Commun. math. Phys. 7, 222-224 (1968)

Sequential Convergence in the Dual of a *W**-Algebra

CHARLES A. AKEMANN

Dept. of Mathematics, Univ. of Pennsylvania

Received November 19, 1967

Abstract. The present paper is the result of the author's attempt to extend Theorem 9 of [5] to the case of a non-abelian W^* -algebra. In [5] GROTHENDIECK proves that weak and weak* convergence are equivalent for sequences in the dual space of an abelian W^* -algebra. Theorem 4 of the present paper is only a partial result in that direction, but it is presented here because of its possible worth as a technical tool.

I. Preliminaries and Notation

Let A be a W*-algebra. By [8, p. 1.74] the second dual A^{**} of A is also a W*-algebra, and we shall consider the canonical imbedding of A into A^{**} as an identification. By [2, p. 126] there exists a central projection $z \in A^{**}$ which is the supremum of the set of minimal projections in A^{**} . Set z' = 1 - z; let $A_d^* = \{f \in A^* : f \mid z'A^{**} = 0\}$, and $A_c^* = \{f \in A^* : f \mid zA^{**} = 0\}$. Since z is central, $A^* = A_c^* \oplus A_d^*$, and both A_c^* and A_d^* are closed invariant subspaces [7, p. 439] of A^* . Thus by [7, p. 439] any positive $f \in A^*$ has a unique decomposition $f = f^d + f^c$ into positive functionals with $f^d \in A_d^*$ and $f^c \in A_c^*$.

Following EFFROS [4] we define an order ideal I in A^* to be a set of positive functionals in A^* with the property that if $f \in I$ and $0 \leq g \leq \lambda f$ for some $\lambda \geq 0$, then $g \in I$. If I is a norm-closed order ideal in A^* , we define the support of I to be the complement of the largest projection pin A^{**} such that f(p) = 0 for all $f \in I$ [cf. 4, p. 405].

For any $a \in A^{**}$, let a' = 1 - a. Recall that a pure state of A is a positive f in A^* such that if $0 \leq g \leq \lambda f$ for some $\lambda \geq 0$, then $g = \alpha f$ for some $\alpha \geq 0$.

II. The Main Results

The first result characterizes those projections in A^{**} which support a weak* closed order ideal in A^{*} . We need only a special case for Theorem 4.

Proposition 1. A projection p in A^{**} supports a weak* closed order ideal in A^* iff $p = \lim a_{\alpha}$ where $\{a_{\alpha}\}$ is a decreasing net of positive elements of A.

Proof. If I is a weak* closed order ideal with support p, it follows from [4, p. 408] that $p'A^{**}p'$ is the weak* closure of $A_{p'} = \{a \in A : p'ap' = a\}$ in A^{**} . By [3, p. 15] there is an approximate identity $\{b_{\alpha}\}$ in $A_{p'}$ with $b_{\alpha} \ge 0$ and $b_{\alpha} \uparrow$ for each α . Clearly $b_{\alpha} \uparrow p'$ in A^{**} , since multiplication is weak* continuous (in a single variable) in A^{**} [8, p. 1.12]. Setting $a_{\alpha} = 1 - b_{\alpha}$, we get $a_{\alpha} \downarrow p$.

Conversely, suppose $\{a_{\alpha}\} \subset A$ and $a_{\alpha} \downarrow p$. Define $I_{\alpha} = \{f \in A^* : f \ge 0, f(a'_{\alpha}) = 0\}$. Each I_{α} is a weak* closed order ideal, so $\cap I_{\alpha} = I$ is also. Let q be the support of I. Now if $f \ge 0$ in A^* , f(p') = 0 iff $f(a'_{\alpha}) = 0$ for all α iff $f \in I$ iff f(q') = 0. Thus p' = q', so p = q. Q.E.D.

Corollary 2. If p is a minimal projection in A^{**} , then there is a decreasing net $\{a_{\alpha}\}$ in A such that $a_{\alpha} \downarrow p$.

Proof. We need only show that p supports a weak* closed order ideal in A^* . If $I = \{f \in A^* : f \ge 0 \text{ and } f(p') = 0\}$, then p supports I. Let $f, g \in I, g \neq 0$. Then f(a) = f(pap) and g(a) = g(pap) for each $a \in A^{**}$. But since p is minimal, the W^* -algebra $pA^{**}p$ is one dimensional. Thus there is a scalar $\alpha \ge 0$ such that $f(pap) = \alpha g(pap)$ for all $a \in A^{**}$, and hence $f(a) = \alpha g(a)$ for all $a \in A^{**}$. This proves that $I = \{\alpha g : \alpha \ge 0\}$, so I is weak* closed. Q.E.D.

The next proposition has some independent interest as a technical result. In the case of abelian A, it follows from [5, p. 168]. It is only in this proposition that we use the W^* property of A. Otherwise A could be any C^* -algebra.

Proposition 3. Suppose $\{a_{\alpha}\}_{\alpha \in I} \subset A$ is an increasing net with $a_{\alpha} \uparrow a$ in A^{**} . Suppose $\{f_N\}$ is a sequence in A^* with $f_N \to f$ weak* for some $f \in A^*$. Then $f_N(a_{\alpha}) \xrightarrow{\alpha} f_N(a)$ uniformly in N (and hence $f_N(a) \xrightarrow{N \to \infty} f(a)$).

