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Abstract. In the first part of this work, an attempt of a realistic interpretation
of quantum logic is presented. Propositions of quantum logic are interpreted as
corresponding to certain macroscopic objects called filters; these objects are used
to select beams of particles. The problem of representing the propositions as pro-
jectors in a Hilbert space is considered and the classical approach to this question
due to Birkhoff and von Neumann is criticized as neglecting certain physically
important properties of filters. A new approach to this problem is proposed.

The second part of the paper contains a revision of the concept of a state in
quantum mechanics. The set of all states of a physical system is considered as an
abstract space with a geometry determined by the transition probabilities. The
existence of a representation of states by vectors in a Hilbert space is shown to
impose strong limitations on the geometric structure of the space of states. Spaces
for which this representation does not exist are called non-Hilbertian. Simple examples
of non-Hilbertian spaces are given and their possible physical meaning is discussed.
The difference between Hilbertian and non-Hilbertian spaces is characterized in
terms of measurable quantities.

1. Introduetion

One of the fundamental assumptions of quantum mechanics is that
quantum states may be represented by vectors in a linear space. For
Dirac this assumption was a sort of a guess suggested by the nature of the
superposition principle. It leads to representing pure states either by
vectors in a Hilbert space or by distributions (i.e., unnormalizable vec-
tors like e.g. plane waves.) The collection of these concepts forms a
language in which quantum mechanics describes microphenomena.

It sometimes happens that the physical reality may not be expressed
in terms of certain concepts if some applicability conditions do not hold.
Thus, e.g., a field of forces cannot be described in terms of a potential
if the curl does not vanish. In the Riemannian space the Cartesian co-
ordinates may not be introduced if the space is not flat. The question
arises whether the representation of quantum states by vectors does not
impose certain limitations on the admissible structure of states.

A well known approach to this problem has been originated by Birk-
hoff and von Neumann and continued by Piron. It consists in considering
the structure of pure states as determined by the structure of the set of
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yes-no measurements (i.e., measurements which can give only two results
“yes’” and ‘“no’’). The yes-no measurements possess certain properties
analogous to those of a logical system; for this reason they are called
propositions and their set is called quantum logic. In order to illustrate
these properties on a simple model we shall imagine the yes-no measure-
ments as filters which select a certain beam of particles. Each filter
absorbs a part of the beam; particles which have passed through it are
those for which the result of the measurement was “yes’:

filter

particles ‘yes
lnon L

Fig. 1

We shall denote by @ the set of all known filters which can be used
to select a certain definite beam of particles (e.g., beam of photons).
The symbols 0 and I will stand for special filters: 0 absorbes each particle
and I allows each particle pass without being perturbed. We assume that
the following relations of equivalence (=), inequality (<) and ortho-
gonality ( 1) exist in @. The equivalence @ = b means that filters @ and b
act on the beam in the same way. The inequality a < b (to be read:
a is contained in b) means that each beam emerging from @ passes through
b without being absorbed. The orthogonality @ | b means that every
beam emerging from a is completely absorbed by b and vice versa. Clearly
0=a=<Tanda | Ofor any a € Q. One usually assumes that @ has the
following structure.

I. The inequality < is a partial ordering relation in Q.
II. For any pair a, b € @ the subclass of all filters « such that x =

and x = b contains a smallest element. We call this element the union
of @ and b and denote it by a N b.

For any a, b € @ the subclass of all filters x such that * < aandx < b
contains a greatest element. We call this element the infersection of
a and b and denote it by a N b.

ITII. For any a € @ the subclass of these z € @ which are orthogonal
to a contains the greatest element called the complement of @ and denoted
by a’. The mapping @ — a’ has the following properties

(@) =a (1.1)
(aud)=a" Nb. (1.2)
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If assumptions I, II, III hold, the analogy between the set @ and a
logical system can be established as follows. We call each filter a € @
a proposition. The inequality @ < b means ‘“‘@ implies b’ and operations
U, N and ¢ — a’ mean the alternative, the conjunction and the negation
respectively.

Note that “pure states’ are closely related to the above concepts.
For two filters a, b € Q we say that b covers a if ¢ < b and if no element
x €Q such that z==a, == b and a < 2 < b exists. Any filter which
covers 0 will be called a minimal filter. We interpret the minimal filter
as a device performing the finest selection possible, ie., a selection
which cannot be made ‘“‘narrower”. It is natural to assume that the beam
which has passed through a minimal filter is homogeneous, i.e., lacks
any detectable internal substructure. A beam of this sort is called pure.
Now, pure states are equivalence classes which correspond to pure beams:
we say that two particles are in the same pure state if they belong to the
same pure beam. Hence, in the language which we are using pure states
correspond simply to minimal filters.

According to the point of view accepted by many authors the logical
structure of @ (i.e., the collection of all properties of filters which can be
expressed in terms of symbols U, N,’) determines completely the character
of quantum laws as well as the mathematical formalism employed in
the quantum theory. This philosophy is also a basis of Birkhoff and
von Neumann’s work. They assume that the applicability of the language
of Hilbert spaces in quantum physics depends upon the validity of a
certain definite hypothesis about the structure of . This hypothesis
states that filters can be represented by orthogonal projectors in a
Hilbert space so that their logical structure is conserved. In order to
quote more exactly the B — N hypothesis we shall introduce some
notation. 5 will mean a Hilbert space. For two operators of orthogonal
projection P;, P, acting in S# we write P, < P, if the subspace into
which P, projects is contained in the corresponding subspace of the
operator P,. For an arbitrary projector P the complement P’ is defined
as: P’ =1 — P. With these definitions the set of all operators of ortho-
gonal projection in J# is an orthocomplemented lattice isomorphic to
the lattice of all closed subspaces of 5#. The hypothesis of Birkhoff
and von Neumann may be reduced to the following:

(B — N) There exists a mapping P of the lattice @ into the lattice
of orthogonal projectors in 5 such that:

PO)y=0, PI)=1 (1.3)
a=0b <« P(a)= P(b) (1.4)

a covers b < P(a) covers P(b) (1.5)
P(anbd)= P(a)n P(b) (1.6)
P(anb)= P(a)n P(b) (1.7)

P@)=P(@)=1— Pa) (1.8)
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Points (1.3 —8) mean that the structure of “quantum logic”” may be
adequately represented by projectors in Hilbert space.

