V1 which were left
ambiguous by the defining Eq. (56), we can ignore the ambiguity of sign
which would otherwise result from taking the square root of (70).]

In order to obtain condition (70) in a simpler form, it is convenient
to make a further rescaling. We shall replace the quantities V7; and Z; by

Zry = V= |4, (73)
and
X, = (0)&Z; |42 . (74)
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In consequence of the former we obtain
Z = — VIT A" (75)
i

where
Z = det(Z7)) . (76)

At this point we explicitly introduce the condition that the metric
has the Lorentz (i.e. hyperbolic normal) signature of ordinary space,
which enables us to absorb the unknown signs of the functions A4,
(which determine &) with the indicators e, using the freedom to permute
the labels 4 1 of the non-ignorable co-ordinates.

Thus we deduce that it is necessary and sufficient for the conditions
(I), (IL), (III), (IV) to be satisfied that (by (57)) the covariant metric
tensor can be reduced to the canonical form

dst= 3 U{UE 4 () 10 Zrid g 1)

while (by (59) and (64)) the covariant vector potential can be reduced to
the canonical form

A=X2t(n Zrd gt (78)

where, so far we can make an arbitrary choice of the eight single variable
functions U,, Z7;, A, (two of which are redundant) determining the metric
and the two single variable functions X, determining the field. In this
canonical system the additional necessary and sufficient condition (54)
for Schrodinger separability, (IILS), takes the very simple form

U=17. (79)
This is a fairly strong restriction : although it removes the redundancy, it
also has the effect (as we shall see in section 5) of allowing only two of
the six functions U;, Z7; to be given independently, so that the metric
is limited to four instead of effectively six independent arbitrary single
variable functions.
For future reference, we give the inverse metric to (77) as

1 I

K1

The remainder of this paper will be entirely devoted to a study of the
canonical forms (77), (78). We shall work with the general (Hamilton-
Jacobi) form as long as possible, in fact throughout the next section. The
Schrodinger condition (79) will be invoked later on in section 5 when
further simplification becomes desirable.
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4. The Hamilton-Jacobi Separable Case

At this point it is convenient to specify the signiture of the metric
completely. Without loss of generality we can restrict our attention to
the case where it is + 2, which is equivalent to demanding that the
quantity UA_; in (77) shall be positive.

In computing the curvature components in this and the subsequent
sections we shall make the further assumption that U 4, is positive. This
does involve a loss of generality in the short run — it is equivalent to
considering only the case where the surfaces of transitivity are timelike
(as will be the case for a metric which is axisymmetric and stationary in
the strict sense) — but when the algebraic forms of the components have
been calculated they will be valid independently of this condition.

We shall use the notation w#, where y runs over 4 1, 4 2, for the
differential forms of the canonical orthonormal tetrad: thus subject to
the above assumptions we may define

' — (Z)”Zom (81)
ot = T 10y ragen (82)
so that the covariant metric tensor (78) takes the form
= 2 {0+ @) (@) (83)
while the covariant vector potentlal (78) takes the form
A= 3 X-t Wi (84)

)1/2

This mode of expression of the metric and field provides a very con-
venient starting point for the calculation of the quantities we shall need
using the exterior calculus, which will obviate the need to work out large
numbers of Christoffel symbols, ete. In the following work, the later
Greek letters, u, v, o, o will always refer to tetrad (not co-ordinate)
indices running over 4 1, + 2, and they will be raised and lowered using
the tetrad components of the metric, determined by (83) from the
definition

ds? = g,, 0" " . (85)
The tetrad components of the electromagnetic field can be read off from
the formula

F=F, oA (86)
where F has been calculated from (84) using (25), and hence the com-
ponents of the electromagnetic energy tensor can be obtained from the
formula

4nl, = F 0 By =+ BT q,,, (87)
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while the current components can be read off from

