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Abstract. We give a complete characterization of quasi-free states (generalized
free states) of the C.C.R. algebra. We prove that the pure quasi-free states areall Fock
states and that any two Pock states are related through a symplectic automorphism
(Bogoliubov transformation). We make an explicit construction of these representa-
tions which correspond to primary quasi-free states.

I. Introduction

In this work we study the set of quasi-free states on the C.C.R.
algebra. The notion of quasi-free states is introduced by D. W. ROBINSON
[1] in his study of the ground state of the Bose gas. Until now, one was
not able to construct exactly solvable physical models, whose solutions
do not belong to the set of quasi-free states. I t is interesting to study
this set of states in order to derive its most general properties hoping
that their general properties may throw some light on the problem of
construction of non-trivial models.

From a technical point of view, we start with a symplectic space
(H, σ) and consider the C.C.R. O*-algebra A (H} a) [2] built on it. We
prove that the pure quasi-free states are all Fock states and that any
pure quasi-free state can be obtained from another pure quasi-free state
by acting on it through an automorphism of the algebra induced by
a symplectic operator on (H, σ). The converse statement is well known
by physicists as Bogoliubov transformations. Explicit representations
induced by quasi-free states of C.C.R. are given. Amongst all representa-
tions we characterize the primary ones. The last property turned to be
important to characterize physical systems in statistical mechanics [3].
This property was outlined by ABAKI and WOODS [4] for the temperature
states of the free Bose gas which are quasi-free states.
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In section I I we recall the definition and some properties of our basic
O*-algebra Δ (H, σ), and collect the mathematical tools we need in
section III for the treatment of quasi-free states.

II. Mathematical Preliminaries

II. 1 The C.C.B. algebra A (H, σ)

For completeness we recall the definition of the C.C.R. O*-algebra

Δ (H, σ). More details can be found in ref. [2].
Let H be a real vector space and a a symplectic form on H (i.e. a is

a bilinear, antisymmetric, regular mapping from H x H into B). We
denote by δψ the real function on H defined by δψ(φ) — 0 if ψ φ φ and
δψ(ψ) = 1. The product of δψ with δφ is defined by

and we consider the complex algebra Δ (H, σ) generated by the δψ's for
all ψζH; equiped with the involution δψ-> ((5y)* = δ-ψ the algebra
Δ (H, σ) becomes a * -algebra.

The set & (H, σ) of representations of the C.C.R. is the set of represen-
tations π of Δ (H, σ) such that the mapping λ ζ B -> π(δλψ) is a weakly
continous mapping from B into ££ (J^n) for all xpζH. All these representa-
tions induce the same norm || || on Δ (H} a) (i.e. V a ζ Δ (H, a): ||a\\ = || π (a)\\).
The completion of Δ (H, σ) with respect to this norm is the (7*-algebra
Δ (H, σ), isomorphic with the <7*-algebra generated by the Weyl opera-
tors eiBM where B(ψ) are the field operators.

Let β be the set of all functions / mapping H into G and satisfying
n

the condition Σ ahaie
ia{w»**>f{yi— ψk) ^ 0 for all ak ζC, ψ

Proposition 1. ω is a positive linear form on Δ (H, σ) if and only if
the function f, defined by f(ψ) = ω(δψ) for all ψ ζlΓ, belongs to f .

Proof. See ([2], 3.2.1.).
Under these conditions ω is denoted by ωf and the representation

induced by ωf through the construction of Gelfand-Naimark is denoted
by πf or πωf.

Proposition 2. Let f £ ί5/, it is necessary and sufficient, in order that
, a) that the mapping λ ζB-+f(λψ + φ) be continous for all

Proof. See ([2], 3.2.2).
We denote by β^ the set of all elements / ζ β such that πf ζ 0t (H, σ).
A symplectic operator T on (H, σ) is an operator from H onto H

satisfying σ(Tψ, Tφ) = σ(ψ9 φ) for y), φ ζH; let 8(H, σ) be the group
of symplectic operators on (H, σ).
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Proposition 3. For every T £8(H, a), the mapping xτ\δψ -> δTψ can be
extended to a unique automorphism of Δ (H, σ).