The main effort of Birkhoff and von Neumann was to choose some
natural axioms on the structure of quantum logic ¢ which would imply
the existence of the B — N representation. This problem was not com-
pletely resolved by Birkhoff and von Neumann. It seems to be resolved
today as a result of the work by Pmrox [7]. With Piron’s assumption
(weak semi-modularity) one can prove that yes-no measurements may
be represented by projectors in a certain unitary space so that (1.3—1.8)
hold. Because of the regularity requirements this space must be a Hilbert
space over one of three numerical fields: real numbers, complex numbers
or quaternions. One thus concludes that, if some “reasonable’ assump-
tions are employed, the language of Hilbert spaces is always applicable
to quantum phenomena. An additional conclusion is that any quantum
theory may be constructed in the framework of one of the following
schemes: either we work with real, complex or quaternionic Hilbert
spaces. These results are considered as justifying the use of Hilbert
spaces in quantum theories.

The approach of B — N — P! has, however, the disadvantage of
being based on an oversimplified philosophy. It facitly assumes the
structure of quantum logic is sufficient in itself to determine the mathe-
matical formalism which should be employed in the quantum theory.
This is not true, however. It has been rightly pointed out by Poor [11],
Rawmsay [12], GunsoN [13], and other authors that the “logic’’ of the
physical phenomena is not the only aspect which must be adequately
represented by the formalism of the quantum theory. In fact, quantum
mechanics is used not so much to reproduce the logical properties of
filters but rather to compute transition probabilities, cross section et.c.
The probabilistic aspect is unified with the logical aspect in the paper by
Gunson who uses new mathematical tools to support the B — N — P
old opinion that the only reasonable mathematical schemes to describe
quantum phenomena those related to three types of Hilbert spaces.

In this work we make one step more in abandoning the B— N — P
approach. We propose to neglect completely the logical properties of
filters, as they are of secondary physical importance. We concentrate
exclusively on the probabilistic aspect of physica phenomena, which in
our approach is represented by ‘“geometric properties” of filters. As the
result we obtain a new answer to the question formulated at the beginning:
quantum states cannot always be represented by vectors. The physical
reality can be too complex in order to fit in any Hilbert space. We shall
show how to imagine this sort of reality.

1 BIRKHOFF, VON NEUMANN, PIRON.



Geometry of Quantum States 59

2. Geometric Properties of Filters

Consider two filters @, b € @ placed in the sequence:

particles

Fig. 2

The intensity of the beam emerging from « is in general diminished
under the influence of b. The relative decrease of the intensity is in general
undetermined : its value depends upon the specific properties of the beam
leaving a. There may exists, however, such special pairs a, b € for
which this decrease stays always constant. This happens e.g., for two
Nicol prisms placed as it is shown in Fig. 3:

No NU.

I

lCL
light beam |
—_—

Fig. 3

The decrease caused by N, of the intensity of the polarized light
emerging from the prism N, is always cos?« independently of the colour
of the light. Situations of this sort will be of particular interest to us.

Definition. We shall say that a definite coefficient of absorption exists
for a pair of filters a, b € ) and equals p(a, b) if:

1. for every beam leaving a the relative decrease of the intensity
caused by b is p(a, ).

2. If the same is true when we interchange filters, i.e., if for every
beam leaving b the relative decrease of the intensity caused by a is
p(a, b).

The existence of a definite absorption coefficient for a pair of filters
is what we call a geometric property. E.g., the orthogonality is a geometric
property of filters meaning that the absorption coefficient equals O.

Let now M be the set of minimal filters in . We shall assume that
the coefficient of absorption p(a, b) exists for each pair of minimal filters
a,b ¢ M. This assumption plays an important role in quantum physics.
The orthodox quantum mechanics operates with pure states which cor-
respond to minimal filters (see discussion in § 1). The absorption coeffi-
cients are then interpreted to be the probabilities of transitions between
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pure states. From now on we shall interpret numbers p(a, b) as funda-
mental empirical data determining the physical structure of the set of
pure states. We shall assume that the whole collection of these numbers
establishes a sort of geometry in this set.

We return to the criticism of Birkhoff’s and von Neumann’s approach.
The main objection is that they completely neglected the geometric
properties of filters. We would not be, however, so interested in represent-
ing filters by projectors in Hilbert space if we did not expect to obtain
in this way a correct model of the geometry of transition propabilities.
We shall formulate this objection more exactly. Suppose, that filters are
represented by projectors in agreement with (1.3)—(1.8), so that each
minimal filter (pure state) corresponds to an operator P(a) projecting
on a certain one-dimensional subspace ¥ (a) C . By choosing in each
subspace ¥ (a) a unit vector y(a) we may obtain the conventional re-
presentation a — y(a) of pure states by vectors of the unit sphere in J#.
For each pair of minimal filters a, b ¢ M we then have two quantities:
p(a, b) which expresses the physical relation between minimal filters;
[(w(a), w(®))|> which characterizes the geometrical relation (angle)
between the corresponding vectors in .

The mapping @ — P(a) is of interest for physics, if the induced
mapping a — y(a) obeys the requirement:

Ity (a), @)z = p(a, b), (2.1)

ie., if we may reconstruct the “geometry’ of absorption coefficients for
minimal filters by observing angles between corresponding vectors in 5.
This assumption is commonly accepted by quantum mechanics under
the name of statistical interpretation. This is why we may pretend to
obtain correct transition probabilities from a theory which operates
with vectors and their scalar products.

