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Abstract. Semiboundedness of the total Hamiltonian is proved for a selfinter-
acting Boson field in two dimensional space time. The interaction is given by a
Wick polynomial: P(Φ):. The polynomial P is required to have even degree and
its leading coefficient must be positive. A space cutoff is introduced in the inter-
action Hamiltonian.

§ 1. Introduction

In [10] NELSON considered the following problem. Let Φ be a neutral
scalarfield of mass μ0 > 0 in two dimensional space time and let

H = H0 + gf:Φ*(x):dx, (1.1)

where HQ is the free Hamiltonian for the mass μ0 and g > 0. If the
system is placed in a box with periodic boundary conditions then Nelson
proved that H is bounded from below. H thus has a natural self adjoint
semibounded extension (the Friedrichs extension), which can (presum-
ably) be used to solve the Schrόdinger equation. In [5], Jaffe con-
sidered the related Hamiltonian

H = H0 + / : P(Φ(x)} : h(x) dx , (1.2)

P a polynomial, again in two dimensional space time. Jaffe showed H
to be a symmetric densely defined operator; no box is needed here. In
this paper we apply Nelson's method to Jaffe's Hamiltonian (1.2). Our
main result is

Theorem A. Let h be a nonnegative function in L± Π L2. Suppose that
the polynomial P in (1.2) has even degree and that the leading coefficient is
positive. Then H is bounded from below.

By elementary methods we also show that the Hamiltonian

εN+ f : Φ * ( x ) : h * ( x ) d x (1.3)

is bounded from below, where ε is any positive number and N is the
number of particles operator. This bound on (1.3) permits an improve -
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Boson Fields 13

ment in the results of [2]. In [1], we defined a renormalized Hamiltonian
Hΐen for Fermi and Boson fields with Yukawa coupling (and with a
space cutoff). The Hamiltonian was shown to exist as a bilinear form.
In [2] we showed that

0 ^ 2-*Fτ ^ #ren + <5 / : Φ*(x) : h*(x) dx + cl . (1.4)

Here Fτ is an operator defined in [2], and all that concerns us is its
property :

N ^ Fτ . (1.5)

Also δ is a number which may be taken as small as desired, but is
bounded above, δ ^ <50, and in general <50 is negative. Combining the
bound on (1.3) with (1.4) and (1.5), we have the following theorem.

Theorem B. The bilinear form Hτen of [2] is bounded from below.
Furthermore for any a in [O^-1) and for any number δ there is a c = c (a, δ)
such that

0^aFτ^ #ren +df: Φ*(x) : h*(x) dx+cl . (1.6)

Thus the upper bound on the δ in (1.4) is removed and any choice
of δ is possible. If our model were realistic (h= 1, four dimensions) we
would then choose δ so that the spectrum of the operator on right side
of (1.6) agrees with experiment. See [7] for a further discussion of this
point. One would like to know how the spectrum depends on δ. The
idea expressed in [1, p. 345] on the removal of the space cutoff was
first advanced by GUENIN [3]. GUENIN proposed that if A is an observable
associated with a bounded region and h == 1 on a larger region then

is (formally) independent of h for small t. See [12, Theorem 3] for a
further development of this point of view.

SEGAL [12] and SYMANZIK (unpublished) have studied Hamiltonians
such as (1.2). As part of a general study of Wick products, [12, 13],
SEGAL has announced a new proof of Jaffe's theorem that (1.2) is
densely defined. SYMANZIK observed that Nelson's methods were not
limited to fourth powers in the interaction and that the periodic boundary
conditions in a finite region (as used by NELSON) could be replaced by
other, for example Dirichlet, conditions.

In Theorem A, H0 could be replaced by N with only trivial changes
in the proof.

§ 2. A Domain for H

We use the Fock space representation for our field Φ. The Fock
Hubert space ̂  is a direct sum

& = Σ θ &n
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and 3Fn is the space of symmetric square integrable functions of n
variables. Let

μ =
Then

φ-(x) = fe**»a(k)μ(k)~Wdk (2.1)

φ+(x) = f eίkxa^(-k)μ(k)-^dk (2.2)

and Φ = φ- + Φ+, where a and #* are the annihilation and creation
operators,

\a(k)9a*(k')] = δ(k-k'). (2.3)
By definition,

:φ9(x): = Σ K) Φ+(%Y Φ-(x)*-j , (2.4)

or in other words, the Wick product differs from the ordinary product in
that all the annihilators are placed to the right and the creators are
placed to the left. : Φp (x) : is not an operator, but it is a densely defined
bilinear form.