7' = j,,w” (88)
where
4] = 3*d*F (89)

and where an asterisk denotes the Hodge orthogonal conjugation (i.e.
dual) operator. Following MIsNER (1964) we can take advantage of the
fact (see e.g. WiLMORE, 1950) that the connection components are
determined uniquely by the conditions

dwt = — w*, A " (90)
and
Wy + Wy = 0 ) (91)

where the latter equation holds in consequence of the fact that the metric
components in (85) are constant. Once the connection components have
been found, the curvature form can be calculated directly as

04, = dow”, + w*, A w? (92)

and the Riemann tensor components can then be read out from the
formula

or, = 713”,,90 w2 A w°. (93)
The Ricei form
0 = R,, 0"’ (94)
is then defined by
R,, =R, (95)

The components of the Weyl conformal tensor can be read out from the
formula

Q)= 5 Oy 2 A 0 (96)
where we define the Weyl form (cf. e.g. ScHOUTEN, 1954) by

Qv = Grv 4 Rl# o1 A 0 + —é—R WM A @ (97)

(using square brackets to denote antisymmetrization) and where
R=R} (98)
is the Ricci scalar. Finally the Einstein tensor components are defined by

1

Guy= Ry, — 5 Ry,, , (99)
so that in the presence of a / term the Einstein equations take the form

G,y =8nT,,+ Ag,, . (100)
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In order to present the results of these calculations concisely, we
introduce the following abbreviations:
4, . A o~ A7

(101)

X, . X Xy’
=3 =% =S (102)
together with
. 11U ~ 10
=37 =50 (103)
L lin) Z7Zri & Gr) 27 7Y
A 7 ViT T3 7 (104)
;G0 ZnZ7 o~ Gr) 202 5
="y g ke g (105)

The results of the calculations can now be stated as follows. By (25) and
(84) we have

F=23 Ewrw?% (106)
where 1 B
Bi=§&—27:6+ 206 (107)
and hence, by (87)
87T, = (2 E%) X (%62 — () 8l,00) (108)
1 j

and, by (89),
drj = X (@R[, — 278+ 2B, — 2(y, — 272 — 2B2) &

P ) (109)

+2(8: — 20:7: — 2P_sP-0) E-] 070
Differentiation of Eq. (82) and (81) gives
do®t = (o) 27,0 A @ + [(a_ )2 (_; — 27_))
1 - (110)
+ 5 (o) 7128 ] 07t A 0?4 2(o)'? Biwf A 02,

do? = (a_)? fi_;0~ ¢ A 0?, (111)

from which it can be checked that the solution of the system (90), (91) is

W%y = ('R 0 + (o 2 B2, (112)

M= [ PP — 27 )+ ()2 8] 0 — (a2 f02F, (113)

WPy = = X (e B (114)
)
o'y =2 (47) (o )M? 707, (115)
j
where the remaining components are determined from these immediately
by the antisymmetry (91). From the symmetry conditions (I) and (II),
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together with the ordinary Reimann tensor identities, it follows that the
curvature forms must have the algebraic structure

0, = — Ho'r o=t + T2 A w27, (116)

6%, = () Lo A 0=t + J w2i A =27, (117)
0%, = L' A 02+ Ny~ i A w2l + Bywi A w2t + (1) Kw~iA w=2%, (118)
02 = N ' A 02t + M_;007 % A 02 + (1) (I + K) o A =2 — (119)
— B_,0 "t A 2%

where the remaining components are determined from these by the anti-
symmetry of 0#*. Straightforward computation from (112) to (115)
according to (92) yields the specific values:

H =X [g i+ otn; = 29 (120)

1= () (351 = 205 7-), (azy

J = Z [ &;7j; + “:'( = 249 + ‘8—7 ] (122)

K =X () (30— 20s7-4), (123)
1. . 1.

Ly = &gt 5 G il i+ o (71 — 273) + o0 (7 — 277§ s+ B7), (124)
1~ .