The insufficiency of the approach of Birkhoff and von Neumann
becomes now clear. Even if we establish the existence of a mapping
a — P (a) for which (1.3)—(1.8) but not (2.1) hold, we will obtain a con-
venient model of ‘“quantum logic” but this model cannot be used to
compute transition probabilities, cross sections etc., and hence, it will
not be of great use for physics. Such a situation may happen, since (2.1)
does not follow from (1.3)—(1.8). Requirements (1.3)—(1.8) imply only
that orthogonal minimal filters are represented by orthogonal vectors.
But (2.1)is a stronger condition. It may easily happen that many mappings
for which (1.3)—(1.8) hold exist but none for which (2.1) holds. This
possibility is illustrated by the following example.

Ezample. Imagine a class of 8 filters 0, I, a, b, ¢, @', b, ¢’ forming a
simple orthocomplemented lattice represented in the figure below:
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Fig. 4

In this lattice @, b, ¢, a’, b, ¢’ are minimal filters. Suppose that coeffi-
cients of absorption for various pairs of them are:

p@d) =p@o)=1—c, pbo)=—3, (2.2)

where ¢ is a small positive number. All remaining absorption coefficients
p(a, b’), p(a’, b), . . . are consistent with the general rule that p(x, ) = 1
and p(x,y)+ p(z,y’)=1for every x and y. Thus, e.g., p(a,b')=p(a’,b)=¢,
p(b’,¢) =1/2, ete.

Obviously there exist many representations of the “quantum logic”
given in Fig. 4 such that conditions (1.3)—(1.8) hold. However, there is
no representation which would fulfill (2.1). In fact, the assumed values
of p(z, y) are in disagreement with the natural structure of a Hilbert
space: if ¢ is small enough we cannot have three vectors p(a), v (b), p(c)
in Hilbert space such that |(y(a), v(b))2 = |(y(a), w(c))|2=1— ¢ and
w®), pE)F =1/2.

The first pair of the above equalities implies that y(b) and y(c) are
both close to y(a), hence y (b) must also be close to y (¢) which contradicts
@), p() = 172

Conclusions. The existence of the mapping considered by Birkhoff
and von Neumann is not sufficient to explain the role played by Hilbert
spaces in quantum physics. One can imagine situations when this mapping
exists but is useless: we can represent states by vectors but we cannot
use scalar products to compute transition probabilities. It is also clear
from the example given by Fig. 4 that the existence of a mapping for
which (2.1) holds must impose a limitation on the “geometry of transi-
tion probabilities”. The nature of this limitation will be studied in § 5.

3. Space of States

The above idea about the ‘“geometry” of transition probabilities
suggests that the traditional concept of the pure state should be revised.
The classical version of this concept may be repeated in terms of filters
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as follows. We first define a pure beam of particles as a beam which
has passed through a minimal filter. Then we say that a single particle
is in a definite pure state if it belongs to a definite pure beam. In this
way pure states correspond to minimal filters. The above definition of
the pure state does not differ essentially from the one which was given
by Dirac. The minimal filter here plays a similar role as the maximal
set of informations in Dirac’s definition.

The appearance of the minimal filter in this definition is somewhat
inconvenient. The minimality of a filter (or the maximality of the set
of information) is not a physical property. It rather reflects our recent
state of knowledge. Since the development of physics is not yet complet
we may never be sure whether a filter which seems minimal to us will
remain so for the physics of the future. Our maximal sets of informations
(pure states) may be very incomplete for a physicist of the XXT century.
This does not prevent us from operating with pure states with quite
good numerical results. This suggests that the demand about the mini-
mality must be redundant in the definition of the pure state. As a matter
of fact, only a special implication of this property is needed in practice:
this is the existence of a definite absorption coefficient for each pair of
minimal filters which allows the definition of a transition probability
for each pair of pure states. The absorption coefficient, however, may
exist even for pairs of filters which are not minimal. This may serve as
the starting point in the generalization of the very notion of the pure
state.

We shall first introduce the concept of a geometric system of filters.
A subset S Q will be called a system of filters with geometry or simply a
geometric system if for each pair of filters @, b € § a definite absorption
coefficient p(a, b) exists. A trivial example of a geometric system is
any pair of orthogonal filters. Each system composed of minimal filters
is of course a geometric system. The pair of Nicol prisms in Fig. 3 is
also a geometric system. It may happen that a certain geometric system
SCQ is a part of another geometric system S’ C @: in this case we say
that 8’ is an extension of S. Our experience shows that by extending
any geometric system of filters one arrives at a certain maximal geometric
system of especially regular properties: this system will be called the
physical space of states. Filters which belong to it will be called stafes.
For each two states the transition probability will be defined as equal
to the corresponding absorption coefficient.

The above idea of the physical space of states is closer to practice
than the orthodox one. It is not restricted by the philosophical demand
that the notion of state should contain all information available about the
physical system. On the contrary it may contain only fragmentary in-
formation. Various spaces of states related to various special properties
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of microphenomena may exist in . Thus e.g., if we consider the geometric
system composed of a number of Nicol prisms and then extend it, we
obtain the space which contains all polarization states of light.

Experiments indicate that various physical spaces of states have
some common structural properties?. In order to represent them con-
veniently we shall introduce the following abstract space of states which
will be called a probability space.

Definition. The probability space (S, p) is a non-empty set of § (of
elements called ‘““states”) with a real value function p( , ) defined on
§ x 8 (and called the ‘“‘transition probability”) such that:

(A) 0= 7p(bd <1 and p(@d=1<a=0b;

(B) p(a ) =p(b, a);
The third axiom will concern orthogonality in S. Two elements a, b ¢ S
will be called orthogonal if p(a, b) = 0. A subset RS will be called an
orthogonal system of elements if each two different elements of R are
orthogonal. R will be called a maximal orthogonal system or a basis if it
is not contained in any larger orthogonal system R’ C S.The third axiom is:
(C) For each basis RC S and for each a € 8:
Dpla,r)=1. (3.1)
reR
(The sum on the lefthand side of (3.1) is the upper bound of all

n
finite sums of the form J} p(a,r;) where r,¢R (1=1,...,7) and
i=1
r; %= r; for ¢ = 4.)
We shall prove some simple facts concerning probability spaces. The
existence of at least one basis in § follows from Zorn’s lemma. We have
Theorem 1. Let R, and R, be two bases itn S. Then R, and R, contain
the same number of elements, i.e., B, — R,
Proof. Suppose first R, is a ﬁmte system composed of n elements.
Consider transition probabilities p(ry, r,) for r; € Ry, r, € R,. Because of