We take Fourier transforms to compute

f:Φ*(x):h(x)dx

y « - i - • • « - , α m . ..a*9 (2>5)

where fi is the Fourier transform of h. We assume h is in L^ and so K
is in Lz also. Since μ (&) ~ \k\ for large ,̂ one can show that

)-1/2 € ̂ 2 (2.6)

It is well known that (2.6) implies that each integral on the right side
of (2.5) is an operator defined on the domain ^(N^) of N*/*. This
domain is the set of φ = φ0 , φ1 , . . . , φs £ ̂
with

£ K/^P < oo .

Thus (2.5) is an operator defined on &(NP/2). Similarly

#„+/ :P(Φ(x)):h(x)dx

is an operator defined on the dense domain, 2 (H0) r\ & (Nd/2), where d
is the degree of the polynomial P.

§ 3. εN + f : Φ*(x):h2(x)dx is positive

In this section we suppose h2 £ L% so that the operator (1.3) is defined
on &(N). We set
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Then

I) Φ(k) Φ(l)μ (k)-V*μ(l)-V* dk dl (3.1)

k) fi(- η + l) Φ(k) Φ*(-l)μ (k)~Wμ (l)-*/*dkdldη .

We assume h is real, so that fi~(k) = K(—k). Then (3.1) is equal to

f:A(η)A*(η):dη
where

A(η) = f f i ( η + k)Φ (k) μ (k)-1/* dk .
Let

Bρ= f :A(η)A*(η):dη (3.2)
\I\ZQ

and set (3.1) equal to
BQ + B'Q.

We assert that Bρ is semibounded and that B'Q is small relative to N,
for large ρ. The second statement means that

B'ρ^ε(N + I) (3.3)

if ρ 2> ρ0 = ρ0(ε). To prove (3.3) we note that Bρ can be written as a
sum of four integrals of the form

B = / vfo, fcj α#(^) α#(&2) dkt dkz ,

with α* = a* or &# = α and with 0 £ .L2. Moreover v depends on ρ and
\\v\\2 ->• 0 as ρ -> oo. It is known that

(N + I)-1/2 £(# + I)-1/* ̂  const. ||t;||27 ,

and so (3.3) follows.
To prove that Bρ is semibounded we use the commutation relations

(2.3) to remove the Wick ordering from (3.2). We find

:A(η)A*(η):=A(η)A*(η) - f \K(η + k)\*μ (k)^dkl
and so

5ρ= / A(η)A*(η)dη+ Jf\H (η + k)\ * μ (k)-* dkdηl .

The first term on the right is obviously positive and the second is a
finite multiple of the identity. Thus Bρ and also

eN+f:Φ*(x)h*(x)dx

are semibounded under the assumption that h2 is nonnegative and in L2.

§ 4. Reduction to a Problem with Discrete Momentum

We follow a procedure of NELSON [9] for approximating (2.5) by a
finite sum.
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Choose numbers γ and κ. (Later we let γ -> 0, κ -> oo). We define

Γ= {nγ\n = 0, ± 1, . . .}

Γκ = {k:kζΓ, \k\ ̂  κ}
and

o

where α* equals a or a* and k ξ Γ. Then

Let

One can check that each φ in &(HQ) is in &(HQγκ) also and that

lim Hoγκφ = H0φ. (4.3)
y-*0
κ— > oo

Next we approximate (2.5) by

Πμ
\ i / i

where

and

is the integral part of k relative to the lattice Γ. Since h ζ LI} K is
continuous and

uniformly. Let 2 be the set of states φ = {< 0̂, ̂ 1? . . .} with ^w (kv ...,kn) = Q

for n or Σ 1^1 large If ̂  an(i ^ are in ® then

lim (ψ ,:Φ*κ(h):φ} = (v, f:Φ*(x):h (x) dx φ) (4.5)
κ— > oo

Thus the bilinear form of

Hγκ = HQγκ + Σb*' Φp

γ*(h) > (4.6)

converges to # on 2 x S where δ0, bv . . . are the coefficients of
XQ, x1, . . . in the polynomial P(#). Hence if the Hγκ are semibounded
with a lower bound independent of γ and κ then H is semibounded also.
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Let ĵ, be the subspace of 3F consisting of functions which are
piece wise constant between lattice points. In other words,

Φ = Φo>Φι>

Let ^"yκ be the subspace of ̂ γ defined by the restriction

φn(k1,...,kn) = o if [ktnrH

for some i,l ^ i ̂  n .
The operators a*(k) and αy(&), k ζ JΓ*, leave ^"yκ invariant and act

irreducibly on ̂ γκ. We set y = 2~v, κ = 2V, and observe that tF^-v ̂
increases monotonically with v and that

2' = & r\ U ̂ 9-v 9*V Δ tΔ

is dense in 3F and
H C CH|0')-.