M; =5+ & (77 3%) + o (7 — 2%, — 272 — 24, + 87%)

+oa (72— 352, (125)

N, = 3 (o0 ;)12 ( ﬂzﬁ_ FiTj— 1) (126)

B; = (oo ;)2 ( ,32 + ﬁi(ni - 29;) — ‘g—-iﬁ—i) . (127)

It is apparent that these twelve quantities are not independent, but are
connected by the three identies

K=1I, (128)
H+J=2 1L, (129)

and
N,=N (130)

say, (i.e. V; is independent of ¢).

It may also be observed at this point that the curvature components
contain only positive powers of the quantities defined in (101) to (105).
Since the only factors appearing in the denominators of these quan-
tities are U and Z we see that the Riemann tensor is well behaved except
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where one of these vanishes, which suggests that the other singularities
of the metric form (77), which occur where either of the functions 4;, 4,
vanishes, need not represent geometric singularities but only failures of
the canonical co-ordinate system.

In terms of the functions which have just been defined, and after
simplifications using the identies (128), (129), (130), the Ricci form is
obtained as

0= = D {H + Lot M) (@9 + O + Lo+ D) (0

‘ ) ) , ; (131)
+2Nwio—t + (2 (y)B_j) w?i w‘“}
i
and hence we obtain the Ricci scalar as
R=-2Y (2L, + M) (132)
j

and the Weyl form components as

Q= (1;2 (Ly = M) 0 A 0=F + TP A 02, (133)
7

@y = ()Tt r o+ D 3 (L, - M) erinw,  (134)
7

Q=2 X (L= M) ' Ao+ () Toin -2+ L 3 Bioino, (135)
7 9

Q2i_,=2(1) I wiA arz"—l-—;—): Ly — M;) o~ A w2t — %2 B;o—tA w2,
7 7

(136)

where the remaining components are determined from these by the anti-
symmetry of Q+”.

It can be seen immediately from this array that the canonical tetrad
defined by the separability condition (IV) will also be the canonical
tetrad of the Weyl tensor in the Petrov-Pirani classification (see e.g.
EnLERS [10]) provided that the condition

3 B;=0 (137)
J

is satisfied (but not otherwise). Moreover, whenever this condition does
hold, the conformal tensor will be of type D (except in the case where
it vanishes altogether) and the two principle null forms will be

ol + w2, (138)

In terms of the canonical co-ordinates (and after adjusting the normalisa-
tion in order to give maximum simplicity) the two principle null vectors
will be expressiable in contravariant form as

/] d
o £ [ ] - (139)
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By Eq. (99), (131), (132), the Einstein tensor components are given by

Goii =0, (140)
Gy, = — 2N, (141)
Gy o= — 4; (7) B; (142)
Gii=J+L_;+ M_,, (143)
Gigi = () (H + L_, + M) . (144)

On substituting the explicit formulae (120) to (127) into (141) and
(142) we obtain for the off diagonal components which do not identically
vanish

Gh,—1 = 60 o_y)'? (77177 1= BiB-1) (145)

o= — (o NaaP [ﬁa =+ 2/33 7 — P91 - (146)
j

The analogous expressions obtained for the diagonal components from
the pairs (143) and (144) are rather long, and it turns out that the
relevant information can be expressed much more simply in terms of the
linear combinations

2 Gi;=2J +2 i+ M) (147)
Z (7) Gi5=— 2 (7 (L; + M) , (148)
7 i
G gigit+ (1) Gyi= (1) (J — H) — 2 () L; . (149)
j

Thus the diagonal components are determined by

1 ~ ~ ~ ~ [ ~ ~ ~ ~
2 Gyy=2) [-2— o;+ 30;(7; — §) + 20405 — V5 — 47;(7; — 7:'))] (150)
Y

Z (1) Gy =— Z [ “a'l'%(?? —3?73')‘|‘2°‘f("7a 75_377]+4 +ﬂ—7:|
(151)
Gogi_oit+ ()G s = — 2(3) “i(;;i - 37]7, + 297 — —ﬁ) . (152)

