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Abstract. We deduce an integral equation for the infinite volume correlation
functions of a class of lattice systems and we apply it to find results on the analyti-
city in the interaction potentials of the pressure and of the correlation functions
and on the ergodicity of the equilibrium states in the gaseous phase. By similar
methods we prove some cluster properties for the correlation functions in the
gaseous phase.

§ 1. Introduction and Notations

In this paper we study the infinite volume correlation functions of
a class of classical systems of particles on a ^-dimensional lattice Zv', and,
at high temperature and small activity (gaseous phase), we prove their
existence, their analiticity in the interaction potentials and find a cluster
property for them, generalizing to the case of many body potentials the
results and the technics of references [1, 2, 4] in the case of two body
interactions (for further results in the two body case, see [3—6]). We also
study the relation of our results with the work of RUELLE [7] about the
ergodicity of the equilibrium states establishing that at any tem-
perature and sufficiently small activity the equilibrium state is effectively
a pure phase.

We assume that at each lattice point there can be either 0 or 1 par-
ticle and suppose that the particles interact through symmetric, trans-
lationally invariant, many body potentials φ(7c) (xv . . ., xk), where
Φ<fc) (xv . . ., xk), k = 1, 2, . . . is a function defined only for different
arguments. We shall regard these potentials as a function on the finite
substets of Zv defined as Φ(X) = Φ( fc) (xl9 . . ., xk) if X = {xv . ., xk} is
a finite subset (configuration) of Zv. We put Φ(0) = 0.

The potential energy of a finite configuration X will then be given by

UΦ{X)= Σ Φ(s) - ί1)
sex

We shall consider only potentials Φ such that:

| | φ | | = Σ \Φ(8)\ < + oo, (2)
oes
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where 0 is the origin of the lattice; we remark that the norm defined
by (2) is different (in fact larger) than the norm introduced in [8].

It follows easily that, if N(X) denotes the number of points of X, we
have the following stability relation:

|17Φ(X)| ^ JV(X)||Φ|| . (3)

The set 38 of interactions Φ satisfying (2) is a real Banach space in the
norm defined by (2). It will be useful to consider also the complex Banach
space £3° of the complex potentials Φ satisfying (2).

We call 38' the subspace of 3$c defined as

38' = {Φ ζ SS : Φ*1) = 0} , (4)

and if Φ £ @c we can write Φ == (φί1), Φ') with φθ) ζ 0 and Φ' £ 3Bι\ We
observe that — Φ<χ) has the interpretation of chemical potential and, if
β=(k T)-1, z = e~βφ{1) is the activity. We also remark that if Φ' ζ ^ ' then

In what follows we shall put, for convenience, β = 1.
The grand partition function for our system, when it is enclosed in

a finite region ΛcZv a n d its particles interact through a potential
φ = (φ(i), φ') ζ ^ , is:

ZΛ(Φ)= Σ e-uφW , (6)
YCΛ

and the finite volume correlation functions relative to A are defined, in
the case ZΛ(Φ) =f= 0 (in particular if Φ is real), as

ρΦΛ(X) = Z^Φ)-1 Σ e-uΦ<γ) if
YDX YCΛ (7)

ρΦΛ(X) = 0 if XdΛ.

It is also useful to introduce the "averaged" finite volume correlation

functions:

QΦΛ(X) = Σ N{Λ)~ι ρΦΛ(X + a) . (8)
a£Zv

We shall say that A -> σo if A is a cube centered at the origin and the
sides of/I tend to oo.

§ 2. Definitions and Inequalities

In this section we give some definitions and prove two auxiliary
propositions of technical character which will be useful in the sequel.

In what follows we make the convention that a sum running over
a void set of indices is zero.