C), 3 p(ry,r5) =1 for every r, € R,. Hence 3 } p(r,, r,) = n.Since
T2€Ry MER, 1,€R,
numbers p(r;, 7,) are non-negative the order of summation here may

be interchanged and we obtain ' ( > o, rz)) = n. Because of (C)
72€R; \11€R;
this leads to 3 1 = n. This means that R, also contains n elements.
73€R;y

Suppose now both R, and R, are infinite. For each r; € R, the symbol
R, (ry) will denote the set of those elements in R, which are not orthogonal
to 7y, ie., Ry(ry) = {ry € Ry: p(ry, 1y) > 0}. Since

2 plry,m) = 2 p(ry,r) =1,
72 € Ry (1y)
2 See e.g., J. SCHWINGER [10].
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the subset R,(r;) must be countable. Since R, is a maximal orthogonal

system, no element in R, orthogonal to all r; € R, exists. This means that
R, C ,IEJRI Ry(ry) .

This implies that R, < E,. Similarly R, < R,. Hence, R, = R, .

If R Sis a basis in 8 the cardinal number R will be called the dimen-
sion of 8.

It will be of interest to separate from among various subsets of S
those which are its subspaces in the sense of the following definition:

Definition. A subset 8" C Sis called a subspace of S, if S’ with the transi-
tion probability defined as the restriction of p( , )to S’ x S§’is a proba-
bility space.

A trivial example of a subspace is an arbitrary orthogonal system
of elements in S. Every orthogonal system being itself a subspace may be
a basis in various other subspaces. We shall prove that a greatest one
among them exists. Let R’ C .S be an orthogonal system in §; then S(R')
will denote the subset of those elements x € S for which:

D plx,r)=1. (3.2)
rER’

Theorem 2. The subset S(R') ts a subspace of S with the basis R'.
Moreover, S(R’) contains all other subspaces for which R’ is a basis.

Definition. For any orthogonal system R’ C S the subspace S(R’) will
be called a smooth subspace spanned by R’.

Proof of Theorem 2. First we shall show that S(R’) is indeed a sub-
space. Axioms (A) and (B) obviously hold. If R’ is a basis in S then
S(R') = S and (C) also holds. If R’ is not a basis, it may be extended to a
basis: because of Zorn’s lemma there exists a system R’ C S such that
R'NR"is a basis.We shall show that S (R') is the subset of those « € S which
are orthogonal to R"'. Ing. ed, if # € S(R’), the equality (3.2) together with

2 p(x: T)+ 2 p(x’ 7'): 2 p(x» 7‘)= 1 (33)
rER’ rER” r€R \UR"
imply that

2 o5 =0 (3.4)

which means that x is orthogonal to all elements of R”. Inversly, if
is orthogonal to all elements of R, then (3.4) holds and (3.3) implies (3.2).

Suppose now that 7' is a maximal orthogonal system in S(R’').
Since all elements of 7" are orthogonal to R'’, then 7"UR'"’ is an orthogonal
system of elements in S. Moreoever, no element « € S orthogonal to all
elements of 7' R" exists. Such an x being orthogonal to R” would
belong to S(R’) which is impossible, since S(R’) may not contain any x
orthogonal to 7'. Hence, 7' U R is a maximal orthogonal system in S,
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and for every « € § we have:

Zp(x,'r)-}- GZ:R"p(m’T)z 2 p(x:r)=l‘

rel reT\UR"
For x € S(R’) this implies because of (3.4) that }) p(x,r) = 1. Thus

rel
axiom (C) for S(R’) holds.

Now let 8’ C S be any subspace for which R’ is a basis, then for any
xz €8 (3.2) holds and z € S(R’). Hence 8" C S(R') K.

An equivalent definition of the smooth subspace may be obtained
as follows. Let ZC S; then Z1 will denote the set of all elements in S
which are orthogonal to all z ¢ Z. Now let R’ be an orthogonal system.
Then S(R’) = (R’1+)L. The proof of this statement is quite similar to
that of Theorem 2.

If (8, py) and (S,, p,) are two probability spaces, it may happen that
they have the same geometric structure. It may also happen that (S, p,)
can be considered as a part of (S,,p,). These cases correspond to the follow-
ing concepts of isomorphism and embedding.

Definition. An isomorphism of (S;, p;) onto (S,, p,) is a reversible
mapping ¢ — 2’ of §; onto S, such that p, (z, ) = py(«’, ¥'). Two prob-
ability spaces S;, p,) and (S,, p,) are called isomorphic if there exists an
isomorphism between these spaces. An embedding of (S;, p,) into (Sy, Ps)
is any injective mapping « — «' of §; in S, such that p, (z, y) = pa (', ¥').

The space (S;, p;) may be embedded in (S,, p,) if and only if (S,, p,)
(S5, pg) contains a subspace isomorphic with (8, p,).

A wellknown example of a probability space is obtained by considering
the set S, of all one-dimentional subspaces (rays) in a certain Hilbert
space S (s is assumed to be a Hilbert space over the field of real
numbers, complex numbers or quaternions). For ¥;, ¥, being two rays
in S we define p(¥;, ¥,) as:

(W1, ¥y) = |(ye; va)?, (3.5)

where y,, ¥, are unit vectors, v, € ¥;, w, € ¥,. The set S, with the transi-
tion probability (3.5) is a probability space; we shall call this space “Hil-
bertian”. As can be easily seen, smooth subspaces of S, correspond to
closed vector subspaces of #. However, the general probability subspaces
of 8, correspond to certain subsets of 5 which in general are not linear
subspaces.

Although axioms (A), (B), (C) are derived by generalizing properties
of Hilbertian spaces, not every probability space must be Hilbertian.
5 Commun. math. Phys., Vol. 9
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Alarge class of probability spaces which may not be embedded in Hilber-
tian spaces exists; examples of these structures will be given in §4.

