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Abstract. We consider a strong-coupling approach to A¢i-meson theory as
formulated in a lattice space which is of simple cubic type having lattice constant
« and total volume V. Self-adjointness and regularity of the Hamiltonian are
established. The strong-coupling perturbation series are examined for the cases
with and without mass renormalization. The series for ground state and one-
particle state as well as for their energies are shown to converge when the coupling
constant is sufficiently large, say A > A, (sufficient condition). The bounds 2,
we have found increase with the total volume ¥ and/or the cut-off momentum a—*.
Some other features of the strong-coupling perturbation theory are also discussed.

I. Introduction

This paper is to give an account of our attempt to study the pertur-
bation theory as applied to a quantum field theory in lattice space.

The field is defined at each site of a simple cubic lattice, and it may
be regarded as an average of local field over the corresponding unit cell.!
While in the previous paper [2] we studied cases of uncoupled lattice
sites, we now wish to try the strong-coupling perturbation theory (3, 4]
to take care of the coupling which in fact is caused by gradient terms
necessarily present in relativistic Hamiltonians. Taking up the (lattice
space version of) neutral scalar field ¢ with 24* (1> 1) interaction [4],
we shall use KaTo’s theorems (1) to establish self-adjointness of the
perturbed Hamiltonian and (2) to examine convergence of the perturba-
tion series [5, 6].

It is indeed remarkable that, if one agrees to keep the cut-off momen-
tum as well as the volume of the “world” finite, then in the strong-
coupling scheme Kato’s theory is applicable to the 1$* theory, for in the
weak-coupling scheme magnitudes of unperturbed and perturbation
Hamiltonians cannot be compared in KaTo’s sense.

As for the latter scheme one might recall that A. M. JAFFE studied
the model in two-dimensional space-time to prove that the weak-coupling
perturbation series for Green functions are all divergent [7]; each term
in the series being finite, though, in the world with such a low dimen-

t It may be recalled that Yukawa proposed a hypothesis that the space consists
of “clementary domains” which are not divisible any further [1].
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sionality. We note in parentheses that his expansion was in powers
of the bare coupling constant A and no renormalizations were made
as to the mass and wave functions also.

The following argument will be enough to let one expect divergence
of perturbation series also in four-dimensional space-time; here of course
momentum cut-off has to be introduced to keep each term in the series
finite: Suppose the series were convergent for a coupling constant 4 > 0,
then as power series they should converge for A’ = — 2 < 0 also. But,
this cannot be the case because the theory with the negative coupling
constant should have no ground state. In fact, C. S. Lam found a singu-
larity of logA type when calculated Green functions by applying the
method of steepest descent to Feynman’s path integral [8]. The failure
of the weak-coupling perturbation theory provides another motiva-
tion for attempting at the strong-coupling approach.

In Sec. II Hamiltonian for the 1¢4* model in lattice space (simple
cubic, lattice constant a, total volume V) will be set up and perturbation
Hamiltonian will be separated from the gradient term, i.e. an lattice
space analog of 2-1 [ (V' ¢)2 d3x. Then in Sec. IIT we establish KaTo’s
fundamental inequality for the present model thereby proving the self-
adjointness and regularity of the perturbed Hamiltonian. These pro-
perties will be used in Sec. IV to find out a bound A, such that the per-
turbation series for ground state and one-particle states be convergent
for A > A,. The result depends on whether or not the mass is renormalized.
If in the case of the renormalized mass one wishes to let @ — 0, then the
bound A, increases towards infinity. The same thing happens if one let
V — co. It will be shown in Sec. V that such difficulties cannot be avoided
in the present perturbation scheme no matter how we improve the
estimates concerning KaTo’s inequality. It has to be remarked, however,
that 1 > 4, is a sufficient condition but may not be necessary.