Proof. Suppose the proposition is false. Then there exists $\varepsilon > 0$ such that for all $\alpha_0 \in I$ there is $\alpha_1 \geq \alpha_0$ in I and N such that $|f_N(a_{\alpha_1}) - f_N(a_{\alpha_0})| \geq \varepsilon$. By induction we get $\{a_K\}$, an increasing sequence taken from $\{a_{\alpha}\}_{\alpha \in I}$, and a subsequence $\{f_{N_K}\}$ of $\{f_N\}$ such that for each K, $|f_{N_K}(a_{K+1} - a_K)| \geq \varepsilon$. Write $q_K = a_{K+1} - a_K$. By [1, p. 297], $\sum_{i=1}^{\infty} |f_{N_K}(q_i)|$ converges uniformly in K since $\sum_{i=1}^{\infty} q_i$ exists in A. But $|f_{N_K}(q_K)| = f_{N_K}(a_{K+1} - a_K)| \geq \varepsilon$, a contradiction. Q.E.D.

We can now prove the main result fairly easily. It extends the author's result [1, p. 298].

Theorem 4. If $\{f_N\}$ is a sequence of positive functionals in A^* with $f_N \xrightarrow[N \to \infty]{} f$ weak* for some $f \in A_d^*$, then $f_N \xrightarrow[N \to \infty]{} f$ uniformly.

Proof. Let q be the support of f. Fix $\varepsilon > 0$. By the definition of A_d^* , there exists a projection $p \leq q$ such that p is a finite sum of minimal projections and $|f(q) - f(p)| < \varepsilon/8$. If p_0 is any minimal projection, Corollary 2 and Proposition 3 imply that $f_N(p_0) \xrightarrow[N \to \infty]{} f(p_0)$ and

 $f_N(p'_0) \xrightarrow[N \to \infty]{} f(p'_0)$. Thus $f_N(p') \xrightarrow[N \to \infty]{} f(p')$ as well. Since q supports f, $f(p') < \epsilon/8$, so $f_N(p') < \epsilon/8$ for $N \ge N_0$ for some N_0 . Therefore, $|(f_N - f)(p')| < \epsilon/8$ for $N \ge N_0$. If $b \in A^{**}$ with $||b|| \le 1$, the Schwarz inequality gives

$$egin{aligned} |(f_N-f)\ (b)| &\leq |(f_N-f)\ [p'b\,p+pb\,p'+p'b\,p']|+|(f_N-f)\ (pb\,p)| &\leq \ &\leq 3 \left|(f_N+f)\ (p')
ight|^{rac{1}{2}}\cdot \|f_N+f\|+|(f_N-f)\ (pb\,p)| \ . \end{aligned}$$

Since $f_N \xrightarrow[N \to \infty]{} f$ weak*, $\{ \|f_N + f\| \}_{N=1}^{\infty}$ is a bounded sequence, say with bound M. Thus we have

$$|(f_N-f)(b)|\leq 6\cdot (arepsilon/8)^{rac{1}{2}}\cdot M+|(f_N-f)(p\,b\,p)|\;.$$

Since $\varepsilon > 0$ was arbitrary, we need only show that $(f_N - f) (pbp) \to 0$ uniformly for $b \in A^{**}$ with $||b|| \leq 1$ in order to complete the proof of the theorem. But $pA^{**}p$ is finite-dimensional and $f_N(p_0) \xrightarrow[N \to \infty]{} f(p_0)$ for each minimal projection in $pA^{**}p$, so the spectral theorem gives that $f_N \xrightarrow[N \to \infty]{} f$ uniformly on $pA^{**}p$. This means $f_N(pbp) \xrightarrow[N \to \infty]{} f(pbp)$ uniformly for $||b|| \leq 1$. Q.E.D.

Corollary 5. If f is a pure state of A and $\{f_N\}$ is a sequence of positive functionals in A^* such that $f_N \xrightarrow[N \to \infty]{} f$ weak*, then $f_N \xrightarrow[N \to \infty]{} f$ uniformly.

Proof. We need only prove that the support of f is a minimal projection. Suppose p = support of f and q < p is a non-zero projection. Then the functional g defined by g(a) = f(qaq) is positive and $g \leq f$, but $g \neq \alpha f$ for any α since f(p-q) > 0 and g(p-q) = 0. Q.E.D.

Bibliography

- 1. AKEMANN, C.: The dual space of an operator algebra. Trans. Am. Math. Soc. 126 (2), 286-302 (1967).
- DIXMIER, J.: Les algebres d'operateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1957.
- 3. Les C*-algebres et leurs representations. Paris: Gauthier-Villars 1964.
- 4. EFFROS, E.: Order ideals in a C^* -algebra and its dual. Duke Math. J. **30**, 391—412 (1963).
- 5. GROTHENDIECK, A.: Sur les applications lineaires faiblement compactes d'espaces du type C(K). Canad. J. Math. 5, 129—173 (1953).
- PHILLIPS, R. S.: On linear transformations. Trans. Am. Math. Soc. 48, 516-541 (1940).
- SAKAI, S.: On topological properties of W*-algebras. Proc. Japan Acad. 33, 439-444 (1958).
- The theory of W*-algebras. Yale Notes. New Haven, Conn.: Yale University 1962.

Dr. C. A. AKEMANN Department of Mathematics University of Pennsylvania Philadelphia, Pa. 19104 USA