We may now assign a definite meaning to the question whether Hil-
bert spaces are an appropriate tool for quantum physics. This question
is related not so much to the structure of quantum logie but rather to the
geometric properties of filters. We have to do in practice with certain
classes of filters: inside of them there exist various geometric systems.
These systems form various probability spaces. Their geometric structure
may not be determined a priori by any theory but it should be studied
by the experiment. The problem is: can each of these spaces be embedded
in a certain Hilbertian space ? In § 5 we show how this question can be
answered by measuring the transition probabilities.

4. Two-Dimensional Spaces. The Possibility of Non-Hilbertian Structures.
Geometrie Interpretation of the Superposition Principle

We shall illustrate concepts of §3 by considering two-dimensional
spaces. Let (S, p) be a 2-dimensional probability space; then to each
a € 8 there corresponds exactly one element a’ € S which is orthogonal to a.
Indeed, for every a €S there exists at least one a’ orthogonal to «;
otherwise a itself would be a maximal orthogonal system in S in contra-
diction to the assumption that S is 2-dimensional. Let @’ be another
element orthogonal to a. Since {a, a'} is a basis, (3.1) implies: 1 = p(@’, a)
+ p(@,a') = p(@,a'), and @ = a’ because of (A). This proves the uni-
queness of a'. In consequence (a')’ = a; hence, the mapping @ — a’ is
an involution in §. This mapping is also an isomorphism, because for
every a, b € S relations p(a, b) + p(a, b’) = 1 and p(a, d') + p(a’, b") =1
imply that p(a’, b’) = p(a, b). Thus, 2-dim. spaces are spaces with an
isomorphic involution.

A simple class of these spaces may be constructed as follows. Con-
sider a sphere of radius 1/2 in n-dimentional Euclidean space R”. Let S
be the set of all points of the » — 1-dimentional surface of this sphere.
We shall define the transition probability on 8 x S as follows: for two
points a, b € S the number p(a, b) is the square of the distance between
a and the antipode of b (see Fig. below):

Axiom (A) obviously holds, and since the distance between a and
the antipode of b is the same as between b and the antipode of @, (B)
is also valid. For each a € S there exists a unique element a’, orthogonal
to a: o' is the antipode of a. For each pair {a, @’} and for every b ¢ 8
Pythagoras’ theorem implies that p(a,bd) + p(a’,d) =1, hence (C)
holds. Thus we have to do here with a certain 2-dimentional probability
space in which each pair of points {a, &'} is a basis and the involution
@ — a' is the reflection with respect to the center of the sphere. We shall
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denote this space by S(2, »). All subspaces of S(2, n) may be easily

determined. 1-dimensional subspaces are one-element subsets. 2-dimen-

tional subspaces are all subsets which are involution invariant (i.e.,
a

x2=pla,b)

Fig. 5

symmetric with respect to the center of the sphere in IR?). Each one
dimentional subspace is smooth, but the only two-dimensional smooth
subspaces is the whole space S(2, »).

Ln-dim plane

\

s(2,m)

\

Fig. 6

Spaces S (2, n) form an “increasing” family, i.e., for n < m the space
S§(2, n) may be embedded in §(2, m). In fact, §(2, m) possesses many
subspaces isomorphic with S(2, n). They are determined by all n-dimen-
sional planes in R™ passing through the center of S(2,m) sphere:
5‘
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For n < m, 8(2, m) may, however, not be embedded in S(2, n) since it
is too extensive; S(2, ») does not have any subspace isomorphic with
S (2, m).

It will be of interest to identify some of the above S§(2, n) spaces
with two-dimensional Hilbertian spaces. Consider first the two-dimen-
sional real Hilbert space 5 (2, R). We shall show that the corresponding
probability space S, g) is isomorphic with S(2, 2). The unit sphere in
H (2, R) is the circle in two-dimensional z, y-plane. Since two vectors
with opposite directions correspond to the same ray in (2, R), rays
may be represented by half of this circle. For two unit vectors v, v,
representing two rays the transition probability p(y;, w,) is defined
as the cosine square of the angle between y; and y,. The isomorphism
between the above space Sy, gy and 8(2, 2) is established by the stereo-
graphic projection:

Now let s# (2, C) be the 2-dimensional Hilbert space over the field
of complex numbers. Each vector y € 5 (2, C) may be represented as

Cl‘ where {;, {, are two complex numbers. Rays in 5# (2, C) may be

el

represented by vectors

y _f” where x,y,2z are real numbers, 22+y2?+22=1
and » = 0. Hence rays in 5 (2, C) correspond to points P = (2, y, 2)
of the surface of a unit hemi-sphere in three-dimensional Euclidean

space. (The exception is the ray ”? which corresponds to the great
2

circle z=0). By defining the transition probability p(P;, P,)
= (2,2 + t1¥p + 2125)" + (4122 — Y22)* for two points Py = (2, %1, %),
Py(x,, x5, 25) located on the surface of the hemi-sphere and by iden-
tifying all points on the circle # = 0 we obtain the correct model of the
space Sy, ¢y- This space is isomorphic with §(2, 3) and the isomorphism
is again established by a stereographic projection:
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For a similar reason, the probability space S, |, of rays in 2-dimen-
sional Hilbert space over the field of quaternions is isomorphic with
S8(2, 5) space. Thus, we identified S(2,2), S(2, 3) and S(2, 5) with the
three basic types of two-dimensional Hilbertian spaces. The intermediate
S (2, 4) is isomorphic with a certain substructure of §(2, 5) but it may be
embedded in neither S(2, 2) nor S(2, 3).

It follows also that S (2, 4) cannot be embedded in any real or complex
Hilbertian space independently on its dimension. Indeed let #(C)
be a complex Hilbert space and suppose that S, contains a subspace
isomorphic with S(2, 4). Because of Theorem 2 this subspace would be
contained in a certain 2-dimensional smooth subspace of S,y(¢,. But
all two-dimensional smooth subspaces of 8¢, are of the type S(2, 3)
and may not contain S(2,4). For a similar reason spaces S(2,n) for
n > 5 may not be embedded in real complex or quaternionic Hilbertian
spaces.