Given a finite set I ( Z V , we call X^ the set obtained by substraction
from X of one of its points xlt for instance its first point in the lexico-
graphic order.
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I f I n Γ - 0 w e define V Φ ( J C

(9)

IΦ(X,Y)= Σ Φ(TVJS)= Σ WΦ(X,8), (11)
OΦSCY

κφ(X,τ)= Σ Σ Π (e-^<^^)- i ) , (12)
M ^ l {S1...SH}? = 1

L7i8i= T

the last summation runs over all n IΞ> 1 and over all the subsets (con-
taining n elements) {81 . . . 8n} of the set of non empty subsets of T and
such that Ujβi = T. In what folloΛvs we shall always give this sense to
the symbol Σ Σ

{
UiSiT

We remark that Iφ and Kφ are independent of ΦW, i.e. Iφ— Iφ>
and Kφ = Kφ'. We have

(13)

(14)

2 ; |TFφ(X; Γ)| < flΦ'H at Z fixed , (15)

e -/ φ (X, F) = (l± Σ KΦ{X, T)\ . (16)
\ 2'C7 /

We now prove
Proposition 1. Let Φ £ ^ ; then for any X fixed ive have

Σ \KΦ(X,T)\ iZ expψW - 1) - 1 . (17)

In fact, since \WΦ(X, 8)\ ^ | |Φ'| | (see (15)) we have

then we can write the following chain of inequalities which proves (17):
let X be a fixed set:

V1 \JΓ (Ύ rP\\ <r V1 V1 V ΓJ \o — WrtiX.Sj) l I
2J \KΦ(Λ, IJl'S* ZJ λi 2J 11 \e Φy - J/ ~ i\

~ UiSi'=nT

= 0 « S 1 {S....S,,} x ""• « ' ; =

T i β — i\ jj
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and using (15):

si Σ h (*'φ'f - !)" = e χ P

Now let λ, δ, δf > 0, δf > δ and let Sρ (x) be the cube of side ρ centered
at x £ Z\ Define

Λ w = sup Σ \KΦ{X,T)\(χλ+δ,{T)

(19)

where χρ(T) = 1 it f c ^ ( 0 ) and ̂ (T) = 0 otherwise. Then
Proposition 2. Tfte following limit exists:

a n d holds uniformly i n λ a n d O ^ δ ' — δ ^ - ^ o
In fact:

Kr.x^ SUP Σ \KΦ(X,T
IC-S'A(O) T Γ Λ I - O

and using (12) and (18) we get

JWA =£ sup Σ Σ Σ Π

£ sup Σ Σ Σ ••• Σ
Λ

s u p

WΦ&SJI Σ-

(exp (eii*-!: - 1)) •

where

= Σ

and ; since | |Φ'| | < + oo, we have lim ]]Φ;|lό = 0, which gives the
δ—>oo

desired result.

§ 3. The Equations for the Correlation Functions

From (9), (11) and (1) it follows that if X n 7 = 0

UΦ(X w 7) - U&iX) + Uφ(X0) \j Y) + IΦ(X, Y) , (20)

hence using (17) and (16) we find, at XcΛ fixed, and supposing
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Σ e-
YCΛ

) h + 2J KΦ{X, T)
\ TCYr

YCΛ

ρφΛ(X)+ £ KΦ(X, R) (21)

Now we introduce the space $ of complex functions ψ on the non empty
finite subsets of Zv such that

\ψ\ - s u p \φ{X)\ < + oo, (22)
x

in this norm $ becomes a complex Banach space. Since, for A finite,
QΦΛ (X), if defined, is different from zero only on a finite number of sets X
we can regard the function X -»• ρΦΛ (X) as a vector ρΦΛ ζ $ for all
Φ ( f c such that Z Λ ( Φ ) + °

Let us define on $ the operator JΓΦ as follows: let ψ £ if
Z 7 S ) ( f l ί ) 2; Kφ(X,8)(φ(S)-φ(Xv8))

r\x = 0
if

( 2 3 )

• (<p(XV> \JS)~ φ(X \J 8)) if N(X) > 1
then:

Proposition 3. V Φ ( ^ c , (23) defines a continuous operator on i.
In fact from (13), (17) and (22) we find, if z = e~ΦW:

