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Abstract. A number operator for a representation of the canonical commutation
relations is defined as a self-adjoint operator satisfying an exponentiated form of
the equation Na* = a*(N + /), where α* is an arbitrary creation operator. When
N exists it may be chosen to have spectrum {0,1, 2,...} (in a direct sum of Pock
representations) or {0, ± 1 , ± 2 , . . . } (otherwise). Examples are given of represen-
tations having number operators, and a necessary and sufficient condition is given
for a direct-product representation to have a number operator.

Introduction

The Fock representation of the canonical commutation relations has
a total occupation number operator JV. One way of completely describing
N is to say

(i) it is self-adjoint
(ii) its spectrum is {0, 1, 2, . . .}

and
(iii) it satisfies the commutation relation,

Na* (φ) = α* (φ) (N + /) (0.1)

in a suitably rigorous form. Here a*(φ) is the creation operator for a
wavefunction φ, and (0.1) is to hold for all φ.

In fact, the only representations of the canonical commutation rela-
tions which have a number operator N satisfying (i)—(iii) are direct
sums of Fock representations [2, 4, 5].

If we relax the requirements on N by eliminating the assumption (ii)
about the spectrum, then there exist other representations of the can-
onical commutation relations possessing such number operators. We
call them particle representations.

In Section 1 we discuss general properties of particle representations.
For a strange particle representation (other than a direct sum of Fock
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representations) the number operator is always unbounded below
(Theorem 1.3). Furthermore, given a strange particle representation, one
can always select a number operator which has every integer (negative
as well as positive) as an eigenvalue (Theorem 1.3).

In Sections 3 and 4 we consider direct-product representations of the
canonical commutation relations as described by KLAXJDER, MCKENNA,
and WOODS [11] and by STKEIT [20]. We determine precisely which ones
are particle representations they are the ones having in the representa-
tion space a vector <p1 ® φ2 ® where each ψj is a multiple of a Hermite
function (Theorem 3.3). We discuss the problem of extending these
representations so that they are defined over a Hilbert space, showing
that this can be done in a smooth way if and only if the indices on the
Hermite functions are bounded (Theorem 4.7). We understand that
M. R E E D [14] has considered similar and related questions about direct-
product representations, but his work was not yet available at the time
of this writing.

In Section 5 we discuss a class of particle representations which in-
cludes the extreme universally invariant representations as described by
SHALE and SEGAL [18] and the representations corresponding to a non-

relativistic infinite free Bose gas as described by AKAKI and WOODS [1].
They have generating functionals of the form

where T ^ I. The corresponding representation is a direct sum of Fock
representations if and only if T2 — I is trace class (Theorem 5.1).

1. Number Operators

We consider representations of the canonical commutation relations
over a space ί) of test functions. $) is assumed to be a complex inner
product space, with the imaginary part of the inner product serving as
the commutator bracket. This means that the commutation relations,
in the Weyl form, are

W(z) W{z') = exp [~i Im (z, z')] W(z + z'), (1.1)

where z and z' are arbitrary elements of S), and (z, zf) is their inner
product (linear on the left).

By a representation of the Weyl relations (or a Weyl system) over ξ> we
mean a map W from ξ) into the unitary operators on some complex
Hilbert space $ such that the Weyl relation (1.1) is satisfied, and, in
addition, for each fixed z ζ § , the function W(tz) of the real variable t is
weakly continuous at 0. For a description of the motivation for this
definition and its connection with other formulations of the commutation
relations, see [2] or [19].
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If W is a representation of the Weyl relations over $) and z ζ $), one
can define the associated creation operator a*(z) to be the closure of
2"1/2 [-β(z) — iB(iz)], where B(z) is the self-adjoint generator of the
group t -> W(tz). In case WF is the Fock-Cook representation [9, 3] and
N is the total occupation number operator, a suitable exponentiated form
of the commutation relation

= a%(z)(N + I) (1.2)

is satisfied. To be precise, for each z ζ $) the relation

eitN WF{z) e~itN = WF{e**z) (1.3)

is satisfied for aU t £ R [3, 2].
As has been suggested by SEGAL [16, 19 p. 64], if one has a Weyl

system W and an operator N satisfying the indicated commutation
relations, then that N should have a physical interpretation as an
occupation number operator. Accordingly, we take the commutation
relation as a definition of a number operator, and then we investigate
the properties of such operators.

1.1 Definition. Let W be a Weyl system over § on ®. A self-adjoint
operator N on $ is a number operator for W if

eitN W(Z) e-itN = w^H), (1.4)
for all z £ §, t £ R.

This definition differs in two respects from the definition

N= j>*(e f c)α(e&),
fc = l

where {ek} is an orthonormal basis of § . First, the infinite sum can
converge in certain strange representations where Eq. (1.4) fails to hold
[2]. These representations agree with the Fock-Cook representation on
a dense subspace of § . Second, we shall see that number operators (in
the sense of Definition 1.1) exist in many physically interesting repre-
sentations where the infinite sum fails to converge. In fact the sum
Σa*{ek) a(ek) exists only in representations which are direct sums of
those indicated above (i.e. those which agree with the Fock-Cook repre-
sentation on a fixed dense subspace) [2, 4]. The distinction between the
two definitions arises from the fact that when the sum exists, it is a non-
negative operator, whereas number operators are not generally bounded
below.