II. Hamiltonian

We wish to set up a lattice space analog of the Hamiltonian,

%cont=fd3x';_[nz+ (V)2 + ugd? + Adt], (A>1). (2.1)

We take a simple cubic lattice (lattice constant @, total volume V)
to each site s of which field variables, m(s) and ¢(s), are assigned.
They obey
[(r), d(s)] = —ia=36, 5, etc. (2.2)
1

As in the previous paper in which the gradient term 3 (I'¢)? was

completely ignored, we use new variables, p, and g, defined by

n(s) =t a=3 py |

B(s) = n-rava g, &
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with a c-number # fixed shortly. They obey canonical commutation

relations [Prsqs]l = —1 6, 5, ete. (2.4)

Now, the space integral in (2.1) is replaced by a lattice sum and the
gradient term by 2

3
(V) :gl [¢(s + a;) — §(s)P|a?, (2.5)

where a;’s are primitive lattice vectors, |a,| = a. In the following, con-
vention will be adopted to suppress the subscript 7 of a; and to write

3 as ). Then, in terms of the new variables, the lattice Hamiltonian
(3 a

becomes
H=nl,; H,=1H,+xH, (2.6)
where
Hy= Y hys: th%(pz—vq“rq“)—c, (2.7
H =~ 3 99s+a> (2.8)
and s a
=A%, p=al 28 (2.9)
v(A) = —A"¥3[6 + pf a®]; (2.10)

the constant ¢ is determined such that the lowest eigenvalue ¢, of A,
vanishes. The subscripts s in %, are suppressed; this convention will
be followed whenever there is no confusion.

It may be noticed in passing that only the choice 7 ¢~ can give
H, and H' finite forms, by which we mean polynomials in pg and gy
whose coefficients remain finite when a — 0; such a choice of 7 is possible
only for renormalizable theories. A-dependence of 7 is taken as such just
for the sake of convenience.

I11. Self-Adjointness and Regularity of H,

The notion of self-adjointness is well-known. An operator H, is
said to be a regular function of x if its resolvent

R,(z)=(H,— 2", (2: complex number) (3.1)

is regular in a neighborhood of % = 0 for some fized z = 2. The following
discussion will be based upon the
Theorem 1. (F. Rervica (9], T. Karo (5, 6]): Let H, be formally
gwen by H,, = Hy + xH', where Hyand H' are symmetric and have domain
® dense in a Hilbert space £). Let H, be bounded below and let there be con-
2 There are several different ways to set up the lattice space version of the

gradient term. For long-wave excitations they do lead to essentially the same re-
sults. Sce Ref. [3] and [4].
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stants, A and B, such that
KY,H ¥y =< A+ BV, H,Y) (3.2)

for every normalized ¥ in ®©, where B = 0 but A may be negative. Then for
x| < B-Y, H, has a self-adjoint extension (FRIEDRICH’S extension [10]),
which is a regqular function of .

In order to apply this theorem to our Hamiltonian H,, we have to
remove its x-dependence through 1 of »(1) thereby making the x-
dependence of H, come solely from that x» in front of H’ in accordance
with Karo’s scheme. Supposing that we are interested in the self-
adjointness and the convergence problem at a particular value 4 of the
coupling constant, let us fix that A in »(4). Namely we set $ = »(4).

Let the Hilbert space §) be a N-fold direct product the space of L, func-
tions of ¢; (¢=1,2,..., N = V/a3) and the common domain ® of H and
H'’ be constituted of all the finite linear combinations of N-dimensional
harmonic oscillator wave functions. It is obvious that both H, and H’
are symmetric, and that H, is bounded below.