Here Jϊ | ̂ ' denotes the restriction of H to ̂ '. Thus it is sufficient to
prove the semiboundedness of

with a lower bound independent of γ and κ.

§ 5. Diagonalizing the Potential

So far we have used a representation of the Hubert space in which
HQ is diagonalized, or is represented as a multiplication operator. In this
section we give a new representation of ^r

γκ in which the interaction
term :Φp(h): is a multiplication operator while the free Hamiltonian
becomes more complicated. Let

&) + α*(- *)]

«y(- 1*1) ~ «J(- 1*1)]

aγ(~k) - α*(-*)]

- αy(- |ύ|) - α*(

f or 0 4= & ζ Γ and let

One can compute that

/*(*)]. (5.1)

As in [9, § 3— 4] we replace pk and qk by unitarily equivalent operators.
Let

2 Commun. math. Phys., Vol. 8
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where ̂  fc is L2 of the real line with respect to the Gaussian measure

Φί(q) dq = (μ(Ί*)lπγl* exp(- μ (k)<f) dq . (5.2)

There is a unitary equivalence between <%?γκ and ^"yκ which sends qk

into multiplication by q in the factor ̂ k and ̂ Λ into the operator

φϊli(d/dq)φk

again acting in the factor J#*k. The proof of this statement is essentially
von Neumann's uniqueness theorem for irreducible representations of
the commutation relations. We identify ̂ γκ and &"γκ and we identify
qk, etc. with its image, multiplication by q, etc. Let

μ(Jc)q* - μ(k)]φk

μ (k) q (d/dq) ,

acting on #? 'k. Now — 3ί?μ(k) is the infinitesimal generator of a known
Markoff process and furthermore the operator e~tHμ(k) is an integral
operator and the kernel can be computed explicitly, [ 10]. In particular

(«-'»„« v) (?) = / l»*(ϊ, <?') vίβΌ 1̂ (2') ίί* (5.4)

for ψ ζ^k, where

~ ' μ q'* (5.5)

Let q now denote a variable in a Euclidean space Eκ and let q have
coordinates qk) k ζ Γκ. Then

tt(9)dq= Πφ*(qk)dqk (5.6)

is the product of the measures (5.2) and

Hγκ = L,(φl(q)

In addition to the function space L2, we will have to consider

Lr = Lr(φ*(q)dq).

Since / φκ(q) dq == 1, we have Lr& C Z r̂i if rx ^ r2 .
Lemma 6.1. exp( — tH0γκ) is a contraction operator onLr, 1 ̂  r ̂  oo.

TΓΛew T ^ t} I <p and r < oo it is a contraction from L^ to Lr, for some
T not depending on γ or κ. If p is bounded away from one and r is bounded
then T does not depend on p or r.

Proof. If y ζ LM, then by a change of variables,

\(e-'H*V)(q)\

(-g;2) dqk = ML ,

and so exp (— tHoy9() is a contraction onJv^. Since Hoγκ ^ 0, exp (— tHoγκ)
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is a contraction on L2 and thus on Lr, 2 ̂  r ^ oo, by the Riesz Thorin
convexity theorem [8], Let ||exp(— i-ffoyxJIair — G^γ be the norm of
exp(— tHovκ) as an operator from L9 to Lr. The cited theorem states
that log Cyγ is a convex function of p*1 and r-1 in the square

0 ̂  p-1, r-1 ̂  1 .

Now exp(— tHoγκ) is symmetric in the L^ inner product, since
?*(?» it) = exp.[- &(e-*'gi* - 2foί£ + e-"*gD] with

Thus by duality, exp(— tH0γκ) is a contraction from .Lr to .Lr, 1 < r ̂  2.
It is a contraction on L± by taking limits as r -> 1.