One difficulty with Definition 1.1 is that a number operator need not
have integer eigenvalues. To see this, suppose W$ is the Fock-Cook repre-
sentation of the Weyl relations on &F, and N is the usual number
operator. Let $ be an infinite dimensional Hubert space and let A be
a self-adjoint operator on Sξ having continuous spectrum. Then the self-
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adjoint generator of the group t -> eitΛ <g> eitN is a number operator for
the Weyl system / <g> Wp acting on $ ® &F. (I is the identity operator.)
This number operator for / ® W& is easily seen to have no eigenvectors.

In this example one sees a feature which occurs in general; namely
the representation / ® W# also has another number operator / ® N
which does have integer eigenvalues.

1.2 Lemma. If a Weyl system W has a number operator N, then it has
another number operator N' whose spectrum is a subset of the integers.

Proof. Since, for every z ζ$), e2πiNW(z) e-
2πiN= W(e*πiz) = W(z),

the unitary U = e2πiN commutes with all the W(zY&. Now U has a
1

spectral resolution U = / e2πiΘdF(θ) where the spectral projections F(β)
o

commute with every bounded operator which commutes with U (see [22],
p. 307). Thus each F(θ) commutes with all the TF(z)'s and also with
eitN, t ζ ΪR. Let A = - / θdF{θ), and

Then V is a continuous one-parameter unitary group, and

V(t) W(z) V(-t) = e " * [e**^ W{z) e~itΛ] e~itN

so the self adjoint generator N' of V is a number operator for W. The
spectrum of N' is a subset of the integers since

e2πiN' — e2πiN e2πiΛ = finiN JJ-1 _ J # |

Actually the spectrum of ΛP looks like {w0, ^ 0 + 1, w0 + 2,. . .} or
{• — 2, — 1, 0, 1, 2, . . .}. I t appears easy enough to prove this: Take
an eigenvector φ of N'9 with eigenvalue n. Then α* (z) 95 should be,
according to (1.2), an eigenvector of Nf with eigenvalue n-\-\. However
it is important to realize that (1.2) is symbolic, not rigorous, so to make
this argument correct we would have to check that φ is in the domain
of α* (z) and that α* (z) φ is in the domain of N. Instead of this, we shall
prove the desired result, and more, using only bounded operators.

1.3 Theorem. Suppose W is a Weyl system with a number operator N.
If the spectrum of N is bounded below, then W is a direct sum of Foch-Gook
representations. Otherwise W has a number operator N' whose spectrum is
the set of all integers {. . ., - 2 , - 1 , 0, 1, 2,. . .}.

Proof. Define A and N' as in the proof of Lemma 1.2. Since N—N' + A
in the sense of strong sum of commuting operators, and the spectrum of
A is a subset of [—1, 0], the spectrum of N' is bounded below if and
only if that of N is. If the spectrum of N' is bounded below by the
integer n, then N' + nl is a, number operator for W whose spectrum
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consists of non-negative integers. By Theorem 1 of [2], p. 64, W is
a direct sum of Fock-Cook representations.

The possibility that N' is not bounded below is handled by the next
lemma.

1.4 Lemma. If N' is a number operator whose spectrum is unbounded
below and consists of integers, then its spectrum is {0, ± 1, ± 2 , . . .}.

Proof. Fix a unit vector z0 ζ 9). Then by the Stone-von Neumann
Theorem [12] (or see Ref. [2], p. 27), the representation of the Weyl
relations over C given by α -> W(oczo) is unitarily equivalent to a direct
sum of copies of the Schrόdinger representation Ws. So we may assume
that & = &! ® &s, where &s is the representation space L2 (ΪR) for the
Schrόdinger representation, and

W(oczo) = / <g> Ws{oή .

Let Ns be the usual number operator γ ( P 2 + Q2 — 1) for the Schrό-
dinger representation. Then, writing U(t) = (/® eίtN*) e~itN', we have
U(t) W(oczo) U(-t)= W(oczo) for all α ζ € , so U(t) commutes with all
the operators / <g> Ws(oή, α ζ € . Thus U(t) must lie in the commutator
of the algebra {/ <g> Ws(oc): oc ζ C}". Since the Schrόdinger representation
is irreducible this commutator consists of all operators of the form
A1 ® I, so we have U(t) = ϋλ{t) <g> / or eitN' = ϋ^t) <g> eitN: Thus Z7x(ί)
is a continuous one-parameter unitary group; call its self-adjoint gener-
ator A. The spectrum of A is a subset of the integers since e2πiA ® / = /.
Furthermore L̂ cannot be bounded below, because Ns is non-negative,
and we are assuming N' is not bounded below.

Now we can prove that any integer m is in the spectrum of N'.
Select an integer ra0 ^ m belonging to the spectrum of A. Since the
spectrum of Ns is {0, 1, 2,. . .}, (m — m0) is in the spectrum of Ns. But
the spectrum of N' is the sum of that of A and that of Ns, so m = m0

+ (m — m0) is in the spectrum of N'. |
The existence of a number operator imparts a particle interpretation

to the vectors in the representation space. To see this consider a Weyl
system W acting on &, and suppose no subrepresentation of W is uni-
tarily equivalent to the Fock-Cook representation. Then if W has a
number operator N, we may suppose, according to Theorem 1.3, that N
has spectrum {0, ± 1, ± 2,. ..}. We may think of any eigenvector v of N
with eigenvalue 0 as a "ground" state, even though it has an infinite
number of "bare" particles with probability one [2], Then an eigenvector
of N with eigenvalue n > 0 has n more particles than v has, and an
eigenvector with eigenvalue — n < 0 has n fewer particles than v. In

oo

fact, using the spectral representation N= Σ nPn> w e m a v a s s °-
n — — oo
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ciate with any unit vector x £ $ the probability (Pnx, #) that the
number of particles in x differs from the number in v by n. For this
reason we adopt the following terminology.