We now wish to establish the inequality (3.2). Let o, f and y be
some real constants to be determined later and such that

0<a<l, >0, yp»=1. (3.3)
Consider
S BH = X byt X6, (3.4)
where
1 9 9 ~
hjs:g—[ocp;*(v+6ﬁy)q;+q§]—c, (3.5)
1 - Al
kgis) = ) ﬁ (VQs -+ V‘:Zs +at205951q)- (3.6)

Let us prove that the operator (3.4) is bounded below. First, the second
half of the r.h.s. of (3.4) is the Hamiltonian of coupled harmonic oscilla-
tors. It can be uncoupled by Fourier transformation:

P = N—l/zz e eiks , qs = N‘1/22 & oiks ,
k k
then,

MY X [Pyt U coska) £ ]
s a
so that this operator is bounded below by its zero-point energy,

<¥f, 20 5U> = /(1= ) N Gi(y), (3.7)

where

G.(y)= N‘l)_,' V~ (y + coska) . (3.8)
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We now turn to the first half of (3.4). Recall that the lowest eigen-
value of %, is zero. If we take the normalized ground state @ (s) of 4,,
and set @, = JJ D,(s), then variation principle tells us that

<¢0 (2, h(,s) ¢0> Neg=0.

Hence, for any normalized vector ¥ €9,

(av ( h) %P} <¢0, (z, I ) %}
= (Do X (e o) Do) = — [F5E B+ 3B (@ | N
where

(PP = ADPo(s), Bs Do(5)) . (@)= (Do(s) g5 Do(s)y  (3.10)

are the expectation values with respect to the ground state of Ay.
Combining (3.7) and (3.9) we get

(P, H'PY = g-1(¥, HyW)

(3.9)

1-— =
e sv @ - e v
We can repeat the same argument for
‘LﬂH vhls‘{zhzs’

(3.11)

where 453 is given by (3.6). Then, by proving that the operator is bounded
below, we can get an upper bound for — (¥, H'¥), which is the same as
the right-hand side of (3.11) except for a single difference that Gt (y)
is replaced by G_(y). However, this is only a matter of appearance
because the sum over k in (3.8) can be so rearranged as to show G4 = G_,
which we shall write as G.

Thus we can conclude that the coefficents in Kato’s inequality
(3.2) are given by

4= [‘;— Pho*— Gy e+ 3)/((12)1] N, (3.12)
B=p, (3.13)

where .
=1 —-w)/p. (3.14)

Thus we have shown that, in the strong-coupling scheme, the per-
turbation can be bounded by the unperturbed Hamiltonian in the sense
of Karo. This cannot be the case in the weak-coupling scheme.

If we now note that f is an arbitrary positive number, the Theorem 1
tells us that for any finite %, our H, has a self-adjoint extension. This
conclusion is in conformity with A. M. JAFFE’S, who, by the help of the
theory of partial differential equations, proved that the Hamiltonian
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(2.1) with momentum cut-off and in a finite volume is essentially self-
adjoint [11]. His method of proof can readily be so modified as to apply
to our lattice space Hamiltonian (2.6). We may note that, since self-
adjoint extension of an essentially self-adjoint operator is unique, it
should coincide with the Friedrichs extension. There will be no con-
fusion if we denote the extension by the same notation H,,.

The Theorem 1 tells us also that the self-adjoint extension H,, is
a regular function of ». This property is basic to the following discussions.

IV. Convergence of Perturbation Series

Having found that the perturbation H' can be bounded by the un-
perturbed Hamiltonian H, in the sense of (3.2), we now wish to see how
much can be said about the convergence of perturbation series. We use
KaTo’s theorems which deal with power series expansion in % of pro-
jection operator E,(n) on the perturbed eigenspace and the associated
eigenvalue that should correspond to an unperturbed eigenspace E,(n)
having isolated eigenvalue w{®’ (multiplicity m < oo).

We shall consider only the ground state and the one-particle states.
The former is nondegenerate. If we take advantage of the fact that the
perturbation conserves momentum, we can concentrate our attention
to a sector of given momentum, in which the one-particle state is non-
degenerate. Since we have to fix the parameter » in H, by # = »(1) to
make the x-dependence of H, = H,+ xH' come solely from that x
in front of H’, KaTo’s theorems give a lower bound r,(4) of the radius
of convergence that depends on 1. Thus, we shall get an implicit con-
dition % = A-2/3 < r,(4) for 1 for which perturbation series in question
is convergent.