Let

^ω^/^fe^D^lto)^.
Then

by the Schwartz inequality, so ||αfe)||r bounds the norm of exp(— tHμ)
as an operator from L% to Lr. For r — 1 < e2μt, ||«(^)||r is finite and has
a bound independent of μ ;> μ0 and £ ;> I7, for some T, as computed in
[10]. Let Jtiffc be the orthogonal compliment of 1 in J4?k. Since the norm
of ex.p(—tHμ), as an operator from 3?'^ to 3?'^ tends to zero as £-> oo,
the norm of

also tends to zero as £-> oo, uniformly in &. Let ^/ ζ^jζ and let
φ = 1 + y'. Then

(exp(-ί^) ψ)* = 1 + 2 exp (-*#„) y' + (exp(-ί^) y')2

= [1 + c] + [2 exp (- ί ffμ) y' + (exp (- tHμ) ψ')* - c] .
We choose

c = (1, (exp (-«#„) v')2) = llβxpί-ίH,,) V'lll

and then the terms in the brackets above are orthogonal. Thus

lexpί-ίJEy Ψ\\i = I(eXp(-ί

^ (1 + c) +

^ (1 + β)» + 8c + 2

= (1 + c)a + 8c + 2 |
For large t,

||exp(-ί£g V]i ^1 + 2 \\ψ'\\* + \\ψ'\\l = Wf -
and so exp(— tHμ) and exp (— ί HQγκ) are contractions from Z/2 to
The lower bound T on £ does not depend on κ or y.

We apply the E/iesz Thorin convexity theorem to the maps

exp (-
2*
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and conclude that for large t

exp(—tHoγκ):Lr -> L2r

is a contraction, r ̂  2, We take products of several of these maps and
conclude that exp (— tH0γκ) is a contraction from L% to Lτ for any
r < oo, if t is large. By duality it is a contraction from L9 to L2 and hence
from Lp to JDr for any p, r £ (1, oo), and the lower bound on t is inde-
pendent of γ, κ, p and r if 39 is bounded away from 1 and r is bounded.

Now we show that the interaction term \φvκ(lι): is a polynomial in
the q' s.

Let

&χ(α) = 71/2 Σ

Since

(α>, (4) + α*(- 4)) // (i)-ι/« = 2V2 g0 if 4 = 0

if

φγκ(x) and also ^Jyί^) arθ polynomials in the #'s. We use the formula

to conclude by induction on 2> that :0^κ(α;): is also a polynomial in the
q's. In (5.8) the coefficient

-,

is just the number of ways of selecting j unordered pairs from p objects
and cκ is defined by the formula

c* = γ Σ M*)-1;
&erκ

we have the bound
cκ ^ KJnκ (5.9)

where K± is independent of y and κ. Thus

:^?x(A):= Y : φ P κ ( x ) : h ( x ) d x
—n\γ

is a polynomial in the q' s, as desired.
Let

P(x) = bQ+blx+" + bdx
d

be the polynomial in (1.2) and let

VγH = Σ *>*•<%*(*)• (5 10)

denote our approximate interaction term, as in (4.6).
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Lemma 5.2. For some constant K2, independent of γ and κ, we have

-(lnκ)WK2^ Vγκ. (5.11)

Proof. We use (5.8) to remove the Wick ordering in (5.10) and obtain

where aυ is a polynomial in cκ of degree at most [(d — 2?)/2], The coef-
ficients of a^ depend only on the coefficients of P, and so we have an
estimate

\ap(cκ)\ rg K'cW-vW .

Since ad = bd > 0 and since d is even by hypothesis, it follows that

0 < Σ av(c*)χp for K"(c« + !) < M2 and

for all x. We bound cκ by (5.9) and the proof is complete.
Lemma 5.3. Vγκ ζLr for all r < oo and if λ ^ κ

l |Fy κ-Fy A | |I^(ί/)LZEjλ-Λ (5.12)

where K% is a constant which is independent of γ, λ and κ.
Proof. We use the particle representation, ί^

r

yx, in place of the
representation J4?γκ = L2(φ%dq). Now 1 ζ_^fγκ corresponds to the
vacuum state

so

\\Vr,-Vγ^f(VyK-Vn^φldq

= (( Vvκ - VYtfΩ, ( Vvx - VyύΏ) (5.13)

= \\Vvx-VvλγΩ\\*.

We set λ = 0 above and get

and so Vyκ ζ Lr for all r < oo. We return to (5.13) and note that Vγκ — Vγλ

is a sum of d2d terms of the form

A = b, γ»t* Σ\KV(Σ *<) : Π(af ( ± fc€€ , (5.14)

where in the summation over kt we have

hi ζ.Γ* f or I ^ i ^ p,p ̂  d, and A^ $ Γλ

for at least one i. Summing again over the same range of ki9 we have

(5.15)γpΣ
*i

and K± is independent of A, κ and y.
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Let γ be a state with at most I particles. It follows from (5.15) and
the form of A that

and furthermore A ψ is a state with at most I + p particles. Thus if we
have operators Aly . . ., A} of the form (5.14),

Hence
|](Fyκ - Fyλ)>βp ̂  (dfli (d2^π,y λ-ι = (dj)\κ{ A-* ,

and the proof is complete.