Proof. See ([2], 4.1.1).
Proposition 4. Let H* be the algebraic dual of H. For every χ ζ ϋΓ* the

mapping ζχ: δψ_+eiχMδψ can be extended to a unique automorphism of
A (#, a).

Proof. See ([2], 4.4.1).
Proposition 5. Let πbea cyclic element of &(H} σ)9 and s a seal scalar

product on H, such that a is s-norm continous and has a continous regular
extension σ' to the s-norm closure Hs of H. If the mapping ψ £ H -> π (δψ)
is s-weakly continous, π has a unique continous cyclic extension π' to
Δ (3s, &) and for every ψ ζ 3s, π' (δψ) ζπ(Δ (H, σ))".

The proof is an immediate extension of the proof of ([2], 3.3.4).
Corollary. With the same notations as in prop. 5, π is irreducible

(primary) if and only if π' is irreducible (primary).

II.2 Real Scalar Products on (H, σ)

We consider the set SP of bilinear, symmetric, positive forms s
mapping H xH into R such that

a) \σ(ψ, φ)\ ̂  s(ψ, y))V2s((p, φ)1!2 (implying that .sis a scalar product).
b) The norm continous extension a' of a to H8 is non degenerate.

Each s £ S? induces on H the s (H)-wesik topology (the weak dual is
denoted by s(H) = {sψ\ψ ζ H, sψ(φ) = s(ψ, φ)}) and the s-norm topology
(the norm dual is denoted H's).

Proposition 6. If s ζ&* and H is s (H)-quasi-complete, then H is s-norm
complete (we have H = Hs or (H, s) is a real Hilbert space).

Proof. By definition HCHS. We show that 3s CH. If ψ0 ζ 3s, then
there exists a Cauchy sequence (ψn)n in H, norm converging to ψ0. Using
Schwartzs inequality (ψn)n converges weakly in Hs to ψ0:

s (ψn> φ)^s (ψo> φ) f o r a 1 1 φ ζ. H8.
As H is quasi-complete, there exists a φ0 ζH such that

s(ψn> φ)-+s (φ0, φ) for all φ £ H .

Therefore s(φ0— ψOi φ) = 0 for all φ ζH. Noting that H is strongly
dense in H8 we have that ψ0 = φ0 ζ H.
We denote by σ(H) the set {σ̂ l ψ ζH,σψ(φ) = σ(ψ, φ)}. The vector
space H equipped with the σ (H)-weak. topology is a Haussdor£f topological
vector space (the weak dual is σ(H)), because σ is supposed to be non
degenerate.

Let A be a σ(H)-weakly continous linear operator of H, then there
exists a unique linear continuous operator Λ+ of H such that σ(ψ, A φ)
= σ(A+ψ, φ) for all ψ, φ ζH([5], p. 419); A+ is called the adjoint of A
with respect to a.
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Proposition 7. Let s £ SP and let Ds be the linear operator s~1a mapping
a-1{a{H) r\ s(H)) onto s~1(σ(H) r\ s(H)) then

1°) IIAIs ^ ||σ||. ^ 1 (|M|β = sup \σ(ψ9 φ)\) .
\ Ikll.-llvlU-i /

ίDsH
s = H

2°) IίH* = H we have σ(H)Cs(H) and|| |Dβ | |, = ]|σ||s
[ Dt = - D9

3°) If Hs = H and σ{H) = s{H) we have that A8 = — D~x is bounded
and Af As ^ 1.

Proof. Noting that Ds is a mapping from a normed vector space into
another one and that

\\DsΨ\\8 __ s(D8ψ,D8ψ) _ \c(ψ,D8ψ)\ „ „

llvll. IMUIAvll. IMUIAvll. ~ M s

for all ψ ζ H, we prove 1°).
It follows from the fact that Ds is injective, normal (σ(ψ,Dsψ)

= — σ(Dsψs,φ)) and every where defined on H that D si/
S = H and

(T = soD s .
Therefore

\s(D8w, ω')!
y,v llvll llvll

which proves 2°).
If Hs = H and σίH) = s(H) then Z>s is a one-to-one mapping from

H onto H. Consequently As = — Dj~x is a bounded operator and
-4 + Λ ^ l([β], §4,th.VI).