Not only do the formulae for the components take a comparatively
simple form in terms of these particular linear combinations: the same
applies to the Einstein-Maxwell equations. It follows directly from the
symmetry conditions I and II that the electromagnetic current has no
components orthogonal to the surfaces of transitivity and that the energy-
momentum and Einstein tensors contain no cross components between
directions in and orthogonal to the surfaces of transitivity, as can be
verified in Eqs. (108), (109) and (140). Therefore there remain only eight
of the source-free Einstein-Maxwell equations which are not satisfied
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identically, and they can be written in the form

Gi,-1=0, (153)

Gg_3=0, (154)

2 G, =24, (155)

Z (7 = 22 ; (156)

Qs 9i — (z)G_Z,_z =0, (157)
J2e=0. (158)

In terms of the quantities defined by (107) and (120) to (127) this system
can be reformulated as

N=0, (159)
B, =B_,, (160)
M+ M_,=2(A—2H), (161)
My~ M_y=2(B}+ B,), (162)
J,=H, (163)
L,=H, (164)

together with (158), and where the three equations of the subsystem
(163), (164) are not independent but include the identity (129). The
simplest form of the expanded system is obtained by substituting (145),
(146) and (150) to (152) directly into (153) to (157), but unfortunately
despite the strength of the separability conditions which have been
imposed so far the system is still more complicated than could be desired.
Therefore in order to make further progress we shall now impose the
Schrodinger separability condition (79).

5. The Schrodinger Separable Case

When written out in full the Schrodinger separability condition (29)
takes the form

UE -+ U—a = (3) (PeQ—e - —er) ] (165)

where ¢ has a fixed value in the range (4 1) of the variable (¢) and where
we have introduced the notation

P;=27;, Q=727 (166)

in order to distinguish the functions Z+!; more clearly since they will no
longer be treated in the same way. Bearing in mind that each of the
functions in (165) depends only on the variable denoted by its suffix, we
see that there are just three essentially different ways in which this
equation can be satisfied.
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Case (a). If neither function U, is constant then two of the factors
on the right hand side of (165) must be constant, one in each variable
and one in each term. By swapping the labels of the co-ordinates @27 if
necessary we can arrange without loss of generality that these functions
are @, and @_,, and by suitable co-ordinate scale changes we can arrange
that these constant values are both unity. Finally, using the freedom to
transfer a constant between the terms U; we can obtain the canonical

form

If one of the functions U, is constant, it can be made to vanish by
adjusting the values of the other, and moreover under these circum-
stances one of the terms on the right hand side of (165) can be made to
vanish also. (If neither of these terms vanishes to begin with, the factors
P;, @; must be proportional for one or other value of 7, and so one of
them can be removed by a co-ordinate change in which the co-ordinates
@7 are replaced by linear combinations of themselves with constant co-
efficients.) There are two ways in which this can happen:

Case (b). If the term on the right hand side of (165) which vanishes
does so because of the vanishing of the factor depending on the same
variable as the surviving term in U, then by suitable co-ordinate scale
changes, and by choice of &, we can obtain the canonical form

=) P (167)
1 (168)

U, =(e) P, (169)
U, =0 (170)
b
[b(e)] 0 =0 )
Q_.=1. (172)

Case (¢). If the term on the right hand side of (165) which vanishes
does so because of the vanishing of the factor depending on the same
variable as the vanishing term in U, then by similar adjustments we can
obtain the canonical form

(173)
(174)
(175)
(176)

= (e) P

Il

[e(e)]

Il

U,
U_.=0
P_,=0
Q_.=0.

This exhausts the possibilities. In consequence of the arrangement of
signs in (77) there is a qualitative difference between the two possible
values of ¢ in Case (b) and Case (c), so we really have five distinct

canonical forms, namely [a], [b(£1)], [c(£1)].
21 Commun.math. Phys., Vol. 10
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Each of these canonical forms depends on just four independent
arbitrary single variable functions. In form [a], which is the most sym-
metric, there are two functions of each variable, namely 4, , and U ;.
In the forms [b(e)], there are also two functions of each variable, but
asymmetrically arranged, namely A, ;, U, and P_,. In the forms [c(¢)]
there is one function of one variable and three of the other: 4, ,, U,
and @,.