_circular

elliptic polarization

linear polarization

“circular
Fig. 9

For all known two-dimensional physical spaces of states (like e.g.,
spaces of polarization states of photons or electrons) the problem whether
they are complex Hilbertian spaces reduced then to the question whether
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they represent structures isomorphic with §(2, 3). This may be answered
only experimentally. For the space of polarization states of light the
answer seems to be positive. First, it was established using maximum
available accuracy that states of linear polarization (Nicol prisms)
form a geometric system isomorphic with S(2, 2). It was also established
that if we add to them circular and elliptic polarization states the structure
isomorphic with S(2, 3) is obtained (see Fig. 9).

The introduction of Pauli’s spinors into electron theory is based on
the implicit assumption that the geometry of polarization states of elec-
trons is also of type S(2, 3). This was not verified so directly as for the
polarization states of light. However, the successful development of the
spinorial theory of electrons seems to indicate that this geometry at
least is not far from §(2, 3).

The above considerations clarify the physical meaning of the problem
raised by FINKELSTEIN, JAUCH, ScHIMONOWICH and SPEISER [8],
whether the quaternionic Hilbert space should not be used by quantum
theory instead of the usual complex Hilbert space. Now we can
imagine what type of a situation would force a physicist to admit
that the complex Hilbert space is insufficient to give an adequate theory,
and to suggest that the quaternionic Hilbert space may be appro-
priate. This would happen e.g., if someone discovered a geometric system
of filters of the structure §(2, 5). The discovery of a system of filters
with the geometry of type, e.g., §(2, 6) would, however, make the use
of any Hilbert spaces compeltely impossible.

Spaces S(2, ») for n > 5 are non-Hilbertian since they are too ex-
tensive. Spaces with a geometry arbitrarily close to (2, 2), 8(2, 3) or
S (2, 5) but non-Hilbertian also exist. This may easily be illustrated for
the real Hilbertian space S(2, 2).

We shall consider §(2,2) as embedded in S(2,n) (n > 5). Then
8(2, 2) is a great circle on the S(2, n) surface:
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An arbitrary subset of §(2, n) symmetric with respect to the center 0
of the sphere is a subspace of S(2, ») and satisfies all axioms (A), (B),
(0). As this subset a curve S symmetric with respect to 0 which does not
determine any 5-dimensional plane in R" will now be chosen. In this
way we obtain a space which may not be embedded in any Hilbertian
space. The geometry of this space may be, however, arbitrarily close to
this of S(2, 2). Quite similarly we can imagine spaces with geometry
close to S(2, 3) or S(2, 5) but non-Hilbertian.

The possibility of continuous deformations of Hilbertian spaces
allows the hypothesis that the geometry of certain physical spaces of
states do not have to be necessarily constant but may depend upon
external influences; a hypothesis of this type would be in the spirit
of FINKELSTEIN, JAUCH, ScHIMONOWICH and SPEISER idea about the
conditional quantum logic (see [8]).

In the example in Fig. 10 the initial homogeneity of the Hilbertian
space S(2, 2) is destroyed by the deformation. This is not a necessary
consequence of the deformation, however. There are probability spaces
which are non-Hilbertian but possess all symmetries of e.g., (2, 3).
A simple example may be obtained as follows.

Imagine a sphere with volume 2 in 3-dimensional Euclidean space.
Let T'(2, 3) be the set of its hemi-spheres. For two hemi-spheres r, s
the transition probability p(r, s) will be defined as the volume of the
common part r N s:

The validity of (A) and (B) is obvious. Two hemi-spheres are ortho-
gonal if r U s is the whole sphere. Hence, for each s € 7'(2, 3), s’ means
the complementary hemi-sphere. Furthermore, for each two hemi-
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spheres r and s we have p(s,r) + p(s’, r) = vol(s N r) + vol(s' N )
= vol(r) = 1, hence (C) holds and 7'(2, 3) is a probability space. The
above space has the same group of symmetries as S (2, 3) but a different
geometry. Indeed, consider an arbitrary s, € 7(2, 3) and consider all
states s € T'(2, 3) such that p(s, s;) = 1/2. If s, 5,5, s are any three of
these states then either p(sy, 85) + P(Ss, S3) = 1 + p(s4, 83) or P(8;, 83)
+ P(83, 83) = L + (51, 85) Or (S, 81) + P (81, 83) = 1 + p(8,, §). A simi-
lar statement would not be true for S(2, 3). Hence, both spaces are not
isomorphic. As can also be shown 7'(2, 3) cannot be embedded in any
Hilbertian space. A simple story about the discovery of a non-Hilbertian
quantum phenomenon may be told now.

Drop of Non-Hilbertian Quantum Liquid

... Someone looked at a small spherical glass bubble: inside there
was a drop of liquid. The drop occupied exactly half of the bubble in the
shape of a hemi-sphere. He was able to introduce inside a thin, flat
partition dividing the interior of the buble into two equal volumes. He
tried to do this so that the drop would become split. However, the drop
exhibited a quantum behaviour: instead of being divided into two parts
the drop jumped and occupied the space on only one side of the parti-
tion. He repeated the attempt obtaining a similar result. He began to
observe this phenomenon and discovered that each time the partition
is introduced the drop chooses a certain side with a definite probability.
This probability depends upon the angle between the partition and the
initial surface of the drop. If the drop occupied a hemi-sphere s and the
partition forces it to choose between two hemi-spheres r and 7’ the
probabilities of transition into r and #" are proportional to volumes of
snrandsnr ... He was struck by the analogy between positions of
the drop and quantum states and between the partition and the macro-
scopic measuring aparatus. He wanted to formulate the quantum theory
of this phenomenon, but he realized that he could not use Hilbert spaces:
the space of states of the drop was not Hilbertian . . ..