A complex Hubert structure ([8], p. 28—29) on (H, a) is given by an
operator J on H satisfying J 2 = — 1, J+ = — J and Sj — — σ o J *z 0.
It follows from prop. 6 that Sj ζ ^ and that (ϋΓ, Sj -f- iσ) is a complex
Hubert space.

Consider an element s ζ £P and suppose that Hs = J6Γ, it follows from
prop 7 that -4S == D^1 is a normal operator defined on a dense domain
of H. Let Ds — J \DS\ be the polar decomposition of Ds then [J, |A?|]- = 0,
J + = — J, J 2 = — 1 ([5], part II, p. 935). The operator J defines a com-
plex structure on (H, a), because the range of |DS| is dense in H and

βj(\Ds\ φ, \DS\ ψ) = - σ(J\Ds\ ψ, \DS\ ψ) = - σ(DsΨ, \DS\ ψ)

- β(D8ψ, \D8\D8ψ) ^ 0 and \\sj\\s = | |σ| | s.

From the polar decomposition of Ds and ^Ls = — Dj1 and the uni-
queness of the polar decomposition ([5], part II, sect XII, 7) it follows
that A8 = J\AS\ where \AS\ = \D.\-1 ̂ 0 . __

For every Hubert space, in particular for (H8J

} Sj + iσ), there exists
at least one conjugation Λ(i.e. [A, J]+ = 0, A2 = 1) ([7], prof. Al). Now
we prove.
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Proposition 8. For all s ζ£? verifying H = H8, a conjugation A can
be found on (HSJ, Sj + iσ) such that [A, \A8\]~ = 0.

Proof. Let us firstly notice that:

The last equality follows, since the range of Ds is dense in H. Thus
Ds has a unique continuous extension (denoted as D8) to H8J. Further-
more, for any ψ ζH, \\ψ\\Sj — \\ |-DS |1 / 2^|]S ^ | |^ |U a n ( ^ ^ n e conditions to
get a Friedricks extension ([9], n° 124), are satisfied. The range of Ds is
known to be included in H. The following formula is satisfied in H8J,

I M M I
| D , | = / λdΛ(λ).

o
_ 11-0*11

We get HSJ = / Hλdλ, so, let ^ any conjugation in iZ ,̂ then it
Θ0 __

readily follows that A = fA^dλisei conjugation in (HSJ, Sj + iσ), com-
θ

muting with \DS\ consequently A commutes with |^t s | also.
Remark that the operators A and B are said to commute if they

commute on their common domain. I t follows from prop. 8 that A
commutes with (|̂ 4S| ± I)1/2 which exists because \AS\ ί> 1.

Proposition 9. Let H be σ (H)-quasi-complete and Jv J 2 be operators on
H defining a complex Hilbert structure on (H, σ), then there exists an
operator T £S(H, σ) such that Jλ = T+ J%T.

The proof of this proposition is completely analogous to that of
([7], lemma 1).

III. Quasi-free States

11 I.I Definitions

Let / be a mapping from H into C such that /(0) = 1, then / is called
quasi-free if

where

f'φ(ψ) = lim /(y + Aφ)

and consider the mapping φ £ H -*• f'φ (φ) ζ 0 then

f9 (Ψi> Vi) = .hm

n x

A quasi-free mapping is therefore at least twice differentiable in the
above sense.
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Suppose that / is a quasi-free mapping, we define a linear form ωf on
A(H,σ) by ωf(δψ) — f(ψ). From proposition 1 it follows that ωf is
a state if and only if / £ f . Remark that for quasi-free mappings / ζ $
implies / ξ ^/Q. Under these conditions ωf is called a quasi-free state and
we denote by Q the set of quasi-free states. Let us remark that this
definition of quasi-free states coincides with that of D. W. ROBINSON [1],
/o and f'o' are in a trivial way related to the one-point and two-point
Wightman functions respectively.