1.5 Definition. A representation W of the Weyl relations which has
a number operator is called a particle representation. A number operator
for W is called normalized if its spectrum is either {0, ± 1, ± 2 , . . . } or
{0,1,2,...}.

2. Generating Functionals for Particle Representations

We review briefly the definition of generating functional. Terms not
defined here are explained in Ref. [2], p. 44—45.

Let W be a Weyl system over § . Define for each finite-dimensional
subspace Jt of H the weakly-closed algebra Qlj?(W) = {W(z): z ζ Jt}".
Then the Weyl algebra 21 (W) is the O*-algebra generated by all the
2l^(TF)'s as Jt varies over the finite-dimensional subspaces of $). As
a C*-algebra, 21 is independent of W [16].

Given any state E of 21, the Gelfand-Segal construction [10, 15],
[6] yields a cyclic representation πE of 21 on a Hubert space &E with
a normalized cyclic vector vE such that

= <πE(A)vE,vE}
for all A ζ 21.

Assuming E is regular, which means that E is strongly continuous
on the unit ball of each 21^(W), Λ finite-dimensional, then the oper-
ators WE(z) — πE(W(z)) form a representation of the Weyl relations
whose Weyl algebra is π^(2l). Furthermore the complex-valued function
/ / o n § defined by

completely determines E and is called the generating functional of E [17].
Suppose W is a particle representation of the Weyl relations (Defn.

1.5). If N is a normalized number operator, and v is any eigenvector of
N, then the generating functional

= (W(z)v,v)

is invariant under changes of phase:

μ(ei*z) = μ(z) for all zζξ>, t £ 1R . (2.1)
In fact,

μie^z) = (eitN W(z) e~itN v, v)

= (W(z)e~itNv>e~iiNv)

= μ(z).
12 Commun. math. Phys., Vol. 8
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It is easy to see that every particle representation is a direct sum of
cyclic representations whose cyclic vectors are eigenvectors of N, and
hence whose generating functionals satisfy (2.1). Conversely, as we prove
below, any generating functional μ which has the property (2.1) corre-
sponds to a particle representation. Since it is quite easy to exhibit
generating functionals which are invariant under changes of phase, and
it is also easy to determine whether a given functional has that property,
this observation is quite helpful in studying particle representations.

We now proceed to a proof of the statement made above about
generating functionals which satisfy (2.1).

2.1 Proposition. Let μ be a generating functional which is invariant
under changes of phase (2.1). Then the Weyl system WE determined by μ
via the Gelfand-Segal construction has a number operator which annihilates
the cyclic vector vE.

Proof. A theorem of SEGAL [16] shows that the map W(z) -> W(e{tz)
induces an automorphism γt of the Weyl algebra St. The condition (2.1)
implies that the regular state E determined by μ is invariant under γt:

E(γt(A)) = E(A) for all A ζ 2t.

Now it is an easily checked property of the Gelfand-Segal construc-
tion that the invariance of E under γt implies the existence of a unitary
U(t) on the representation space &E which leaves the cyclic vector vE

invariant and which implements the automorphism:

In fact U(t) is defined by

17(0 AvE = γt(A) vEi for all A ζ 21.

Clearly TJ(t-{-tr) = £7(0 U(tf), so U is a one-parameter group of
unitary operators. To prove the existence of a number operator N, we
just have to show that Ϊ7(O is a strongly continuous function of t at
t = 0. Then its self-adjoint generator N will be a number operator since

e " * W(z) e~itN = γt(W(z)) = TΓ(β" z).

To do this it suffices to prove that for all z £ ί)

lim

But

~ I) W(z) vEγ = 2 - 2 Re (U(t) W(z) vE, W(z) υE)

= 2 - 2 Re (W(-2) W{e"z) vE, vE)

= 2 - 2 Re ̂ ((e" - 1) z) exp [yi sinί ||zp] .

This ->-0 as ί->0 because μ is continuous on finite-dimensional sub-
βpaces and its value at 0 is 1. | |
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If a generating functional is not invariant under change of phase,
then the corresponding representation may or may not have a number
operator. In future work I hope to present a criterion by which one can
tell directly from μ whether or not a number operator exists.

3. Number Operators for Direct-Product Representations

Suppose 95 = {ev e2, . . .} is an orthonormal basis of ί), and ψ* is the
set of all finite linear combinations of vectors in 93. We consider direct-
product representations of the Weyl relations over ψ* following KLATJ-
DER, MCKENNA, and WOODS [11]. Our goal will be to determine which
of them are particle representations.

For each n = 1, 2 , . . . let $ n be the representation space Z 2 (R) for
the Schrόdinger Weyl system Ws over C. Denote by ^ the complete
infinite tensor product space &x ® S?2 ® ' "

If 2 £ y , say z = Σ zι ei> * n e n defining
i = l

W(z) = Ws{zx) ® β Ws{zn) β ί β ί β ,

we get a representation of the Weyl relations over Ψ* acting on $. This
representation leaves invariant each incomplete infinite tensor product
space. In fact, if ψ = \p1 ® ψ2 ® is a decomposable vector in $ such
that \\ψn\\ = 1 for all n, then the incomplete infinite tensor product space
§tψ whose distinguished vector is ψ is defined as the closed subspace
spanned by vectors φ = φx ® φ2 ® such that Σ l^ ~ (fPn> ψ)\ c o n ~

n

verges. Since, for z ζ ^ , W(z) changes only a finite number of factors in
φ, such a W(z) maps ®v into ^ v .

