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Abstract. Under certain conditions it is shown that the kinetic part of the
dynamical operator of a quantum mechanical system with a Biemannian manifold
as configuration space is the Laplace-Beltrami operator.

§ 1. Introduction

In his book on the ' Mathematical foundations of quantum me-
chanics" [2]. MACKEY raises the problem of characterising the kinetic
part of the Schroedinger equation in a Riemannian manifold. The main
aim of this paper is to show that under certain conditions the dynamical
operator of a quantum mechanical system with a Riemannian manifold
as its configuration space has its kinetic part locally unitarily equivalent
to the Laplace-Beltrami operator. Since in a Riemannian manifold there
need not exist one parameter groups of isometries it seems necessary to
characterise the Schroedinger operator without using the notion of
momentum. In the case of Euclidean configuration space MACKEY obtains
the kinetic part of the Schroedinger operator by equating the velocity
operator to a constant multiple of the momentum operator. Instead we
start from the assumption that the acceleration operator is equal to
a constant times the force operator.

In general notations and terminology we follow [2], Regarding the
basic properties of Riemannian manifolds and notations of tensor cal-
culus we refer to [1].

§ 2. Quantum Mechanical Systems with one Degree of Freedom

Let B denote the real line and L2(B) the space of all complex valued
functions on R square integrable with respect to the Lebesgue measure.
For any complex valued function g on B we shall denote by gW the r-th.
derivative of g. We shall adopt the notation g for both the function g
as well as multiplication by g. For any two operators A and B of L2(B)
into itself we shall denote by [A, B] the operator AB — BA.

Let Ή. be the dynamical operator of a quantum mechanical system
whose state vectors are unit vectors in L2(B). If x denotes the position
operator, then i [H, x] is the velocity operator and — [H, [H, x]] is the
acceleration operator.
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We shall now derive the form of H under the assumption that the
acceleration operator is a multiplication operator and an energy equation
is satisfied.

Theorem 2.1. Let H be a symmetric differential operator with twice
differentiable coefficients and

a) m[#, [H,x]] = - #

b) m[H9\H,xγ\ = c[H9υ\9

where m and c are non zero constants and v is an infinitely differentiable
function. Suppose v^ does not vanish on a set of positive Lebesgue measure.
Then c — — 2 and H is a second order differential operator which is unit-

arϊly equivalent to an operator of the form h η^ -f -~τ— + α where h

and oc are constants. The unitary equivalence can be effected through a multi-
plication operator.

Proof. Condition b) implies that

m[H, x] [H, [JET, x]] + m[H9 [H, x]] [H9 x] = c [H, v].

By condition a) we have

[H, x] υM + vM [H, x] = - c[H, v] . (2.1)
Suppose

where an φ 0. By applying the operators on either side of (2.1) to C°°

functions with compact supports and equating the coefficients of -j~γ,

0 < h 5j n — 1, we have

r-Jc + 1

Putting h = n — 1, we get

Since v^ φ 0, c = — 2. Putting k = n — 3, we have

Since v^ φ 0 and an Φ 0, we have (Q I = 0. I.e., n ^ 2. In other words
W

H is a second order differential operator.
Suppose

Substituting this operator in condition (a), we obtain

^ + (2αα<2> ^
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Thus α α ^ = 0. In other words a = h where h is a constant.
Further

Hence

d = Jh ( A δ ( 1 ) + δ2/2 + υlm) + α

where α is a constant. Thus

The symmetry of H implies that b is purely imaginary. Consider the
unitary operator U defined by

A simple calculation shows that

u~1HU = h &

This completes the proof.

Remark. Theorem 2.1 shows that one may take ~2^~j^ϊ + j^ a s ^ n e

most general dynamical operator of a quantum mechanical system with
one degree of freedom. Condition (6) of the theorem can be written as

— [H, x]2 is the square of the velocity operator and — v is the potential
energy operator.