For any ωf ζ Q, by Stones Theorem πf{δφ) = eiB^v) where Bf(ψ) is
a hermitean, unbounded operator on the representation space, Bf is
linear and

(1)

where ξf is the cyclic vector of πf. From (1) it follows that

fό(ψ) = i(ξf\Bf(ψ)\ξf)
and

-ifUH*.
In what follows we suppose that /ό = 0, because if

Then
ωf = ωg o ζ_ιfo and πf = πgo £_if£

where C_ifj is a gauge automorphism (proposition 4).

Denote by Qo the set {ωf £ Q|/£ = 0}. If ωf 6 Qo

 t n e n

and

Therefore any ωf ζ ©0 can be written as

ωf (δψ) = ωs (δψ) = exp | — γ

where s is a bilinear, symmetric form on H.

Proposition 10. T&e Zmeαr /orm ωs belongs to Qo if and only if

\σ(ψ, φ)\2 ̂  s(ψ, ψ)s(φ} φ) for all ψ,φζH. (2)

Proof, If ω s ξ Qo then one has

(Sal Bs(ψi) Bsiψz) |ίβ) = 5 ( ^ i ? Va) + ^ ( Ψ i ' Va)

A necessary condition for the positivity of ωs is

(ξf\[Bs(ψ) + iBs(φ)][Bs(ψ)-iBs(φ)]\ξf)^O for all

This implies

\σ(φ, φ)\ ^ *(y, ψ)V2s(<p, φ)1'2 .
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The converse statement follows from theorem 2 and 3 below.

Proposition 10 shows that a one-to-one mapping can be found from
the set Qo onto the set of all elements s satisfying (2).

Now we only consider those quasi-free states ω s such that s ζ£f.
The remaining quasi-free states will be discussed at the end. Without
loss of generality we suppose that for any s ζ S?9 H is complete for the
s-norm topology (prop. 5 and corollary).

III.2 Pure States

The Fock states on Δ (H, σ) are the elements ωs ξ Qo such that
A% = — 1. The operators As define then a complex structure on (H, σ).
The corresponding creation and annihilation operators are

Bt(ψ)=γ{Bs(ψ)TίBs(AsΨ)} for all φζH.

The cyclic vector Ωs of the Fock representation πs, induced by ωS)

satisfies
B-{ψ)Ωs = 0 for all ψ ζH .

Fock representations are irreducible, therefore the Fock states are pure.

Since we supposed H s-norm complete, it follows from the fact that
As is a bijection of H} that σ(H) = s(H), and that H is also σ(H)-quasi-
complete. Proposition 6 insures that H remains complete for the norm
topology induced by any other complex structure. The proof of the
following theorem is now a direct consequence of proposition 9.

Theorem 1. // ωλ and ω 2 are both Fock states, then an operator
T ζS (H} σ) can be found such that ωx = ω2 o r^.

xτ is the Bogoliubov transformation; see ([7], appendix A).

IV. Representations

In this section we construct all representations πs induced by quasi-
free states ωs ζ Qo, s £ Sf. It follows from proposition 7 that any state
ωs ζ Qo in uniquely determined by an operator As on H such that
Af = — As and Af As^ 1. In section II we found the polar decomposi-
tion of As: As = J\AS\ where \AS\ ̂  1 and \AS\ defined on a dense domain,
say # 0 of H. Furthermore [/, \A8\]- = 0.

We consider the following operators on HQ

(\AB\ + 1)V (3)

j (4)
21 Commun. math. Phys., Vol. 9
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where A is a conjugation commuting with \A^ (prop. 8), and we consider
the algebra A(H0,σ); remark that the restriction of σ to Ho remains
regular, that A (Ho, σ)cΛ (H, σ) and πs(A (HOi o))" = πs(A {H, σ))"
(prop. 5). The restriction of the state ω s on A (H, σ) to Δ (HQ, σ) is again
a quasi-free state, we denote it by the same symbol.