So for each ψ, by restricting W to ®ψ we get a Weyl system TΓy, on
&ψ, which we shall call a direct-product representation. It is known [11]
that each Wψ is irreducible, and that Wψ is unitarily equivalent to Wφ

if and only if ψ is weakly equivalent to φ (i.e. X* |1 — K ^ v O I I
converges).

One might guess that the self-adjoint generator N of the unitary
group

U{t) = eίtN< <g> eitN ® eitN Θ (3.1)

is a number operator for the whole representation W because
U(t) W(z) U(-t) = ϊΓ(e<*s), for z ^ΊT. (Here Ns is the usual number
operator for the Schrόdinger representation.) However it is easy to see
that £ -> U(t) is not weakly continuous at zero, so it has no self-adjoint
generator. In fact if φ £ ϋ 2 ( R ) is a normalized eigenfunction of j ^ s with
eigenvalue 1, then (JJ(t) [φ ® φ ® •], φ ® φ ® •) is one when £ is an
integer multiple of 2π, zero otherwise.
12*
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To find the representations Wψ for which a number operator does
exist, we first look for those ψ such that the generating functional

μψ(*) = <WΨ{z)ψ>Ψ> ( 3 2 )

is invariant under change of phase.
3.1 Proposition. Suppose ψ = ψx <g> ψ2 ® , where each \\ψk\\ = 1. The

generating functional μψ given by (3.2) is invariant under change of phase
if and only if each ψk is an eigenfunction of Ns (i.e. each ψk is a multiple
of some Hermite function).

Proof. If each .iph is an eigenfunction of Ns then the generating

functional W <WW 0 zζ€ # (3.3)
is invariant under change of phase for each Ίc. Then if z = Σ zkek>
we have n & = i

n

= Π
k = l

= μψ(z) .

On the other hand, if μψ is invariant under change of phase, then
each μk, as given in (3.3), will have the same property. By Prop. 2.1, this
implies there exists a number operator for the Schrόdinger representa-
tion which annihilates ψk. Because Ws is irreducible, any number operator
for it differs from Ns by an additive constant. So ψk is an eigenfunction
oίNs. | |

3.2 Corollary. // ψ = ψ1 ® ̂ 2<g> and each ψkis an eigenfunction of
Ns) then the direct-product representation Wψ has a number operator.

Proof. This follows immediately from the proposition, using Prop. 2.1
and the fact that Wψ is irreducible (so that ψ is a cyclic vector). | |

I t is easy to exhibit explicitly the number operator JV" for Wψ which
annihilates ψ. In fact, if nk is the eigenvalue of Ns corresponding to

eitN = Θ Xp^(jyβ __ γ^j) ® ex$it(Ns - n2l) ® .

[This is proved by observing that the operator on the right leaves &ψ

invariant, and (1.4) is satisfied.] So we see that N is obtained from
Σ a*{eic) a(ek) by subtracting a constant multiple of the identity. The
constant is infinite, except in the case where all but a finite number of
the nk& are zero, which is the case that Wψ is unitarily equivalent to
the Fock-Cook representation (Theorem 1.3; or this can be proved
directly by calculating the generating functional).

The representations Wψ singled out by Prop. 3.1 were among the first
strange representations to be discussed they are unitarily equivalent to
the discrete representations of WIGHTMAN and SCHWEBER [21]. It may
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appear that Prop. 3.1 identifies these representations as the only direct-
product representations having a number operator. However, there
remains the possibility that some direct-product representation is a par-
ticle representation, but that no number operator for it annihilates any
vector of the form ψt ® ψ2 ® . This is excluded by the next result.

3.3 Theorem, The only direct-product representations of the Weyl rela-
tions which have number operators are the discrete representations, i.e. those
with a vector φ = φx ® φ2 ® in the representation space such that each
φk is an eigenfunction of Ns (i.e. is a multiple of a Her mite function).

Proof. Suppose ψ = \px ® ψ2 ® , each \\ψk\\ = 1, and Wψ has a num-
ber operator N, assumed normalized.

Step 1. For every t ζ R, U(t) ψ is weakly equivalent to ψ, where
17(0 is defined in (3.1).

Proof of Step. 1: For each t ξ R, define V(t) = U(t)e~itN. Con-
sidered as a map from &ψ to &u(t)y» ^ ( 0 ^ s unitary. Moreover, for
each z ζ "Γ

) V(t) = β«* [U(-t) Wϋit)v(z) 17(0] e«*

= eitN Wyie-" z) eitN

= Wψ(z).

This shows that for each t V(t) establishes a unitary equivalence between
Wψ and Wχj(t)ψ. I t follows [11] that for each t U(t) ψ is weakly equi-
valent to ψ.