§ 3 Systems with n Degrees of Freedom

We shall now consider a quantum mechanical system whose con-
figuration space is the ^-dimensional real Euclidean space Rn. Let H be
the dynamical operator of the system acting in the Hubert space L2 (Rn)
of complex valued functions square integrable with respect to the
Lebesgue measure. In the preceding section we derived the form of H
under the assumption that an energy equation is satisfied and the accel-
eration operator is a multiplication operator. We shall now replace the
energy equation by the assumption that H is a second order differential
operator. For any twice differentiable function φ we assume that
[[H, φ], φ] = 0 if and only if φ is a constant. This assumption simply
means that if a function of the position coordinates can be observed
simultaneously with its rate of change, then it is a constant. We now
have the following theorem.
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Theorem 3,1. Let H be a symmetric second order differential operator
of the form

^ "dxtdx, γ dx4

where ai3', bi and c are twice differentiate. Suppose for any twice differen-
tiate function φ, the equation [[H, φ], φ] = 0 holds if and only if φ is
a constant.

Let
m,[£Γ, [H, *<]] = - Vi, i = 1, 2 . . . n (3.1)

where Yi are once differentiate functions and mi are constants. Then H is
unitarily equivalent to an operator of the form

where ((aiό)) is a constant non singular positive or negative definite matrix
such that

A-1 M-1 J = J'M-1 A-1. (3.2)
Here

A =

J' is the transpose of J and v is a function satisfying the equations

f «"-£=•&• (3 3)

The unitary equivalence here can be effected by a multiplication operator.
Conversely any operator of the form described above satisfies Eq. (3.1).

Remark 1. If there exists a function V such t h a t F< = ^— for all i,

then (3.2) and (3.3) are automatically satisfied if A = I I — -^- δiή)

and v = V where h is a constant. H then assumes the standard form

- y h a 2 v

γ 2m{ dx* + h '

Proof of Theorem 3.1. First of all we observe that without loss of
generality we may assume that a{j = aH for all i and j . The symmetry
of H implies that the aiά are all real. Since under coordinate trans-
formations the atj behave like the coefficients of a second order symmetric
contra variant tensor we may and do employ the standard notations of
tensor calculus. In particular repeated index in a product implies that

summation has been carried out. We shall denote -j~ dχ £χ . . . by
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aijiJcaij)U . . . respectively. Simple calculations show that

[ H ] 2 + b

[H, [H, x , ] ] = 2 a Ί

d (dbt d dbi d

ty dxk dxk dxi

d dbi d

\

dbi ςy dc

ϋX\ o xr

By (3.1), the coefficients of -=—~— and -~— in (3.4) must vanish. Hence

<*>ri<i>iic,r + <*>τcraiur ~ air^jcifr = 0 for e v e r y ί, k, I. (3.5)

Interchanging i and Jc in (3.5) and adding to (3.5) we obtain
ar ιaift, r = 0 for every *', &, I. (3.6)

If we put φ = aih it follows from (3.6) that

Thus by hypothesis 9? is a constant. In other words all the a{j are constant.
Let ψ by the linear function c^ where c1? c2, . . ., cn are real constants.
Then

[ [ # , y], y] = 2aiScicj.

Hence the quadratic form dijO^ = 0 if and only if all the c/s are

zero. Thus the constant matrix ((αi;? )) is non singular and positive or

negative definite. Hence its inverse exists and we shall denote it by

((α"))

Equating the coefficient of -~— in (3.4) to zero we have

a*ιτt ~ a"~dt = ° for

Putting ¥ = α^'65 , we can rewrite (3.7) as

db* db*
f

Hence there exists a function B such that

In other words
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Thus H is of the form
a2 dB d

where aiό is a non singular positive or negative definite constant matrix.
Since H is symmetric, B is purely imaginary. Let U be the unitary
operator defined by

4
Then

where v is some real valued function. Further H' satisfies (3.1). Hence
substituting H' in (3.1) and (3.4) and equating constant terms we get

dv V{ , „ .
a"i^r^ f o r a l u

In order that such a v may exist it is necessary and sufficient that

A-1M-1J=J'M~1A-1,

where A,M.,J,J' are the matrices described in the statement of the
theorem. This completes the proof.