Theorem 2. Let s ζS?, Tλ and T2 defined as in (3) and (4), then π8 is
a subrepresentation of the representation

π(δψ) = πj(δTlψ) <g> πj(δT2ψ) for all ψ £ Ho of A {Ho, a), (5)
on Jfj® J^j(J^j==Fock space associated with πj) with cyclic vector
Ωj ® Ωj and reproducing the quasi-free state ωs.

The proof of this theorem is only a matter of verification by noting
that the domains of Tx and T2 contain Ho.

Proposition 11. All representations π induced by the states ωs ζ Qo such
that s ^y are primary.

Proof. One readily verifies that π' defined by

π'{δw) = πj{δTzΨ) ® πj(δTlψ) ,
is a representation of A (Ho, σ) commuting with the representation π
defined in (5).

Let L be the von Neumann algebra generated by the representation
π{5), then

{π'(δψ)\ΨeH0}"cL'.
Remark that

π(δfpiy)) π' {δTzΨ) is equal to πj(δψ) <g> 1 up to a scalar
and that

π(δTzΨ) π'{δTlΨ) is equal to 1 Θ τtj{δw) up to a scalar.
Therefore

and

The set of operators P <g> Q on 2tf j <g> 3tfj is dense in &{3fj Θ &j)
and every operator of this form commuting with {L \j L'}" must be a
multiple of the identity. Consequently

{L\jL'}f
 = LΓΛU = Cl .

q.e.d.
Proposition 12. A state ωs ζ Qo is pure if and only if Af A8 = 1.
Proof. If Af As = 1 then ωs is a Fock state and therefore pure. On

the other hand if ωs is pure, we prove that Af A8 = 1. Suppose that
then a vector ψζH can be found such that K2ψ
!* - 1) ψ φ 0. We define the operator E by
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where J, is the unitary part of the polar decomposition of As. We define
the bilinear, symmetric form sE on H by

satisfying
sE(φ, φ) ^ Sj(φ, φ)

and therefore

\σ(<Pi> Ψ2)\2 ^ sE(φv ψj) sE(φz, <p2) .

Consequently the linear forms ωλ on the C.C.R. algebra defined by

, φ) -γSE(φ, <p)J, φ

belong to the set Q. One readily verifies that

which proves that cos is not pure, in contradiction with the assumption.
Finally we discuss the quasi-free states ωs such that s $ Sf. This

means that s satisfies the formula (2) but the sympletic form σ has not
a continous, regular extension to Hs.

Theorem 3 Let s be a bilinear, symmetric, positive definite form on H,
such that \σ(ψ, φ)\ ^ s(ψ, /ψ)1l2s{φ, φ)1!2 for all ψ, φ ζ H, and such that the
continous extension σ' of a to Hs is not regular, then ωs is a quasi-free state.
The representation πs induced by ωs is not primary.

Proof. Let ip in Hs such that σ{ψ, φ) = 0 for any φ ^H8, and let
(ψn)nζN a n v sequence in H wich converges to ψ. The sequence of unitary
operators (τιs{δWn))n^N converges in strong sense to an operator U: for
any p ζ N and any φ £ H,

||[πs(δ J - πs(δψn+p)] 4 | | 2 = 2 [1 - Λ e exp{i(σ(ψn, ψn+3))

- <*(ψ, ψn) ~ ciψn+p, φ)) ~ 1/2 ||ψn - ψn+P\\2}] ,

vanishes when n goes to infinity. From the corollary of lemma 2.2 in [4],
we know that U is unitary. U is commuting with πs (δφ) for any φ £ H,
from strong continuity of the mapping #-> ST and 8-> TS, together
with the relation

M < U π8(δφ) = &*(»»*) πs(δφ) πs(δΨn) .
Consequently U ξ π8(Δ (H, σ))" Γ\ πs(Δ (H, σ))'. Nevertheless U is not

a scalar operator because if U = λl, it would follow from unitarity of
U, \λ\ = 1, and this would contradict:

Therefore πs is not a primary representation.
21*
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