From (77) we see that the covariant metric tensors for these
canonical forms are given by

[a): ds? = (Uy + U_y) {2 ““:’2}+ 2=y B R a)
[b(e)]: {2 R 0 duay
~ (&) G- [y — P_.dyl:,

[c(e)]: ds?=U, {?‘(%}‘i}

+ (e) A-e[Qed s — (8)UUsd1P]z — Aed 1 ,

€
where we have introduced the notation ¢ and y for the adjusted forms
of the co-ordinates ¢? and ¢—2 respectively, since they are no longer
being treated on the same footing.

These canonical forms are not mutually exclusive. There are two ways
in which they can overlap. If @, is constant in [c(g)] the result is the
same as if U_, is constant in [a] since by co-ordinate changes the former
can be set equal to unity and the latter to zero. If @, is proportional to
U, in [c(&)] the result is the same as if P_, is constant in [b(¢)] since
by co-ordinate changes both can be set equal to zero, the metrics then
being diagonal. If both situations occur simultaneously, i.e. if @, is pro-
portional to U, and also constant in [c¢(¢)] we obtain a degenerate form
common to all five of [a], [b(¢)] and [c(e)].

The effects of the canonical conditions [a], [6(e)], [¢(g)] on the func-
tions (103) to (105) can be tabulated as follows:

(178)

(179)

. 1,

[a] :77i=_13i=§U¢/U (180)
o ~ ~ =~ 1 "

Ni=%9,=—p:i=5U;|U (181)

. ~ 1 5

775=75—2U/U p.=0 (182)

~ ~ 1 "

Ne=Ye= 9 U, /U /38_'0 (183)

ﬁ-—s =Y = 0 ﬁ—e = /U (184)

Fe=5_.=0 .= (8 @ pr 1o, (185)
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1

fo=Po=—5UJU. f_.=0 (186)
= ~ ]- r” ~
Ne=9e=—5Us U B_.=0 (187)

[e(e)]

ﬁ—-e = 7—8 =0 58 = (UeQ; - Qs U;)/Us (188)

~

';7_8:::;_8:0 ﬁsz

v = o=

(U:Q. — Q.U)|U, (189)

while the functions (101) and (102) are not effectively simplified except
that we may replace U by U, in [b(¢)] and [¢(¢)].

It can be seen that in all cases, although for different reasons, the
Eq. (159) (or equivalently (153)) is satisfied as an identity. It can also
be seen that in all cases we have

fi="Pis Ni="Vi. (190)

Substituting these relations throughout we can expand the remaining
seven equations of the Maxwell Einstein system (158) to (164) as

G+ o =44, (191)
El - 3—1 =0, (192)
Vi—7—- =0, (193)

2 0) 20 - 27+ 5 &) =22 (6 - 25 E 2B 6, (194)
7 7

Ti— 278+ 2B 6+ 296+ 2 (B — 20,7 — 2B_s7_0) - =0 (195)

For further simplification it is necessary to consider the different can-
onical cases separately. It turns out that in each case the system can be
solved completely, the four unknown single variable functions in the metric
being obtained as polynomials of not more than fourth degree. The detailed
steps in the process of integration in the various cases are somewhat
tedious, and therefore we shall not describe them, but will proceed
directly to quote the results.