Now, we quote the

Theorem 2. (T. Karo [5, 6]). Let I, be such a closed curve on complex
z-plane that encloses z = w® in it but contains inside or on it mo other

point of the spectrum X (H,) of H,. Then, under the assumption of Theorem 1
and for

el < 7o (4.1)
7= {Max Max éﬂ'}_l (4.2)
2€ WEZ(Hy) | W — 2 |
the projection operator B, (n) is given by term-by-term integration of
E,n)=—Q2ni)"* § B, (2)dz, (4.3)
Iy

where
R, (2) = (H, — 2)~!
o o (4.4)
= (Hy—2)t {1 + X () [H (Hy — z)-—l]p} ;

p=1
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the resulting series is absolutely convergent and the projection K, (n) has
the same dimensionality m as Ey(n) has.

As for the perturbed eigenvalues, the assumptions in Theorem 2
allow us to state the

Theorem 3. (T. Kato [5, 6]). When m = 1, the Schridinger perturba-
tton series for the perturbed eigenvalue belonging to the space E,(n) is
absolutely convergent for » satisfying (4.1).

Now in our case, the spectrum of H consists of the points3,

WO =0, w®=¢g, w®=2¢,... (4.5)
where ¢, (9) is the eigenvalue of the lattice Hamiltonian % :
hos [nys=e,(B) [n)s, e=0<g <---. (4.6)

The ground state of H, is nondegencrate, but all the other states are
highly degenerate. We note, however, that the perturbation H’ con-
serves momentum. Since the one-particle state (energy w{”) is non-
degenerate in the sector £, with given momentum k, we can apply
the Theorem 3 to this state, too.

(0) (0)
Wg 1

L

Fig. 1. Contour of integration for (4.3), n = 0

Let us begin with the ground state. Then, the contour Iy must enclose
w® = 0 and no other points of X(H,). Choosing a rectangular I'y as
shown in Fig. 1, we wish to find its optimum position and size that yield
the largest possible 7, from (4.2); the only conditions we have for [
is on the positions, £’ and &, of its intersection with the real axis,

<0 and 0<é<g.

If we take a sufficiently large I'), then, for each point w € 2 (H,), the

M%} of (4.2) occurs when z = real = £. Of these maximum values the
zeI'y

%V[zazg ) is given by either one of the two points w of X'(H,) nearest to &;
w 0,

3 Numerical solution of the Schrodinger equation for %, shows that & > 2¢,
irrespective of the value of ».
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they are w = 0 and w = ¢ . Thus,
A4 A+ Be !
Te= {Max (?’ & — §~L)} ’
where Max means the larger of the two quantities in the bracket; they
are positive since 4, B > 0 [see (4.12) and (4.23)]. Now, it is clear that
the & is optimum when chosen in such a way that these two quantities
become equal to each other. We arrive at

24 \—1
'rc:(rB—{——sl—) , 4.8)

where 7 = 1 is inserted for the convenience at the next stage.

Similar considerations as applied to the one-particle state gives
the same expression for r, with v = 2. In the following we take this larger
value for 7 so that the resulting r, is good for both ground state and one-
particle state.

According to (3.12) and (3.13) the coefficients 4 and B are functions
of &, # and y which we may vary. Our task is now to find out the optimum
set of values for these parameters that yields the largest possible 7,.
It is more convenient to use the set o, # and y; then B depends on f
only and A4 depends on p explicitly, on y through G(y) and finally on
#, =9 + 6 f v through the matrix elements involved in (3.12).