Step 2. There exist real constants α1? α 2 , . . . such that

eitN = exvit(Ns - aj) ® ex$it(Ns - a2l) ® . (3.4)

Proof of Step 2: By Step 1 and the definition of weak equivalence,
oo

we know that Σ H ~~ 1^(011 converges for each t, where

Now each μfc(0 is the characteristic function (Fourier transform) of
a probability measure, as one sees by using the spectral resolution of
Ns. I t follows from a theorem in probability theory (e.g. DOOB [8] Th.
2.7) that there exist real constants av a2, . . . such that

Σ |1 — β-**«/*Λ(OI <oo (3.5)
& = 1

for all t.
For each real s, let Y(s) = e~ ί α i S ® e-i«a« <g> ? a unitary operator

on $ [13] which commutes with all the C7(ί)'s. Now (3.5) says
U(t) 7 ( 0 ψ ζ^v" s o w e m a v restrict C7(0 Γ(0 to ®φ getting a unitary
operator Z(t).
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Z is easily seen to be a one-parameter group, and Z (t) is weakly
measurable in t since

Z(t) = st-lim exj>it(Ns — atl) 0 0 exj)it(Ns — anl) 0 I 0 J 0 .
tt_>OO

Since S?v is separable this implies that t-+Z(t) has a self-adjoint generator
Nr. Clearly N' is a number operator for Wψ because

Z(t) Wψ(z)Z(-t) = U(t) Wψ(z) ϋ(-t)

= Wv(e"z).

Then, since eitN' e~itN commutes with all the Wv(z)9&9 the irreducibility
of the representation implies that N' differs from N by a constant
multiple of the identity. Hence by changing the real number ax selected
above, we may suppose Nf = N. This gives (3.4).

Step 3. The constants av a2,. . . in (3.4) may be selected to be
integers nv n2, . . .

Proof of Step 3: Since each μk(2π) = I, we have from (3.5)

Σ |1 - e~2nίa*\ < + oo . (3.6)

If we write ak = nk + bk, where nk is an integer and — 1/2 < bk ^ 1/2,
then (3.6) says ^27(1 — e - 2 π i δ * | < + oo, which implies [13] that Σ N
converges. So we have

eitN = exp 1-itΣh) expίί(iVs - nxl) <8> ex$it(Ns - n2l) 0 .

Taking ί = 2π, we see that ^ bk is an integer, which we may incorporate
into 7 .̂ We then have

eitN = expit{Ns - nj) 0 expit(Ns - n2l) 0 . (3.7)

4. If Afc is the kth. Hermite function, then ψ is weakly equiv-
alent to

h = hnχ 0 Λna ® ^ ®

where T^, τι2>
 a r e ^ n e integers in (3.7).

Proof of Step 4: Using (3.7) and the fact that eitN ψ £ $ y , we have

<e«^ ψ,ψ)= Π (ex^it(Ns - nkl) ψki ψk) . (3.8)
fc = l

Using the spectral theorem we see that the function t -> (eitN ψ, y ) is
the characteristic function of a probability measure, and likewise
t-> (exj)it(Ns — nkl) ψki ψk} is the characteristic function of a proba-
bility measure mk. In fact, if Pn is the projection of L2 (R) onto the one-
dimensional subspace spanned by the Hermite function hn) then

°n Hence mk assigns measure {Pnψk,ψfc} to the integer
n = 0

nkJ n = 0, 1, 2, . . .
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Now we use the Kolmogorov three series theorem (see [8], p. I l l ,
or [20]) which tells us that since the infinite product of the characteristic
functions of the dmks converges to a characteristic function, we have

Σ f dmh{x) < + oo. (3.9)
k \x\>c

Here c is any positive number; for our purposes we take c = 1/2. Then

/ dmk(x) = mk({0})
\x\<c

= (Pnkψk> ψk}

So
/ dmk(x)=l-\(hnk,ψk)\*

\x\>e
and (3.9) says

Σ (i-K^
ft = l

Since each \(Jιnr, ψk}\ ^ 1, this implies the convergence of

which is the definition of weak equivalence of ψ with hnχ ® hnt ® .
Step 5. The theorem is now proved, since if ψ is weakly equivalent

to h, then [13] there exist constants cv c2,. . . such that

converges. Then φ = c-Ji^ ® c2hn2 ® ζ ̂ y , and each φk = ckhnk is an
eigenfunction of Ns. | |

4. Continuity Properties of Discrete Representations

The direct-product representations, as described in Section 3, are
defined only over the space ^ which is the algebraic span of a basis.
But for physical applications such a space is too small; generally one
needs a representation defined over a space of test functions or over
a complete space. So it is of interest to inquire which of the discrete
representations can be extended from Ψ* to $). And for our purposes it
is not sufficient to prove abstractly that such an extension exists, since
we would want the extended Weyl system over ξ) to have a number
operator. Examples are known [2] of Weyl systems over $) which have
no number operator, yet whose restrictions to Ψ* do have number
operators.

The most natural idea is to extend the representation by continuity.
For the case of a direct-product representation Wf STBEIT [20] has

oo

determined the precise set of z = Σ Zjejin.?) to which the representation
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can be extended via the formula

W{z) = s t - l i m W\Σ *i*λ . (4.1)
n-*oo \ ^ β l /

However, to use his criterion to determine whether or not a particular
discrete representation can be extended to every z ζξ> using (4.1) is
much more difficult than proceeding directly. So our method is inde-
pendent of STREET'S Theorem. The result is that some of them can be
extended to all of $) via (4.1) and some cannot be.

4.1 Definition. Let $) be an inner product space and W a Weyl system
over $). W is continuous (on all of $)) if the map z -> W(z) is continuous
from the metric topology of $) into the weak operator topology.