6. The Source-Free Maxwell Einstein Solutions

After considerable use of form preserving co-ordinate and gauge
transformations, the complete set of solutions of the source-free Maxwell-
Einstein equations with /A term, having the form (77), (78) and subject
21*
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to (79), can be reduced to the following:

Z; = Pi=@0)U;= (1) (¥)? (196)
Z= Q=1 (197)
(4] 1

4 = A+ h()? = 2m A + 0+ € (198)
4, = %A(}“_l)‘l = [B(A71)? = 2m_y A7t — ] (199)
Zl, =P,=(e)Up= (e) [(4)* + 1] (200)
Z1l, =Q,=U_=0 (201)
Z-1, =P_ =2} (202)
[(Ble)]) 27 = Qe = 0

A = Al e+ 200 = 1] + () (B9~ 1)
_ 2m6 yi + 62] (204)
Ay == (&) [R5 = 2m_ A+ n] . (205)
Zl, =P,= (U = (¢) (1)? (206)
Z7, =Q,=0 (207)
Zi, =P_,=0 (208)
[C(e)] Z-1,=0Q_, =1 (209)
Ay = AG A+ (&) B — 2m 00+ 2] (210)
A, = — (&) [h(A=2)® — 2m_,A~* + n] (211)
7Y, =P,=(0)U;= % (4) (212)
[P1yz-1,=q,=1 (213)
Ay = AWP + (6) (A2 = 2m 2+ ] (214)

where, in all cases
X; = e i (215)
subject to

e2=) e (216)

and where apart from this restriction the parameters 4, e, ¢;, k, m;, n, n;
and the co-ordinates A may take any real values provided the inequality

A_,>0 (217)
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is satisfied. [If this condition were violated the total signature of the
metric would be reversed with the result that the terms containing the
factor e would have the wrong sign.] Variations of the complexion of the
electromagnetic field by alteration of the parameters e; subject to (216)
with e? constant do not affect the metric: these are the duality rotations,
familiar from the already unified field theory of RaintcH, MisNER and
WHEELER.

The solutions [4], [B(e)], belong to the canonical forms [a], [b(e)]
respectively. The solution has [C(¢)] been presented in the terminology
of the canonical form [c(¢)], but it can be seen that it belongs to the
restricted class of metrics in which the canonical forms [b(g)] and [c(e)]
overlap. The solution [D] has been presented in the terminology of the
canonical form [a] but it belongs to the degenerate class common to all
of the forms [a], [b(+ 1)1, [e(£ 1)].

In all cases the electromagnetic field is such that
,Z B2 = _;]_ (218)
and therefore by (100) and (108) the Ricci tensor components are
By = X (0037 = ) 8100) — A (219)

where the quantity U is given in the various cases as:

[4]: U= @2+ (412, (220)
[B(e)]: U= (2P +1, (221)
[C(e)]: U= (22, (222)
[D]: U=1. (223)

In all cases also the condition (137) is satisfied, so the Weyl tensor
is of type D or zero, its components being

Q= - (H - %/1) ot Aot Tw?t A o=2t, (224)
92‘1: — (2 i — y l 21 —21
20, — (i) o' A +(z)(H—3A 0¥ A2, (225)
X 1 ) ) . ) .
2%, = (H - -3—/1) ' A+ (@) I o™ A w2, (226)

Q% ,— 2() T i A2+ 2 (H - %A) Wi A, (227)
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where the quantities H — 1/3 A and I are given as:

H—%A
5 Gym_y 2 30— (o) — el - oy [oe
[4] {7 Nm_; }/
L= {Zmi = 0P = 2 o (229)
Y

H—3A- {[—3—/1 + (2)3] B2 ~ 11

(230)
+ (@m0 — 31 — (e[ — 1) [
[B(e)] 4
1={3[54+ @8] (292 - 3]
(231)
— (e)m,[3(29) — 1]+ 2(e) ezzs}/ U
A = (&m0 — ()22} U 232
- {eDma (292 — (e (2% (232)
I—0 (233)
1 1

R i (234)
I=o. (235)

It is apparent from the expressions (219) to (235) that all the spaces
except [D] (for which the curvature components are constant) are
asymptotically flat as U — oco. There are curvature singularities only
where U — 0, a possibility which arises only in the cases [4] and [C'(4)].