First, we vary g, which can be done without affecting B. From (3.12)
we know that 4 takes on the minimum value,

(4.7)

A= (M, + My) N[{p*): » (4.9)

when p = 26 (y)/{p?),, where
My =3y A@), A= - 5 (4.10)
My= 2y =GP I~(169)7 for p>1]. (@1

Numerical evaluation of G'(y) shows that its asymptotic form given in
(4.11) is fairly good already for y = 2 (see Table 1).

Table 1
G(y) Sy —G)?
3y
N =63 N =103 N =63
3.0 1.1931 1.1937 0.0765
3.5 1.3000 1.3000 0.0600
6.0 1.7227 1.7227 0.0322

The optimum choices of 5 and y depend on whether or not we make
mass renormalization.
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(i) Case of No Mass-Renormalization. Because in (4.8) 4 is propor-
tional to the big number NV = V/a® and B is inversely proportional to £,
we can expect that the optimum § will turn out to be very small. Then,
we may assume 6y <1 so that we can vary y keeping #;, ~ # and
consequently A (%)) almost unaffected; the subscript 1 of (p%);, can
be dropped and the angular bracket shall mean the expectation
value with respect to the ground state of %,. In such a circumstance,
A in (4.9) will take on the minimum value,

1
4 =58 ANKp®, (4.12)
when B
y = (4)/34)1. (4.13)
With (4.12), the lower bound for the radius of convergence becomes

(2 ) )

re = (ﬂ + o (7% . (4.14)
Of the two terms in the bracket here, the second one is almost independent
of B. If we take sugh a [ that makes the first term equal the second, then
the underlying assumption of small § is in fact satisfied:

6y =No/N<1, (No=elph/d), (4.15)
for sufficiently large N. For such a choice of f, our condition for the
convergence, x < T, (i), becomes

A2, with 223 — f&;;‘)w, (4.16)
where the carrets over A etc. have been omitted.

From this result we observe first of all that limit @ — 0 and/or V — oo
cannot be taken without the catastrophe 2, - co. This is because our 4
is proportional to N = V/a®. That this is unavoidable in the present
scheme will be explained in the last section.

In Table 2, there are given two sets of numerical data pertinent to our
discussion which are obtained by solving the Schrédinger equation for
ho numerically.

Table 2
v & (r% (o 4 N, AR3IN
0 1.36967 0.706900 0.362019 0.0059 160 0.26
—3 2.08583 1.047614 0.239390 0.00079 2800 0.044

Now, if our lattice constant should be chosen to be smaller than the
Compton wave length corresponding to the bare mass, i.e.,

Mo <1, (4.17)
then the strong coupling would imply
—9 = 1236 + pda®) <1, (4.18)
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in which case the pertinent numerical data are given by the first row
of Table 2. If N = 10° for instance, then the A, turns out to be 2600,
such a big number!

The second row of Table 2 suggests that the situation could be im-
proved slightly if ¥ were large negative; this is due to the small A,
which, being the difference between the uncertainty product squared
and its harmonic oscillator limit 1/4, decreases with increasing strength
of the harmonic term — (1/2) 92 in %,. But, (4.18) tells us that — % > 1
implies a very coarse cell division, u,a > 1.

(ii) Case of Renormalized Mass. Unfortunately, mass renormaliza-
tion can be discussed only by taking a recourse to lower order perturba-
tion calculations. If 1 is so large that % < r,, then we may content our-
selves with the first order approximation, in which we get

w(k)??=u2+ok?, (ka<l), (4.19)

for the energy of one-particle state with momentum k. For 2 = /,
p = a2 (299 63 — 126, (1 |g| O], (4.20)

o=2¢|11q] 0>)2. (4.21)

The mass renormalization means to determine the counterterm A u?
in ug = u?— A p? such that the physical mass u, and not the bare mass
o, is kept fixed when a approaches zero. We recall that ¢, and (1 |g] 0)
depend on the parameter # which involves 4 x2? now. The mass renormali-
zation /A u® makes ¥ positive, so that the potential function of A, is now
W-shaped with the depth of the valleys being proportional to #2. There-
fore, ¢ decreases exponentially fast with increasing # and (1 |¢| 0)
grows up very slowly. The renormalization condition then amounts
to requiring that & be a small quantity of order 1-2/® for large 1 (see
(4.20)) and therefore that P, (4.22)

The valleys of the potential function are so deep that the lowest two
levels become almost degenerate (Fig. 2). Such a case can be handled by
using the resonance approximation [12]. See Appendix.