§ 4. Quantum Mechanical Systems on a Biemannian Manifold

Let H be the dynamical operator of a quantum mechanical system
whose configuration space is a connected C°° Riemannian manifold M
of dimension n (the obvious modifications needed for the C2 manifold
can be made by the reader). We shall suppose that H is a second order
symmetric differential operator acting in the Hubert space L2{μ) of com-
plex valued functions square integrable with respect to the Riemannian
measure μ.

Let U be a fixed coordinate neighbourhood. We shall denote by
L2(μ, U) and L2{U) respectively the Hubert spaces of complex valued
functions on U square integrable with respect to the restriction of μ to U
and the Lebesgue measure in U. Then there is a canonical isomorphism
between L2(μ, U) and L2(U) through a multiplication operator. We shall
denote by HJJ the restriction of H to U. HΌ can be considered as an
operator in L2(μ, U). The isomorphism between L2(μ, U) and L2(U)
takes the operator HJJ to an operator H'u in L2(ϋ). H'u is a second order
symmetric differential operator in L2(U).

In the preceding section we derived the form of Jβ under the assump-
tion that the acceleration operators of the individual position coordinates
are multiplication operators. In the case of a Riemannian manifold we
have to replace the acceleration operators by slightly different ones
since the connection coefficients enter the geodesic equations.
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Suppose gi:; are the coefficients of the Riemannian metric, Γfy the
connection coefficients and R)u the components of the curvature tensor
derived from the metric in the neighbourhood U. We shall always assume
that whenever there is a repeated index in any product expression
summation has been carried over it. Any geodesic in U is a solution of
the differential equations

ϊjb + ^ ^ f e ^ ^ O , 4 = 1 , 2 , . . . , * .

Hence we shall assume that the operators H'u satisfy the condition that

[H'm [H'U9xk]] + [H'ϋ9 s<] Γ

is a multiplication operator for every k.
Before stating our main result we shall introduce a notation. Consider

Rijjci obtained by lowering the index i in the component Rj^i of the
curvature tensor. For the antisymmetric pairs of indices ij (i < j) and
hi (k < I) in Ri3kι introduce the labels / and J. Then ((RJJ)) is a matrix

, , n(n — 1)
of order

CΌ = det ((BJJ)) .

We now have the following theorem.
Theorem 4.1. Let H be a second order symmetric differential operator in

L2(μ). Let U be a simply connected coordinate neighbourhood such that
GJJ φ 0 for every point in U and

where ((a^j)) is nonsingular in ϋ, a£j, bi and c are C°° functions. Suppose

[H'JJ, [B'Ό, *»]] + [H'u, xΛ Γif {H'v, x}] = F , for every k (4.1)

where Vk are G°° functions. Then H'u is unitarily equivalent to an operator
of the form hΔ + V in L2(μ, U) where A is the Laplace-Beltrami operator,
h is a constant and V is a C°° function. The unitary equivalence can be
established through a multiplication operator.

Conversely any operator of the form hΔ + V as described above always
satisfies Eq. (4.1) if we choose Vk appropriately.

Remark. In the case when the manifold has dimension 2 the matrix
((RIJ)) is of order one and CΌ is just the Gaussian curvature. The con-
dition of the theorem thus reduces to the manifold possessing non zero
curvature at every point in U.