\tfφ\ < 2\z\ expίe^i ί- 1). (24)

Let us define the operator χΛ on $ as

(XΛψ)(X)-χΛ(X)ψ(X) ψζ<?, (25)
where χΛ {X) = 0 if X d A and χΛ(X) = 1 if XcA. We denote with α
the vector α £ ̂  defined as

α ( Z ) = l if i\Γ(Z)= l , α ( Z ) = 0 if ^ ( Z ) > 1 (26)

then the following theorem holds.
Theorem 1. Let Φ £ &c, and let A be a finite region:
i) If ZΛ(Φ) =f= 0 the correlation functions ρΦΛ verify the following

equation

QΦΛ = 2 XΛ<Z

iίj // liJΓφll < 1 lί e Λα̂ e Z^(Φ) #= 0

ρ^^^ίl-Z^Φ^^α, ( 2 8)

\QΦΛ\< N ί l - l^φl l)- 1 . (29)
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Hi) If \\3fφ\\ < 1 then the equation

ρφ = zα + JfφQφ (30)

has a unique solution ρφ £ £*, this solution is translationally invariant and

lim ρΦΛ(X) = ρφ(X) V I C ^ (31)
Λ-+ oo

iv) If \\JtΓφ\\ < 1 then we have also ρΦΛ ξ $ and

\QΦΛ\ < \z\ (1 - llJfφI)-1. VΛcZ' (32)

lim ρφ/1(X) = ρ φ (X). (33)
l

Remark. We observe that Eq. (27) do not reduce to the well known
Kirkwood-Salzburg equations [1, 10] even in the case when only two-
body interactions are present.

Part i) follows from (21), (23), (25), (26). To prove that ZΛ(Φ) =j= 0
if ||Jfφ|| < 1 suppose ZΛ(Φ) = 0, then if we consider the functions

Σ e-uφWY) if XCΛΣ

RΛΦ(X) = 0 if XdΛ,

we find easily that the functions RΛΦ ξ $ defined by X -> RΛφ{X) verify
the following equation:

^ΛΦ = XΛ 3f ΦRΛ Φ >

and since \XΦ\ < 1 this implies RΛΦ = 0, but RΛΦ{Λ) = e ' ^ φ O ;
the other statements of part (ii) follows directly from (i). The first
statement of ϋi) is clear; to prove (31) we use proposition 2 (formula (19))
and apply the same argument as ref. [1] (theorem 1, proof). The first
statement of iv) follows from (29) and the definition (8) of Qφ^\ to prove
(33) we note that because of the uniformity of (19) we may take λ to be
a function λ(δ) of δ and from the argument used in ref. [1] to prove (31)
it follows that

\ρΦΛ(X) - ρΦ(X)\ < ε V I C ^ W ( 0 ) (34)

if A = Sλ(β) + δ(0) and δ is sufficiently great. Now let Λ -» oo and choose
Λ,(<5) == (52, then the volume of Sλ(δ) + δ(0) is asymptotically equal, as
A -> oo, to the volume of Sλ(δ)(0). These facts imply that, fixed X, except
for a surface effect in α, ρΦΛ{X + a) wu*l be equal within ε to ρφ{X -f- a)
= QΦ(X), while the importance of the surface effect in the expression of
ρΦΛ will result, as a consequence of (29), in a term of the order of

)) - V(Sm (0))/V(Sm (
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§ 4. Continuity and Analiticity Properties

In this section we derive some auxiliary results on the analiticity of
the dependence of the operator J f φ on Φ. We shall use these results in
the next section to derive the promised analiticity properties of pressure
and correlation functions.

Proposition 4. Let Φ, Ψ ζ&G; then there exists a continuous function
defined on all the two-dimensional plane (x, y) -> / (x, y) such that

In fact from (23) we see that ctiΓφ can be naturally decomposed in the

product of a multiplication operator by e~u

Φ(χϊ and an operator JΓΦ.