It may seem somewhat restrictive that we base this discussion on
examples of two-dimensional spaces. They have, however, a special
significance for the general case since they are related with the super-
position principle. In orthodox quantum theory, the superposition
principle is a law which to each pair of states assigns a certain subspace
of their superpositions. This subspace is a priori assumed to be a two-
dimensional complex Hilbertian space; this is how we arrive to a general
Hilbertian space representing the physical space of states. This assump-
tion is not necessary, however. If we reject it, we obtain the following
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generalization of the superposition principle: the superposition principle
is any law determining the structure of all 2-dimensional subspaces of
a certain physical space of states. For instance, the orthodox superposi-
tion principle typical for complex Hilbertian spaces is: each two-dimen-
stonal subspace of a physical space of states is of type S(2, 3). If §(2, n)
is substituted in place of S(2, 3) a sequence of non-equivalent super-
position principles can be obtained; among which those corresponding
to real and quaternionic Hilbertian spaces (n = 2, 5). For n =4 and
n > 5 these principles do not correspond to any of the three principal
types of Hilbertian spaces; it would be interesting to find in which spaces
these superposition principles could be valid.

The consideration of probability spaces with two-dimensional subspaces
deformed as Fig. 10 shows may also be interesting. It seems natural to
expect that they may represent a sort of non-linearity in physics. Usually
speaking about the non-linear quantum mechanics we assume the re-
presentation of states by vectors (wave functions). We reject only the
assumption about the linearity of time evolution. Spaces with non-
Hilbertian geometry could correspond to a more basic type of non-
linearity concerning the superposition principle and making the very
representation of states by vectors in linear spaces impossible.

It should be stressed at this moment that in the framework of our
axioms non-Hilbertian spaces of arbitrary dimension are possible. A
simple example of n-dimensional non-Hilbertian space can be constructed
like a 7T'(2, 3) space. Consider any set X with measure y(X) = n. Now,
call a “state’ a measurable subset s C X with measure u(s) = 1. For two
states s;, s, C X the transition probability is p(s;, s5) = u(s; N 8p):

Sz

Np(5,,S,)

Fig. 12

We obtain in this way an example of n-dimensional probability space
with a non-Hilbertian geometry. As is clear from work by Guwnsox
this example can appear in our scheme since we do not insist on repro-
ducing in our approach the lattice structure assumed by orthodox quan-
tum mechanies.
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5. Numerical criteria

We rarely know the structure of a whole physical space of states.
In practice we rather deal with its finite substructures. The question
arises whether it is possible to recognize the non-Hilbertian type of a
space only by observing the properties of finite systems of filters in it.
The problem is non-trivial in general. It may be, however, easily re-
solved for two-dimensional spaces. Any two-dimensional space can be
embedded in a real, complex, or quaternionic Hilbert space if and only
if it may be embedded in 8(2, 2), §(2,3) or S(2,5) correspondingly.

We shall examine below the possibility of embedding in §(2, 3) since
this space is of the most interest to recent theory. For 2-dimensional
spaces composed of 4 elements no specific condition exists: they may
always be embedded in S(2, 3):

a

c,b):w, -pla,b)
b

s(2,3)

o

a’

Fig. 13

The space composed of 6 elements {a, b, ¢, a’, b’, ¢’} is the simplest
one for which values of transition probabilities may not allow the em-
bedding in S(2, 3). In fact, if two elements =z, y belong to S(2, 3) their
distance in IR3 is determined by the transition probability :

=Vp@,y)=)1—p(y) .

This leads to the following conditions on three numbers g (a, b), o («, ¢),
(b, 0):

o(a, b) = o(a,¢) + o(c, b)
o(a,c) = o(a, b) + (b, c) (6.1)
e(b,c) = o(b,a) + o(a, ¢)



Geometry of Quantum States 75

and
ra, b, o) < & (5.2)

where r(a, b, ¢) is the radius of the circle determined by the triangle
of sides p(a, b) o(b, ¢) g(a, ¢):

Each 6-element space for which (5.1) and (5.2) hold may be embedded
in S(2, 3).

Example. Consider 6 states of polarization of light: a, @’ being two
complementary circular polarizations, b, " and ¢, ¢’ being two pairs of
complementary linear polarizations. Let b and ¢ correspond to polariza-
tion planes forming an angle s/4. Then: p(a, b) = p(a, c) = p(b,c) = 1/2,
and all remaining transition probabilities are consistent with (A), (B), (C).
We can easily show that the above 6 polarization states may be embedded

in the complex Hilbertian space: g(a, b) = g(b, ¢) = g(a, ¢) = % and

r(a, b, ¢) = % < —;— . It is of interest to consider a more general hypo-

thetical 6-element system of filters {a, a’,b,b’, ¢, ¢’} with absorption
coefficients: p(a, d) = p(b,¢c) = p(a,¢) =p(0<p<1), and all re-
maining coefficients consistent with (A), (B), (0), e.g., p(a, b)) =1 — p,

ete. Since r(a, b, ¢) = l/l ; 2 the above system may form a part of a

Hilbertian space for p = 1/4 but not for p < 1/4. It appears that p = 1/4
is a critical value : below this value the system is impossible from the point



76 B. MIELNIK:

of view of present quantum theory. It is possible, however, that the value
p = 1/4 is not truely significant but only that the present theory is arti-
ficial.

The space composed of 8 elements {a, b, ¢, d, a’, V', ¢/, d’} may be
embedded in S(2, 3) if: (1) conditions (5.1) and (5.2) hold for each three
elements, (2) the radius of the sphere determined by the tetra-hedron
with sides p(a,b), g(a,¢), o(a,d), o(b,¢c), o(b,d), o(c,d), where

oz, y) = 1/1 — plx, y),is 1/2:
R(a, b, ¢, d) = % (5.3)

The meaning of this condition is clear from the picture below:

b

/ S(2,3)

d
<
Fig. 15

Thus for an 8-element system the question whether it is Hilbertian or not
requires subtle measurements. A positive answer may never be final since
even a small correction of empirical values of p(x,y) can negate it.