If G is the group of all complex n xn matrices of determinant one,
n > 2 and K is the subgroup of unitary matrices then GjK is a symmetric
space which is an analytic Riemannian manifold with CJJ = 0 for every
coordinate neighbourhood U.
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Proof of Theorem 4.1. The operator [Hr

Uy [H'u, x{]] is of the form
given by (3.4). We adopt the same notations as in § 3. An easy calculation
shows that

[H'u, xι\ Γ\j [H'ϋ, Xj] = 4:Γ\j aikan d χ ^

atkr\a

+ Γ\, bj, + 2aik Γ\jiΊcbό + 2aik Γ \ ^ (4.2)

d Γt -
where Γ\j)Ίΰdenotes-^1. From (3.4), (4.1) and (4.2) we have

rkasl = 0 (4.3)

for every ί, Jc, I. Interchanging i and k in the above equation and adding
to same we obtain

». i {«<*,. + Γ\ΛarΊb + Γ*8ari} = 0 (4.4)

for every i} k, I. Since ((α^ )) is non singular in U, (4.4) implies

% ) S + ^ + O π = 0 (4.5)

for every i, k, s. This simply means that the covariant derivative of the
second order symmetric tensor with components aiό vanishes identically
in U.

The integrability condition for the Eq. (4.5), i.e.,

-^ (ΓUa^ + Γ*rsari) = -^- (ΓUark + Γ*tari)

can be rewritten as

(«<«ftn - &ni9im) RnmJcl = 0 (4.6)

where α^ are the components of the matrix inverse to {{aίό)). Since
CΌ ={= 0, the matrix ((Ru)) is non singular and hence ((i$)) is non
singular. Thus (4.6) holds if and only if

where ρ is a function. Hence ai;} = ρ~1gij. If we substitute gij for aij9

(4.5) is automatically satisfied. By substituting ρ~1gi j in (4.5) we obtain

-4— = 0 for all s. Thus ρ-1 is a constant. In other words there exists

a constant h such that
aiό = hgij for all i, j . (4.7)

Using Eq. (3.4) (with H = H'JJ), (4.2) and (4.7) and equating the coef-

ficient of -~— in the left hand side of (4.1) to zero, we get

dxtdχ,+ψ dx, +0' dxt ^ dxj
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for all t, u. Interchanging t and u in (4.8), adding to the same and making
use of (4.5) we obtain simply 0 = 0.

We shall denote the vector field gul-z—.by Xu. Interchanging t and

u in (4.8) and subtracting from the same we obtain

(Xubt - Xtbu) + h{gt*Xugjs - g«*Xtgjs)

+ hXWXugiB - gusXtgJS) = 0 for every t, u . (4.9)

Writing cs = bόgjs and making use of the standard properties of vector
fields, (4.9) can be rewritten as

(g* Xu - g«*Xt) (Cs + hXjgjs) = 0 (4.10)

for all t, u. Multiplying the left hand side of (4.10) by glitgιu and adding
over all t and u, we obtain

j ^ - ( c k + h X )

for all k and I. Since U is simply connected there exists a G°° function d
on U such that

dd
- = ck + hXrfih for all k .

Hence

where div& denotes the divergence with respect to the Lebesgue measure.
Thus

Since H'JJ and gij ~^—^—+ divχXe -z— are symmetric operators in

L2 (U) it follows that d must be purely imaginary. Consider the unitary
operator W of L2(U) into itself defined by

Then

where c' is some function. If this operator is carried over to the space
L2(μ, U) through the canonical isomorphism it is of the form

where V is a C°° function. Since the Laplace-Beltrami operator is given
by the coefficient of h in the above expression this completes the proof
of theorem 4.1.
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Remark. In general the solution to Eq. (4.5) need not be unique. If

however the manifold is analytic and so are the coefficients α^ then α^

are completely determined by (4.5) if we know their values at one point

in U. In particular iί ai3 = oc gίj at any one point in U, then ai3 = ocgiί

at all points in U. Thus the condition that CJJ φ 0 at all points in U may

be replaced by the analyticity of the manifold M and the coefficients

ai3> and the equation α^ = ocgij at some point in U.
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