The multiplication operator is norm continuous in Φ because of

sup
x

1) ^

(36)

To show the continuity of JΓΦ in Φ we have thus only to show the

continuity of yfφ: we have

1 J?Φ - iV|| ^ sup 2
x s

^ 2 sup Σ
X SnX^0

Σ Σ

KΦ(X, S) - KΨ(X, S)\

Wφlχ-W - 1) ~

Now we use the fact t h a t if f(z1,...,zn) is an entire function of
zv . . ., zn ζ Cn we have

(gradj) (^ - Z o <
(37)

where the gradient is evaluated at a suitable point of the segment joining
(z1? . . ., zn) to (z01, . . ., zOn) i.e. at a point of the form

{μzΎ + (1 - α) zoi, . . ., oczn + (1 - α) zm) 0 ^ α ^ 1

applying (37) we get:

2 sup y y Π {e~aWΦ{ )~ 1)

where we have not explicitly written in the α's the variables on which
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they depend; using (18) the chain of inequalities continues as

g 2 sup £ β j ; s Σs} t f [(^WίTm X""1

? Φ Ίi

now proceeding as in the proof of proposition 1 we find that this last
quantity is majorized by

2eiiφΊI + ii*"ii exp(eϋφ'il+ 11^11- 1) \\Ψ - Φ\\ , (38)

combining this result with (36) and (24) we get the result (35).
Now we investigate the analiticity of <3fφ + zψ in the complex

variable λ. Let us define the kernel ~ ^ ~ {X, T) as :

= ~ Σ Σ
>!...£„} 7; = 1 ? φfc

Ψ(X, Sk)
(40)

and the operator —^ψ~ on ^ as:

) (X) = - P(« (Z)

(41)

then the following proposition holds:
Proposition 5. Let Φ, Ψ ζ @tc:

i) jΓΛe operator ~ψ is a continuous operator on $ and there exists

a real continuous function g: (x, y) -> g (x, y) defined on all the plane and
such that

(42)
dΨ

ϋ) There exists a continuous function I: (a;, y) -> I (x, y) defined on all
the plane and such that

(43)
dΨ

hence, in particular, Jfφ + Ψ is entire analytic in Ψ in the sense that

^s en^re norm analytic in λl9 . . ., λn [9].
j

The proof is obtained with the same technics as for propositions 1
and 4.
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§ 5. Pure Phases and Meyer's Expansion

In order to prove the ergodicity of the equilibrium states when
|1 JΓΦ|| < 1 we report the following theorem:

Theorem 2. Let Φ, ψ ζ_ 0&.
i) The limit

lim N(Λ)-1 lg ZΛ(Φ) = P(Φ) , (44)
Λ—>oo

exists and defines a continuous convex function on &.
ii) Let us define ocΦΛ ζ£%* as:

*ΦΛ(Ψ) = Σ Ψ(X) QΦΛ(X) N(X)~I Ψ£@, (45)

then if lim ocΛΦ(Ψ) exists for any Ψ it defines a tangent plane to the graph
Λ—>oo

of P(ή at Φ i.e. a linear functional ocφ ζ ̂ * such that

P(Φ +Ψ)> P(Φ) - ocΦ(Ψ) . (46)

dP(Φ + λΨ)
if- dλ

exists for fixed Φ and Ψ, then for such Φ and Ψ

the limit lim ocΦΛ(Ψ) exists and
Λ—>co

v /IΓA dP(Φ + λΨ) ,,„,
lim ccΦΛ(Ψ)=— i— '- (47)

/l->oo «Λ Λ = 0

iv) L̂ necessary and sufficient condition for the existence of a unique
tangent plane to the graph of P(-) at Φ is the existence for all Ψ of
dP(Φ + λΨ)

dλ

This theorem can be proved as in ref. [8] (theorem 2 and remark):
we have only to verify that the proof of the similar results of ref. [8] can be
carried out, without any change, with the norm for the potentials
introduced in (2).