All of the solutions as expressed above contain a considerable number
of redundant parameters which could be normalised to + 1 or made to
vanish by further form preserving co-ordinate changes. We have not
performed these operations here because there are many special cases to
be considered, the enumeration of which would require much more space.
In fact we can perform the reverse process in order to combine the
solutions. [B(+)] and [O(+)] in the single expression [B(+)] given in
the introduction by introducing a further redundant parameter I: when I
vanishes the form [C(+)] is obtained and in all other cases I can be
renormalised to + 1 by a co-ordinate change giving the form [B(+)].
Similarly by introducing a parameter £ we can obtain the expression
[B(—)] combining [B(—)] and [C'(—)]. With these transformations, and
after replacing A, u by A1, - and the parameters m, ¢, n, p by m;, m_,
ny, — m_, respectively, the forms [4], [B ()], [D], given in the introduc-
tion agree exactly with the forms [A], [B(+)], [C(+)], [D], given
immediately above.

By introducing two further redundant co-ordinates ¢ and y one can
construct a single form [A] which combines all of [4], [B(+)], [C(+)],
[D]. Starting from [A] in the form (4), (5), (6), (7) we make the co-
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ordinate transformation

A—k
Z ccosy ’ (236)

v p=1
M= "Csiny (237)
d®§ = csiny cosydy, (238)
a5 =cdy+ c(l?cos’y — k% sin?y)dy . (239)

We also introduce new parameters h, 7, §, %,  in place of k, m, g, p, e,
defined by

h=h+240 -2, (240)

e cosy-——m—hk——%/l k3, (241)
gﬁsiny:q—hl—l—%/lﬁ, (242)

i* cosPy = o + p — 2mk + hit + 5 A1, (243)
po*sin®y = p+ 2ql — hl2 4 5 AD. (244)

The resulting transformed metric, in which we have dropped the tilda
throughout, is

2
(@] dst = [ohoosy + R+ (epsing + D) { T + 4]

“
A{sin pd y — [(c222 + k? + I?) cosy + 2ckA] dy}?

+ (cAcosy + k)2 + (cusiny + )2 (245)
_ Afcosydy + [(p® + k* + 1) siny + 2¢lu] dy}?
(cAcosy + k)2 + (cusiny +1)?
where
1 4
Ay =5 A 22t cos®y + 5 A ck A3 cos
P ' v (246)
+ @A+ B2 —-2mA+n
1 4
4, =5 Actutsinty + 5 Acly? sin
SRRt A R (247)

+ AR —h)p® + 2qu + p
and the charge parameter e is given in terms of the new parameters by
e = A(k* — 1) + h(k?+ 12) + 2¢(km cosy + lg siny) (248)
+ ¢%(n cos?y — psin?y) .

This form [A47 is a solution of the Einstein-Maxwell equations for arbitary
values of the ten parameters 4, %, k, I, m, n, ¢, p, ¢, y, (except when so
many of them vanish that the metric becomes singular) subject to the
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conditions that there exists, and the co-ordinate y lies in, a range where
4, is positive, and that the square of the charge parameter, €2, as given
by (248), is positive or zero. In the case when ¢? is zero we have a pure
vacuum solution determined by nine free parameters including the A
term. In the case where e? is non-zero there is a source free electro-
magnetic field determined by the vector potential

cosydy + [(cBu® + k2 + B)siny + E)cluldy
(cAcosy + k)% 4 (cusiny 4 1)?

siny dy — [(c2A% 4 k® 4 1?) cos y + 2¢kA]dy
(cAcosy + k)2 + (cusiny 4 1)2 ’

A =el cosa
(249)

— eusina

where « is an arbitrary complexion angle which does not affect the metric.