Fig. 2. For the potential V(¢) having deep valleys symmetric with respect to the
origin, the energy spectrum has a doublet structure
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Now, we come back to (4.9). Taking (p*); and (¢?); from Appendix,
we find that A takes on its minimum value,
~ 26+ 6HN, (4.23)

when y is the smallest, = 1. Then, choosing f# appropriately we make
(4.8) maximum, obtaining

39 N ]t

Thus for large N, the sufficient condition for convergence becomes:

(ua)* +126,[C1] g0) _ 3

12/3
/ 2 & (v)

N, (4.25)

the carrets are again removed and substitution is made for A%3 from
(4.20).

Now, we have to distinguish two cases. First, if ¢ was chosen so small
that (ua)? be neglected in (4.25), then substitution of (A.9) would lead
to an absurdity, N < 2, for any value of A. Unfortunately there-
fore, taking the continuum limit @ - 0 should be out of our scope
again.

If on the contrary, the lattice constant a is fixed and if v is taken so
large that (ua)? dominates in (4.25), then the equality part gives,

& () = ualA3, (4.26)
which relates » and A. The inequality part becomes
A>[ByN[(ua)]®. (4.27)
The combination of these two constitutes our convergence condition.
We know from (4.26) as combined with (A.8) that » is a slowly varying
function of A*3/(ua):
ABl(ua) = 5 v 2exp)/32,  [=[0)]. (4.28)

Substitution of this A into (4.27) yields

‘(?27 < i;— y3expl/s82, [=g()]. (4.29)
In this form, the question of finding the bound A, can be solved graphi-
cally. See Fig. 3. For a given set of N and ua, find » that satisfies (4.29)
with its inequality sign replaced by equality sign.Then,find the correspond-
ing A by (4.28) and this is the desired A,. The perturbation series we have
been considering are convergent for 1 > A,.
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5 6 7
———

Fig. 3. Nomogram to find 4, for given values of N and pa. The case of renormalized
mass

V. Discussion

We have shown that, in the strong-coupling scheme [4], KaTo’s
theory [5,6] is applicable to the A¢* theory to prove the selfadjointness
of the Hamiltonian. As is well-known, this cannot be the case in the
weak-coupling scheme.

We have shown also that the strong-coupling perturbation series
for the ground state and the one-particle states are convergent if the
coupling constant is sufficiently large, 4 > A, with the bound A, given
by (4.16) for the case of no mass-renormalization and by Fig. 3 for the
case of renormalized mass. It is annoying, however, that the bound
increases towards infinity with the cut-off momentum a—! as well as
with the volume V of the “world”.

As long as we use KaTo’s theory, which was originally designed for
systems in atomic physics having finite numbers of degrees of freedom,
to discuss the convergence in our field theoretical problem, the difficulty
will remain no matter how we improve the estimates of 4 and B in
the inequality (3.2), because 4 is inevitably proportional to N = V/a3.
This is most easily seen by taking a vector of the form,

— [0)s + g[1)s
¥ ]’7 N +g

4 Commun, math, Phys., Vol. 9
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where ¢ is a small number. With this vector we have
W H Wy =uld + 0(?)

while the expectation value of the perturbation,

(W, Wy = = 320 (L g OO,

is O(g) and is proportional to N. Hence 4 » N if KaTo’s inequality (3.2)
is to be valid for ¥’s dense in a Hilbert space 9.