Now we can state the following theorem:
Theorem 3. Let Φ ζ &G, \JΓΦ\\ < 1 if HΦC^C denotes the largest open

sphere, with radius rφ, around the origin such that Ψ ζ Hφ implies
\\JΓΦ+Ψ\\ < 1, and if α φ £ ̂ c * is defined as

ocΦ(Ψ)= Σ Ψ(X)QΦ(X)N(X)-I Ψί^c, (48)
oex

then
i) the vectors ρφ+Ψ defined in (30) are norm analytic ivith respect to

ii) Let Φ £ 88 and, Ψ ζϋ" φ , then if ive define ocΦΛ(Ψ) as in (45) and
PΛC)as:

PΛ(Φ +Ψ) = N(Λ)'1 lgZΛ(Φ) - f *Φ+λΨ,Λ(Ψ) dλ , (49)
0

the following limit
lim PΛ (Φ + Ψ ) = P ( Φ + Ϊ/) (50)

Λ
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exists, defines an analytic function of Ψ ζ Hφ, and if Ψ ζ £% r\ Hφ coin-
cides with the thermodynamic pressure defined by (44).

iϋ) // Φ ζ 3$, e > 0, || Ψ\\ ^ rφ — ε then the following formulae hold:

λ, (51)
0

\P(Φ -f Ψ)\ < f(Φ, ε) < -f oo (52)

tvhere

) = P(Φ)+(rφ-ε) sup

n
iv) // ive define, for Φ ζ ̂  and Ψv . . ., ψk ζ J*c:

A<p ( r l 5 . . ., Ψk) — — -~- ~— J (53)

ίΛβ?̂  ̂ 4φ̂ ( ) is a k-linear symmetric continuous form on £$c and

\Δ(k) (ψ ψ \\ < ^ * / ( ^ ε) \\ψ II || m- ji /^\
I ^ Φ \-^i> J *k)\ = / __ ^ II^ri| | liifcll . ^04tj

v) // we put <xf$(Ψ) = A%]{W, . . ., Ψ), the following "Meyer" ex-
pansion holds for ψ £ Hφ:

P(Φ + Ψ) = P(Φ) - Σ ^τp~
& - 1

e series is absolutely convergent.
vi) If Φ £3? ive have

aφ(Ψ) = ^(Ψ)f (56)

e restriction to 0& of otφ ζ ^ c * defines a tangent plane to the graph
of P(') at Φ and this plane is the unique tangent plane at Φ. Then the
equilibrium state at the potential Φ is a pure thermodynamic phase
(ergodic state) [7].

Part i) follows from the formula (remember that z = e~φ ( 1 )):

ρΦ+Ψ = e-φ{)~m) (1 - Cfφ+ψ)-1 α ,

valid when ||Jfφ+^|| < 1 and from the norm analiticity of J^φ+ψ in Ψ
(see Proposition 5).

To prove part ii) we observe that, as a consequence of (32), (33)
we have

lim aΦΔ(Ψ) = ocφ(Ψ) yψe^c,
Λ—> oo

furthermore as a consequence of i) ocφ+λΨ(Ψ) is continuous and as
a consequence of (32)

Ψ,Λ (Ψ)\ £ I e-* ( 1 )-*H (1 - I l l l
- \\jrφ+λΨ\\)-η\Ψi,
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then applying (44) and the dominated convergence theorem we get (50)
and (51). From i) it follows that ocφ+λΨ(Ψ) is analytic in Ψ ξ Hφ and
uniformly bounded when Ψ varies in any closed sphere contained in
Hφ and 0 ^ λ ^ 1, this implies the analiticity of P(Φ + Ψ) in ΨζHφ.