Our derivation of the metric [A] from [A] is of course only valid
directly when ¢ is non-zero and v is not an integral multiple of 7/2, but
in consequence of the analyticity, the field equations must continue to
be satisfied even when these conditions do not hold. The special cases
which arise in this way are just the forms [5(-+)] (when siny = 0, ¢ = 0),
[B(—)] (when cosy = 0, ¢ + 0), and [D] (when ¢ = 0). These forms are
obtained precisely as given in the introduction if, more specially, we set
y=0,%k=0,c=1to obtain [B(+)] ( = 0 or I = 1 giving the subcases
[C(+)] and [B(+)] respectively), y = 7/2,1 = 0, ¢ = 1 to obtain [B(—)]
(k=0 or £ =1 giving the subcases [C'(—)] or [B(—)] respectively), and
y=0,k=0,l=1, c=0to obtain [D]. One can return to the form [4]
precisely as given in the introduction by setting y = n/4, k=0,1=0,
c=J)2.

’}‘/he simpler members of the family of solutions obtained here are
already well known in other contexts. The vacuum (e = 0) members of
the class [D] were discovered by Kaswer [11], and the complete class
has been given by BerTorTI [12] and independently by RoBinson [13];
these spaces are all homogeneous — they have a six parameter isometry
group transitive over the whole space. The vacuum members of the
classes [C(e)] include six cases, corresponding to the possibilities ¢ = + 1,
and % positive, zero, or negative, one of these being the Schwarzschild
solution from which the other five are obtainable by various simple com-
plex transformations and limiting processes; the six possibilities have
been tabulated by EHLERS [10] in the special case where A vanishes. The
charged members of the classes [C(e)] include the solution of REISSNER
and NorpsTROM together with five other analogously related metrics. In
the case where A vanishes the families [B(e)] consist of the space of
TauB (1951) and N.U.T. [15] in the vacuum case and its charged generali-
sation discovered by BrILL [16] in the case where ¢ is + 1 and % is
positive, together with the five related metrics corresponding to the
other possible combinations of ¢ = 4 1 and % positive negative or zero;
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the further generalisation to the case where the A term is non-zero does
not appear to have been made before. All the spaces of the classes
[B(e)] and [C(e)] have a four parameter isometry group transitive over
the hypersurfaces on which A? is constant. The number of non-redundant
parameters in addition to the charge and the A term is two in the general
case [B(e)], one in the general case [C(g)] (namely the mass in the
Schwarzschild solution) and none at all in the case [D].

The largest and most complicated class of the above family is [4].
In general the spaces of this class have no isometry beyond the two-
parameter group originally postulated. This class consists of two families
with three non-redundant parameters in addition to the charge e and the
A term, characterized by the sign of 4, together with other families with
fewer non-redundant parameters in which 4 vanishes. The most extensive
subclass of [4] which has been previously given in explicit form seems
to be the family characterized by the conditions A =0, 2> 0,
hp + ¢* > 0, which has recently been obtained by Drmraxskr and
NEwMAN [17] in a different form by an algebraic trick!. When g = 0 this
solution reduces to the charger Kerr solution which was obtained by
NewMAN et al. [18], and which further reduces to the pure vacuum
solution of KERR [19] when e vanishes. The DEmIanskl and NEWMAN
family includes Brill’s charged Taub-NUT space in class [B(+)] as
a limiting case. The generalisation to the case where the two inequalities
stated above are not satisfied does not seem to have been published ex-
plicitly before (although the existence of all these solutions in the pure
vacuum case is implicit in the work of KErr [19], and there have been
some more detailed studies in unpublished work by KErr, ROBINSON,
and others). The generalisation to the case where the A term is present
appears to be entirely new.

The work of this paper has been directed in such a way as to obtain
maximum algebraic simplicity at all stages, with the result that the
global structure even of the previously known spaces is much less obvious
in the forms in which they are given here than in the more familiar (but
more complicated) forms in which they are usually written. The trans-
formation of these metrics into forms in which the global topology is less
obscure (and as a by-product the explicit demonstration of the rela-
tionships which have just been described with previously known solu-
tions), together with the investigation of completeness and the con-
struction of analytic extensions of the spaces so obtained will be left for
a subsequent paper. The investigation of spaces of the Schrodinger
separable canonical forms in which material sources are present will also
be postponed.

1 The final metric form published by Demianski and Newman contains several
minor algebraic errors.
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