Example. The space {a, b, ¢,d, a’, b, ¢’, d'} with transition probabilities
p(a,b) = p(a, ¢) = pla,d) = p(b,c) = p(b,d) = p(c,d=p (0 <p <1)
and all remaining consistent with (A), (B), (C), may be embedded in
complex Hilbertian space only for p = —% s,

For spaces composed of 10 elements (a, b, ¢, d, e and their com-
plements) we have the following criteria for Hilbertian structure: (1)

1
3 For V_§ > p > 1 this space may be embedded in the quaternionic Hilbertian
space. For 0 > p > —— it may not be embedded in any Hilbertian spaces.

1
I
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each 4 element subset of {a, b, ¢, d, ¢} must fulfill previously formulated
conditions; (2) the four-dimensional volume V (g, b, ¢, d, e) of the 5-hedron
with sides p(a, b), p(a, ¢), o(a, d), etc. must vanish:

V(a,b,cd,e)=0. (5.4)

Example. For the 10-element space {a,b,..., e’} with transition
probabilities p(a, b) = p(a,c) = p(a,d) = p(a,e)=p(b,c) = p(b, d)

= p(b,c) = plc,d) = plc,e) = p(d, e) = 715- we have V(a,b,c,d, e) > 0.

Hence, this space cannot be embedded in the complex Hilbertian space,
although every one of its 8-element subspaces can. For spaces containing
more than 10 elements the question reduces to the consideration of
10-element subspaces since we have:

Theorem 3. 4 2-dimensional probability space may be embedded in
S8(2, 3) ¢f and only if each of its subspaces composed of no more than 10
elements may be embedded in S(2, 3).

Proof. We shall first consider finite spaces and proceed by induction.
The theorem is a tautology for all spaces containing no more than 10 ele-
ments. Suppose now that the theorem is valid for spaces composed of
2K elements where K = 5 and let {a;, . . ., ag, @g41, 01, . . ., O, Axg+1}
be a space composed of 2(K + 1) elements. Because of our assumption
2K elements ay,...,ag,ay,...,ax may be represented as points
Py,...,Pg, P{,..., Pgon the S(2, 3) sphere in such a way that P;
is the antipode of P; and distances between P;’s are:

o(Pi, P)=)1—plas,a); 4,i=1,... K.

We shall show that ag,, may also be represented by a certain point
of §(2, 3), i.e., that there exists in S(2, 3) at least one point Pg,, with
the required distances from Py, ..., Pg:

0(Pgi1, P) =1 — plagss, @) .

We shall introduce some notation. For each subset X C{Py, ..., Pg}
we shall denote by X* a subset of these points in §(2, 3) which have
“apropriate’’ distances from all points of X, i.e.,

X*={a*€8(2,3):p(x*, P)= Vl- plagss, P) for PcX}.
If X is the empty set, X* = S(2,3). If X is composed of one point,

X* is a circle on the surface S(2, 3). For X containing more than one
point, X* contains no more than 2 points (see Fig. below):
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x={7.p,}
i 5(2,3)
R
Fig. 16
The following simple rules hold:

X, CX,= X¥>XF¥ (5.5)

(XU Xp)* = X§fn X3 (5.6)

(XN X)*>XF U XE. (6.7)

Our assumption implies that for every subset X C{Py,..., Px} com-
posed of no more than K — 1 points the corresponding X* is not empty.
We have to show that {P,, ..., Pg}* is not empty. This is a simple

combinatorial fact, since only the following possibilities exist:

(a) A subset X C{P,, ..., Pg} composed of K — 1 points such that
X* contains 2 points exists. Consider now any subset ¥ composed also
of K — 1 points and such that X U Y = {P,, ..., Pg}. The common
part X N Y must contain at least 2 points. Hence (X n Y)* contains
no more than 2 points. Now, X* (X n Y)* and Y*C (X n Y)* be-
cause of (5.5). Since X* contains 2 points, X* and Y* may not be dis-
joint. Hence, X* N Y* = (X U Y)* ={P,,..., Pg}* is not empty.

(b) For each subset X C{P;,..., Pg} composed of K — 1 points,
X* contains only one point. Then two subcases are possible:

(b 1) A subset Z composed of K — 2 points such that Z* contains
one point exists. Let now X and Y be two (K — 1)-element subsets
such that X U Y ={P,,..., Pg}, XN Y =Z. Since X* and Y* are
contained in Z*, and Z* contains only one point, then X* = Y* and the
set X* N\ Y* = (X U Y)*={P,,..., Pg}*is not empty.

(b 2) For each Z composed of K — 2 points Z* contains 2 points.
Represent now {P;, ..., Pg} as a sum of three (K — 2)-element subsets
Zy,Zy, Zg, such that each common part Z, N Z, and Z, N Zg contains
at least 2 points. Now, 2-element subsets Z¥, Z¥ are both contained in
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(Z, N Zy)* which also contains two elements; hence Z§ = Z¥. For similar
reason Z%f=2Z% Thus the set {P,..., Pg}* = (Z;UZ,UZy*
= Z¥ N Z§ N Z¥ is not empty.

In this manner the theorem is proved by induction for all finite
2-dimensional spaces. By applying the transfinite induction this result
may be extended in all 2-dimensional spaces which concludes the proof of
Theorem 3. §

We see that quantities R(a, b, ¢, d) and V(a, b, ¢, d, ¢) in (5.3) and
(5.4) play a decisive role in the geometry of 2-dimensional probability
space. When R=1/2 and ¥V = 0 the space is isomorphic with certain
subspace of the complex Hilbertian space. This resolves the problem of
how to determine the type of 2-dimensional “spaces of superpositions”
considered in § 4.

We must return to the fundamental problem: should we believe that
all physical phenomena can be described in terms of Hilbertian spaces ?
This is a general conviction of present day physics. There are strong
arguments in its favour: among them are all successes of modern quan-
tum theory. On the other hand, we cannot predict the future. It may
easily happen that the present quantum theory which is based on a belief
that each 2-dimensional space of superpositions is of type §(2, 3) will
be considered as naive as the ancients opinion that planets must move
along circular orbits since the circle has the most perfect shape.
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