The unproved part of in) follows from (51) and (57). Part iv) can be
proven as follows: let zv . . ., zk £ G and

then Σzi^% £ Hφ a n c^ w e c a n write

Ai . . . Λ%

where the integrals are over circles of the /iΓplanes of radii

and center at zero. Now (54) and the symmetry property follow from
this integral expression and from (52). The linearity property follows

around zero andfrom the analiticity in zv . . ., zh of PI Φ
\

from the formula (obtained from (51)):

Ziψ.
(Ψk), (60)

which shows that - is linear in Ψh. If we set in

this last formula z1 = z2— •" = zk-1 = 0we prove (56) the remaining part
of iv) follows from part iv) of theorem 2 and from the fact that, knowing
that at Φ there is a unique tangent plane to the graph of P( ), we can
apply the results of ref. [7] (theorem 4, part iii)) to guarantee that at
Φ, the equilibrium state of the system is a pure thermodynamic phase:
we have only to remark that the potentials of £3 satisfy also condition
(1.2) of the paper referred to.

Remark. We obtain a physical interpretation of the results of theo-
rem 3 reintroducing the inverse temperature β and observing from (24)
that, for fixed β, if the activity z is small, we have ||Jf^φ|| < 1.



Correlation Functions 285

§ 6. Cluster Properties of Correlation Functions

Suppose that the graph of P( ) has a unique tangent plane corre-
sponding to Φ ζ &, then the infinite volume correlation functions ρφ are
uniquely determined and define a tangent functional to the graph of P ( ).

We can then define the cluster (truncated) functions ρ% by means of
the relations (where 7 (X) = 0 if X φ 0, 7 (0) = 1):

eϊ(0) ^ o

7(X)+ Σ Σ ΠQZ{X{) (61)

(for the meaning of the summation symbols see section 2).
In this section we shall prove that at fixed temperature and suffi-

ciently small activity the following cluster property holds:

Σ |ρ$(*)|< + °°. (62)
N(X) fixed

This result will be a consequence of theorem 4 which will be proved with
the same technics as in reference [4]. In order to formulate this theorem
we consider the finite configurations X which we allow to possess multi-
plicities. If X is such a configuration we denote X the set of points
occupied by the particles of X: hence a configuration X is determined
by giving X and the multiplicity of every point of X. We denote N(X)
the number of particles of the configuration X. The reason for the intro-
duction of these "unphysical" configurations will become clear when we
shall introduce the operator Dx.

Let K be the space of all the configurations just defined, and let 3F
be the space of complex functions / on K such that for each n

sup

Now we define some operations on or between elements of SF. Let

ψi> Ψ2 ζ ^> w e define the product ψx φ2 £ J^ as

= Σ
FCX

where X/Y is the configuration obtained from X by substracting the
points of Y (taking multiplicity into account).

Let φ ζ J% where J% = {φ £ &: φφ) = 0}, then we define the ex-
ponential Γφ of φ as a mapping between J% and !FX where J ^
= {φ e^ : φ{0) = 1} defined, putting φ<>(X) - 1{X)y as:

^ψ Σ Σ
{
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It is easily verified that this mapping is defined on all of JF0 and is
one-to-one and onto J ^ .

Now we define a scalar product between elements of IF and certain
functions χΛ defined for regions Λ C %v (not necessarily finite) a s ^ (X) = 1
ίίXcΛ and χΛ(X) = 0 if X dΛ : l e t ^ = {φ ζ J*~: Σ \ψ(x)\ < + °°}>

XCΛ

then if φ £ ̂  we define:

<u> ψ> = £ <? W = Σ XΛ(X) φ{X) • (66)
XCΛ X

If ^91? φ2 d^Λ then ^ φ2 ^2Λ and

<Z^' 9̂ i ' <?2> == < ^ » 9 î> (XΛ> Ψ2> -

Finally Λve define a mapping Dx 3F -> J^ as:

r) (68)

where X w Y denotes, here as well as in the remaining of this section,
the configuration obtained from Y by adjoining to it the configuration X
taking into account the multiplicities.