Our result does not imply that the perturbation series do diverge
when A > 4,; KaTo’s theory provides only a sufficient condition for con-
vergence. Yet, one may notice that variety of intermediate states in
higher order perturbation will increase with N so that the slower the
convergence may become the larger the number N is.

In the case of no mass-renormalization one has to keep the cut-off
momentum a~! finite. One can take a finite V if one is interested in local
observables in a finite time interval. Yet, there arises an unsatisfactory
feature when one examines the physical mass from the first order per-
turbation calculation. For N and 4 so large as to satisfy the requirements,
(4.15) and (4.16) respectively, the formula (4.20) gives ua > 1, that is,
the Compton wave length with the physical mass turns out necessarily
to be much smaller than the lattice constant. Such a coarse cell division
will be meaningless when one is interested in the structure of self-field
in the one-particle states. The situation will be improved if we get better
estimate of 4 so that we may deal with the smaller .

In the case of the renormalized mass, there is no such difficulty.
However, the large value of » necessitated by the condition of mass-
renormalization makes the ¢ in (4.21) much smaller than 1, so that the
one particle energy (4.19) loses the relativistic covariance. One may re-
call that Scuirr [4] argued that, for the case of no mass-renormaliza-
tion and of ¥ = 0, the higher order corrections would solve the problem
of covariance?. But, it seems doubtful if an argument like his can be
given for the present case of » > 1. We would rather suggest the following :
The convergence of the perturbation series is particularly slow in this
case because the mass-renormalization requires the distance between
the lowest two levels of H, to be so small. Thus, the situation will be
improved if one can take that part H{ of perturbation which connects
those two levels to treat Hy, = H, + » H{ as a new unperturbed Hamil-
tonian. From this point of view, essentially, each lattice site can take
on only two states, so that the field in the lattice space is equivalent to
a system of spins (s = 1/2) sitting at each lattice site and interacting
with the nearest neighbors through » H;. We can hope to solve the eigen-

4 In this case, the lowest order value of o is 0.9888.
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value problem of this Hamiltonian H,, by invoking the highly developed
theories of spin waves. If this is done, the remaining perturbation
effect will be suppressed because the transitions due to H' — Hj in-
volve large energy differences. Further discussions will be given in sub-
sequent papers.

Appendix

We use the resonance approximation [12] to determine the lowest
two levels of a particle (mass = 1) moving in the potential,

1
V) =5 (=r#+4¢) (>1). (A1)
This potential has two deep valleys ¥, (¢g) that can be approximated by
. . : —
Vilg)=—g»v+r@F9?%, (q=l/%)- (A.2)

In the zeroth approximation, therefore, the lowest state is two-fold
degenerate, with harmonic oscillator wave functions,
2q )\ = 7)2
w, @ = (32)" exp - 70 F 21, (A3)

one localized in the right valley and the other in the left valley.
Once one takes their coupling through their tails, the degeneracy
is lifted and the eigenstates become:

o (q)
uy(q)
where S is the overlap integral,

S = fu+ u-dq = exp [— l/g] . (A.5)

For hy = —;— 2+ V(q) we get

1 v, 31
(up, houry = — g 92+ ]/% + 5o (A.6)

}= [2(1 £ 8)12 {u (g) + u-(9)} (A.4)

1 1./v , 31
<U+, hou_> = (— 35 p2 4 z l/? + _157) S. (A7)
Thus, the distance between the lowest two levels turns out to be

&1 — & = (Ug, houy) — (g, houg)
?] (A.8)

= %(w"‘ +)/2v) exp [— V?

where quantities of order 82 have been neglected. Note that this distance
is called ¢, in the text by shifting the origin of the energy scale such that
g =0.

4‘
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In the same approximation we have:

v

Cuy, quo) = 4= bR (A.9)
and

,  14/2
gy PPugy = (1 — 8) qz‘l‘z‘/j:

(g, PPugy = V% -2 8.
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