We recall that every Weyl system is continuous on finite-dimensional
subspaces of $), but examples are known [2, 20] of Weyl systems which
are not continuous on all of § . Our interest in continuous Weyl systems
lies in the fact that they may be easily extended from dense subspaces
to the whole space, and if the original representation had a number
operator, so will the extended one. There is nothing difficult about these
results, and the first is essentially proved elsewhere [1], but we give the
proofs here for later reference.

4.2 Lemma. Let ί) be an inner product space and Ψ* a dense subspace
of $). A continuous Weyl system over ^ has a unique extension to a con-
tinuous Weyl system over $).

Proof, We just have to prove the existence of a continuous extension,
since such an extension is clearly unique and satisfies the Weyl relation
(1.1). Since every representation is a direct sum of cyclic representations
it suffices to consider a cyclic continuous representation W over Y*
acting on, say, $ξ.

We must show that if z0 ζ ί), and {zn} is any sequence in Ψ* con-
verging to z0, then the sequence {W(zn) x} is a Cauchy sequence in $ for
every x ζ $ . Since the W(zn)

9s are unitary, it actually suffices to prove
this only for those x lying in a total subset 8 of &. For S we choose
{W(z) v: z ζ τΓ}9 where v is a unit cyclic vector. The Weyl relation (1.1)
then gives directly

\\[W(zm)-W(zn)]W(z)v\\* (4.2)

= 2 - 2 Re ψ{zn - zm) exp y i Im{(zn, zm) + 2(zn- zm, z)}j ,

where μ(zn — zm) = (W(zn — zm) v, v}. This -> 0 as m, n -> oo since
z n - 2 w ( f and \zn — zm\\ -> 0, so that by the continuity of W at 0 in
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Hence we know there is an operator W(z0) such that for any
sequence {zn} in Ψ* converging to z0, st-lim W(zn) = W(z0). Since W(z0)
is the limit of unitaries, it is isometric. But since W(— z0) also exists, and
the Weyl relation shows it is the inverse of W(zQ), we know W(z0) is
unitary. | |

4.3 Lemma. Let W be a continuous representation of the Weyl relations
over $), and Ψ* a dense subspace of § . If the restriction of W to Ψ* has
a number operator N, then N is a number operator for W over $).

Proof. If z ξ ί), and {zn} is a sequence in Ψ* converging to z, then

eitN W(z) e~itN = st-lim 4 " * W(zn) e~itN

n—t-oo

= st-lim JF(e**zn)
n->oo

= W(e"z). | |

Now we need a practical criterion for deciding whether or not a
representation is continuous, and this is given in the next result.

4.4 Proposition. Let W be a cyclic Weyl system over Ψ* on $, let v be
a unit cyclic vector and μ the generating functional

W is continuous on all of Ψ* if and only if μ is continuous at 0 ζ Ψ*.
4.5 Corollary. A Weyl system is continuous if and only if it is con-

tinuous at zero.
Proof of Proposition (sufficiency). Suppose μ is continuous at 0. If

zQ £ ir

9 and {zn} is any sequence in ψ* converging to z0, we must prove
that st-lim W(zn) = W(z0). This is done exactly as in the proof of

n—>oo

Lemma 4.2, except that in (4.2) we replace zm by z0. |
Now we use these observations to analyse the discrete representa-

tions. In this case V is the algebraic span of the orthonormal basis
{ev e2, . . .}. Each discrete representation is unitarily equivalent to a
Wht where h has the form h = hni® hUi® , and hn is the wth Hermite
function. The generating functional

μ(z) = (Wh(z)h,h) (4.3)

is entirely determined by the functions μn on C defined by

V

For if z = Σ α ί eό € ^ t n e n

The functions μn are easily calculated using the fact that
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where ho(x) =* π'1!* e~^ll2)x\ and C is the creation operator for the Schrδ-
dinger representation. We omit the details, and give the result:

γ

Here I, I is the binomial coefficient.
\ιc/

Knowing the explicit form of the generating functionals, we can
determine their continuity properties. The result is this:

4.6 Proposition. Let h = hUχ ® hn% ® , where hn is the nth Hermite
function. The generating functional μ defined on Ψ* by (4.3) is continuous
at 0 if and only if the sequence n^, n2, . . . is bounded.

As an immediate corollary of 4.2—4.4, 4.6 we have
4.7 Theorem. Let h = hnχ <g> hUz ® , where hn is the nth Hermite

function, and let Wh be the direct-product representation of the Weyl rela-
tions over y , which acts on the infinite tensor product space 2>2(R)
® Z 2 ( R ) ® with distinguished vector h. Then Wh has a continuous
extension to a particle representation (Defin. 1.5) on ξ) (= completion of i^)
if and only if the occupation numbers n^ n2f nz, . . . are bounded.

For the purpose of proving Proposition 4.6 we will need the following
simple inequality.