We find the following relations

Dχ(φ1'ψ2)= φ1'Dzφ2+ φ2'DxΨl if N(X)=l, (69)

if N(X)=1, V ^ ^ o , (70)

DχΓψ=l Σ Σ Π(DZiφ)\ Γφ if XΦ0,
{ J J } i l

Now to formulate the main theorem of this section we need only the
expression of the cluster functions relative to finite regions Λ. Let Φ ζ £$
be such that the graph of P( ) admits a unique tangent plane at Φ. Then
let ρφ be the correlation functions, since 0 ^ ρφ(X) ^ 1 and ρ$(0) = 1,
we can regard ρφ as an element of ,F1 if we put ρφ(X) = 0 when X 4= X.
We define the truncated functions as an element of J^o through the
relation:

QΦ = ΓQ% . (72)

Similar definitions are set for the finite volume correlation functions
ρΦΛ (in particular ρΦΛ = Γρ%Λ).

Now let ψφ ζ J^2 be defined as:

<pφ(X) = e-uφW if X = X and ^ ( I ) - 0 i f I φ l . (73)

It is easy to verify that, if ψJ1 Dxφφ ζ_^Λ, then:

/ - i

If we define ψφζ^Ό such that φφ= Γψ% and if we suppose that
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V X, N(X) ^ 1 we find, using (71), (74)

ρΦΛ (X) = 1 (X) + Σ Σ <XΛ, DXi φl) , (75)

which shows (always if ψφ1 D x <pφ ^3fA and D z <p| ζ ^ y l V X, N(X) ̂  1)

QTΦΛ(X) = (%Λ, DXΨΪ) if N(X)^l. (76)

Now the following theorem holds:g
Theorem 4. If Φ ζ ̂  αn^ c(Φ) = 2s ellφ'ϋ exp(βliφ'ϋ - 1) < 1 toe have

1 DχψΦ(Y)\ ^ z 0(0)™+"-* if i V ( Z ) - n ^ 1. (77)
Y;N(Y) =

ϋ) Dxφ%

in) ρφ, tvhich is uniquely defined as a consequence of (24) α?wZ theorem 1,
is given by the expresssion:

6% (X) = <**», ί>x 9>ϊ> V X, tf (Z) s 1 . (78)

iv) The following cluster property is valid:

Remark. (79) is stronger than the promised (62) since in (79) we con-
sider also configurations with multiplicity.

To prove this theorem we remark that iii) follows from ii) and i),
and ii) will be proved if we prove it for N(X) = 1 and in this case ii)
follows from (70) and i). Hence we have only to prove i) and iv). Let us
prove i): taking into account the explicit form (73) of φΦ and using the
same technics as in the preceding sections we can prove the following
equations which we write using the notations of sections 1,2: if N (X)
^l,N(7)^0 and, if we put AX(Y) = (ψφ1- Dxψφ) (Γ), Yx = Γ/{a?J,
ΘXl{Y) - 1 if x1 ζ 7 and ΘXι(Y) = 0 if x± $ Y, we get

ΔX(Y) = β - ^ m ΐAzw(Y) - ΘXl(Y) ΔxiYJ

+ Σ κφ{x9τ)(ΔXWΌT(Yiτ)-AXKJT(Y1ιτ)θXι(Y)y\ ( 8 0 )

Tcr
TΓΛX = 0 J

where ZΦ(X3 T) and e - ^ W are to be taken equal to zero if T φ T
or X Φ X.

NOΛV Λve define

/«.= sup i ; \ Δ X ( Y ) \ . (81)
() ()

xY(X) ^ 1, Λτ (Y) ^ 0 JV (X), N (Γ) fixed
X - X
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We find using (17), (79) and the fact that A&(Y) = 1 (Y):

Im < z ellφΊl [ 2 Im_χ + (θxp(β"*ΊI - 1) _ 1) 2 / , ^ ] m 2> 2 (82)

which, taking into account that I1 =-- z gives

Im < zc{Φ)™-1 .

To prove iv) we proceed as follows:

Σ le$(*)l = Σ \Σ Σ
OCX T w^O

^ Σ Σ

^ i: Σ

where we have used the formula D^ψ% = ^ φ 1 D^ ψφ and (77).
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