§ 6. Path space

Let 0 be the space of continuous paths q = q(s),

q(s)ζβκ,Q^s< oo.

There is a measure on C intrinsically associated with the semigroup
exp(— tH0γκ). To define this measure we set

A(lic, <ώ $(?») dqί = Prfe(ί) = jj | fo(0) = ?fc} , (6.1)

the probability that qk (t) = g^ if it is known that qk (0) = qk fy is
defined by (5.5) we have added a subscript k to indicate the dependence
on μ = μ(&). Let

qί). (6.2)

The σ field of measurable subsets of C is generated by the sets

q(si)ζBi,l^i^j, (6.3)

where Bt is a Borel subset of Bx. The measure of (6.3) is

(6.4)
JSj x X Bj i = 2

if ^ = 0 < 52 < . . . < Sj. The definition (6.4) is forced by the definition
(6.1) together with the Markov character of the process, the stipulation
that each coordinate qk of q defines an independent process and the
specification of φ%(q)dq as the probability distribution of the initial
point q(Q) of the path q.

If F1? . . . , F, £ Lj(Rκ, φldQ) then we compute

< (6.5)
• [exp((θ0 - βj H0γκ) F2 exp((^ - βa) FO^)

• (. . . (F,_α exp^,^ - *,) HQγJ F,) . . .)
and

f ΠV&WdQ £Π\Vt\, (6.6)
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using (6.4) and the fact that exp(— tHoγκ) is a contraction on Lr.
Furthermore (6.5) and (6.6) remain valid when some of the times si

coincide.
Lemma 6.1. Let V be a polynomial function on Eκ. Then

t
I ^((?(θ)) ds ζ LV(C9 dQ) for all p < oo and
o

l / V ( q ( S ) - ) d s ^t\\Vl
o /

for j an even positive integer.
Proof. For a given path q,

t

o n i
and since each Biemann approximating sum to / is a measurable func-
tion of q, I = I(q) is measurable also. Let In(q) be the nth Riemann
approximating sum to /. Then

\f inWdQi^v \\v\\i
by (6.6) and

I/I ^ ooΏSt.t(Mt(q)γ

where d is the degree of V and

MM = Max \q(β)\ .

Thus the lemma will follow from the Lebesgue bounded convergence
theorem once we show that M £ LP(C, dQ) for all p < oo.

However the dQ probability of the set

dominates the Wiener probability of the same set if |#fc(0)| 5£ a. It
follows that the L9 norm of M t is dominated by the Wiener Lp norm
of M t. This latter norm is finite by known properties of Wiener measure,
[4, p. 25, 26].

Lemma 6.2. Let rζ [1,2). There is a T independent of γ and κ such
that ift^T and if φ and ψ £ L^(φ^dq) then φ(g(Q)) ψ(q(t)) ζ Lr(C, dQ)
and

The T can be chosen independently of r 'provided r is bounded away from 2.
Proof.

where p is the conjugate index to 2/r (r/2) + p-1 — 1 . However
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and
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||exp(-ί#oyκ) \v\% < 1 \ψ\'\\2/r = I

for large ί, by Lemma 5.1.

§ 7. The Γeynman Kac formula

The Feynman Kac formula states that

(φ, exp(-tHγκ)yί) = / φ(q(Q))~ exp - / Vγκ(q(s)) ds\ ψ(q(fydQ .
\ o /

(7.1)
The right member of (7.1) is bounded by

/ t \«(«(«).rψ(3m-'
= II 011 a II VII a ( t \

-J y*(Q(s)) SJ

P

P

for p > 2 and for t large, by Lemma 6.2. Thus

/ «
tHγκ)\\ ^ exp - / Vγ,t

and

-t-

Let

exp -

Then

^ Iλ

(7.2)

by Lemma 5.2. Let 7Γ5, . . . denote positive constants depending only on
t and the polynomial P and let Pr denote the measure defined by dQ.
Then

1} ̂  Pr {|/κ - JA| ̂  1}Pr {I. <S

(by Lemma 6.1)

(by Lemma 5.3)

by Stirling's formula. We choose j so that

j ^ d-1 K-W λl/d < j + 1
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Then

is a bound for (7.3) and so

Pr {Iκ =g - X - 1} ̂  exp (-
Thus

/ |e-J*|* dρ = / e-*>J* dQ ^ e-2*>

is bounded independently of γ and κ and combining this with (7.2) we
have Hγ>( bounded below by a constant which is independent of κ and γ
according to § 4, this proves Theorem A.

The formula (7.1) can be proved by standard methods. See for
example [6, p. 168—171], where a similar formula is derived.
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