4.8 Lemma. Let μn be the generating functional (4.3). // |α | ^ 2~Λ, then

l ^ / / Λ ( α ) ^ e x p ( - 2 * | α | 2 ) . (4.7)
Proof. Since μn is a generating functional, |μn(α)| ^ 1 for all α, and

since μn is real [cf. (4.6)], half of the inequality is proved. For the other
half, write

μn(x) = (1 + &„(«)) e-<WI«l', (4.8)
where

Then for lαl < 2-"

< l / 2 .
Hence

|log(l + δ n (α)) |^2 |δ n (α) |^(2»
so

In view of (4.8) this gives

and the lemma is proved. | |
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Proof of Proposition 4.6 (sufficiency). Suppose the sequence n^, n2, . . .
v

is bounded above by the integer M. Then if z = Σ α i e i £ ̂  ^8 such

that ||z||2 < 2" 2 M , then each |α,| < 2~M so it follows from Lemma 4.8 that

i

for/= 1, . . ., p.
Hence, using (4.5), if ||z||2 < 2~2M we have

1 ^ μ(z) ̂  Π e x p ( - 2 ^ |α,|2)

This shows μ is continuous at zero in y .
(Necessity). Suppose the sequence %, w2,. . . is unbounded. We will

show that for any δ > 0 there exists z ζ Ψ* such that ||z|| < (5 and yet

\\-μ{z)\>\\±. (4.9)

This proves μ is not continuous at 0.
So suppose δ > 0 is given. Since the sequence nv n2i . . . is unbounded

we can find n,- such that (2/τ^ )1/2 < δ, and we suppose nό ̂  3. Select
z = (2/τ^ )1/2 ê  . Then ||z|| < ό and we see that (4.9) is true as follows
(we drop the subscript j, writing n for n^):

μ(z) = μn((2ln)V*)

where

Thus we have \μ(z)\ < \r\. But

so ĵ (2;)I < 3/4 which implies |1 — μ(z)\ > 1/4. | |
It is still thinkable that the discrete representations corresponding to

unbounded occupation numbers nv n2,. . . might be extendable to all of
ί) via (4.1), even though the Weyl system is not continuous. But an
easy modification of the proof just completed shows that this does not
happen. In general, such a representation can be extended by (4.1) to
a Weyl system on a subspace strictly larger than ir

9 but not to all of $).
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δ Some Other Particle Representations

If T is a self-adjoint operator on § such that T ^ I, and 2 is its
domain, then a generating functional on 3l is given by

(5.1)

Special examples of representations having generating functionals of this
form are those given by the extreme universally invariant states found
by SHALE, in which case T is a constant operator (see SEGAL [18]), and
the states of an infinite free nonrelativistic Bose gas discussed by ARAKE
and WOODS [1].

Since the μ given in (5.1) is invariant under change of phase, by
Prop 2.1 there is a number operator for the cyclic representation of the
Weyl relations determined by μ. Using a construction due essentially to
AEAKI and WOODS, it is possible to exhibit explicitly the representation
and its number operator. This construction also proves that (5.1) is
actually a generating functional.

Let A = ~2~{T2 — /), and let β be any conjugation of $) which

commutes with A. (β is anti-linear, and β2 — I\ such a conjugation
always exists.) Now let ~# be the closure of the range of A1/2, a subspace
of $), and denote by $)F (resp. *JίF) the Fock-Cook space constructed over
ί) (resp. Jί). For z £ 2, it is easy to see that [/ + A]1!2 z and A1!2 βz are
both defined, so we may define a unitary operator W(z) on ί)F ® *JfF by

W(z) = WF((I + A)V2z) 0 WOAV* βz) . (5.2)

Here the first WF is the Fock-Cook representation of the Weyl relations
over $), and the second is the analogous representation over «•#.

Direct calculations show that W is a representation of the Weyl
relations over 3f and that the function μ given in (5.1) satisfies

μ(z) = (W(z) vQ Θ v0, v0 <g> v0) ,

where v0 is the zero-particle state in the Fock-Cook representation. Also
simple modifications of the proofs in AEAKI-WOODS [1] show that v0 ® v0

is cyclic for W(z)} and W is a factor representation, reducible unless
4 = 0.

In case A =f= 0, an explicit normalized number operator for W is the
closure of NF ® / — I ® NF, where the first NF is the usual number
operator for the Fock-Cook representation over $), and the second is the
analogous operator for Jΐ. In fact

(eitN* ® e~ίtNη W{z) (e~itNF® eitNη

= W^e^ll + Afl2 z) <g> Wjpie-t* A1/2 βz)

= WFQI + Afl2 (e» z)) * WF(AV* j9(β» z))
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which shows that the self-adjoint generator of the group t-+eitNF

0 e—UNF | s a n u m f o e r operator N for W, and this is the operator de-
scribed above. Since eitN leaves invariant the cyclic vector v0 ® v0 whose
generating functional is μ, this is the operator one obtains using the
construction described in the proof of Prop. 2.1.

The simplicity of constructing N disguises the fact that it is not
really a natural number operator for W. First of all, N is not affiliated
with the weakly-closed algebra 93 generated by the TF(z)'s, i.e. eίtN $ 93.
Hence it is difficult to think of N as an observable or as a renormalization

oo n

of the formal operator Σ atak> since the finite sums Σ atak a r e a ^

affiliated with 93. To see that eitN $ 93, observe that when A Φ 0 it is
always possible to find non-zero z0 £ 3> such that [/ + A]V2z0 £~#. Then
the Weyl relations show that the operator

WF{A^ βz0) <g> WF([I + A]V* z0)

commutes with all the W(z)ys; but it does not commute with eιtN except
when t is an integer multiple of 2π.

A second peculiarity of N, related to the first, is that its spectrum
always consists of all integers (positive and negative). However for cer-
tain choices of T the cyclic representation (5.2) determined by μ is
actually unitarily equivalent to a direct sum of Fock-Cook representa-
tions. So for these representations it is possible to find a non-negative
number operator, in which case the operator N selected above is a par-
ticularly unnatural choice.

We conclude with a determination of which !7"s give rise to a direct
sum of Fock-Cook representations. The proof uses the fact that such
representations are the only finite-particle representations [2].

5.1 Theorem. Suppose T :> / is a self-adjoint operator with domain
3) C § . The cyclic particle representation W of the Weyl relations determined
by the generating functional

[ 1 -I

is (unitarily equivalent to) a direct sum of Fock-Cook representations if
and only if T2 — I has convergent trace.

Proof. First we show that if A = ~γ(T2 — I) does not have pure

point spectrum, then the representation (5.2) corresponding to μ is not
a direct sum of Fock-Cook representations. Let § c be the continuous
subspace for A, i.e. the orthogonal complement of the subspace of §
spanned by the eigenvectors of A. It suffices to show that the W(z)'s for
z d $c g i γ e a Weyl system which is not a direct sum of Fock-Cook
representations over the same subspace ί)c. So there is no loss of gener-
ality in assuming A has no point spectrum, i.e. £)c = § .
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We shall use the following lemma which is proved, but not stated,
by ABAKI and WOODS [1].

5.2 Lemma. Suppose the weakly-closed algebra 93 of operators on $ is
a factor other than all bounded operators on $, and v is a cyclic vector for 93.
Suppose further that there exists a unitary operator U on $ such that
Z793 U"1 — 93 and v is the unique eigenvector of U. Then 93 is not type I.

We apply this lemma to the algebra 93 = {W(z):z ζ&}"> which is
a reducible factor, as mentioned earlier. For v we take the cyclic vector
vQ ® v0. For U we take the operator V ® F " 1 where

F = 0 (eiA)®n

a unitary operator on the Fock-Cook space $)F. Since A has only con-
tinuous spectrum, the same is true of (eiΛ)®n, so that F has only one
eigenvector, v0. Hence U has only one eigenvector, namely v = v0 ® v0.

Furthermore, for z

UW(z) U-1 = VWF([I + Afl*z) V-1 ® F- 1 WF{AW βz) V

= WF{eiA [I + A]1'* z) <g> WF{e~iA A1/* βz)

= W(eiΛz).

This shows £793 U~x = 93, and then the Lemma 5.2 says 93 is not Type I.
But the algebra generated by a direct sum of Fock-Cook representations
is Type I, since the Fock-Cook representation is irreducible. So if A has
continuous spectrum, the representation is not a direct sum of Fock-Cooks.

We are thus reduced to the case that A (or T) has pure point spec-
trum. So let {ev e2, . . .} be an orthonormal basis of § consisting of
eigenvectors of T:

Tef = t,e,.

For simplicity we shall first consider μ as defined only on the set Ψ* of
finite linear combinations of the basis vectors elί e2, . . .

Let E be the regular state of the Weyl algebra over rΓ whose gen-
erating functional is μ. According to Theorem 4, p. 77 [2], the cyclic
representation determined by E is a direct sum of Fock representations
if and only if the functions ψjr(t) — E{eιtN^^) converge uniformly in
t as J( -> Ψ* through the finite-dimensional subspace of Ψ*. (Here Ή(Jί)
is the usual number operator over *^.) In the present case, since
every finite-dimensional subspace of Ψ* is contained in some o^t^
— span{e1,..., ek}, it can be shown that this is equivalent to the con-
vergence of the sequence ψk(t) = E(ex])itN(Λίk)) to a characteristic
function.
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n

Now if z = Σ Z3e3 £ y> then the generating functional μ factors as
; = i

/Φ)= Πμι(*i) ( 5 3)

where

Let 2t; be the weakly-closed algebra generated by the Weyl operators
corresponding to z's lying in the one-dimensional subspace [e^] spanned by
βj. And let Ej be the state of 2l> whose generating functional is μό (5.4).
Then by (5.3) and the regularity of E it follows that if Aj ζ 2ί, ,
j = 1, . . ., n, we have

But the operator exp(itN(Λίk)) is just such a product. In fact
(e.g. [2] p. 35, 37)

so
l) (5.5)

where
)). (5.6)

Thus we are reduced to finding necessary and sufficient conditions
for the infinite product JI ψj to converge to a characteristic function.

These are given by the Kolmogorov Three-series Theorem if we know
the measure whose characteristic function is φjt For this we need the
explicit formula for Es as given by SEGAL [18], Theorem 1. Namely

E,(A) = (1 - «ι) Σ of trace (APn(j)) .

where c^ is selected between 0 and 1 so that tf = :, _ . , and Pn(j) is

the projection onto the w-particle subspace of ^([e^ ]). Then, using (5.6),
we see that the measure whose characteristic function is <p3- has mass
(1 - Cj) cf at n, n = 0,1, 2,. . . The Three-series Theorem (e.g. [20]) then
says that IIψj converges if and only if these three series converge:

and
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The convergence of these three is equivalent to that of Σcil0 ~ cί)

and since tf — 1 = 2fy/(l — c ; ), this is equivalent to the convergence of

the trace of T2 - I.

I t follows that if T2 — I is not a trace class operator, then the re-

presentation W over Ψ* is not a direct sum of Fock-Cook representations

over y \ I n this case the representation over 2^"^ cannot be a direct

sum of Fock-Cook representations over Of.

Conversely, if T2 — / is trace class, then the representation W over

y is a direct sum of Fock-Cook representations over y . Since T is

bounded, 2 = $) so the representation W is defined on all of § , and by

Prop. 4.4 it is continuous on all of S). Since a direct sum of Fock-Cook

representations is also continuous on all of § , the two agree everywhere. |
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