
Commun. math. Phys. 7, 1—-20 (1968)

Ergodic States in a Non Commutative Ergodic Theory

S. DOPLICHER* and D. KASTLER**

Institut des Hautes Etudes Seientifiques
91 Bures-sur-Yvette — France

Received July 26, 1967

Abstract. Using the Godement mean Jt of positive-type functions over a group
G, we study "^-abelian systems" (21, α} of a C**-algebra 51 and a homomorphic
mapping α of a group G into the homomorphism group of 21. Consideration of the
Godement mean of f(g) Ug with / a positive-type function over G and U a unitary
representation of G first yields a generalized mean-ergodic theorem. We then define
the Godement mean of f(g) π(oca(A)) with A £ 21 and n a covariant representation
of the system {21, α} for which the (^-invariant Hubert space vectors are cyclic
and study its properties, notably in relation with ergodic and weakly mixing states
over 21. Finally we investigate the "discrete spectrum" of covariant representations
of {21, α} (i.e. the direct sum of the finite-dimensional subrepresentations of the
associated representations of G).

§ 1. Introduction

A number of recent papers [1, 2, 3, 4, 5, 6, 6a] concern themselves
with "asymptotically abelian systems" i.e. pairs of a (7*-algebra 21 and
a locally compact group G together with a homomorphism g -> ocg of G
into the automorphism group of 21 such that one has an "asymptotic
abelian property": the commutator

κg(A) B- B κa(A)

tends to zero for g ζ G tending to infinity for all elements A, B ζ 21
(there are different ways of stating this condition corresponding to
different choices of topologies — more general conditions can also be
stated for general, non topological, groups). The consideration of such
asymptotically abelian systems originates in algebraic field theory [10,11]
where the <7*-algebra is that of quasi-local observables (i.e. bounded
observables performed within bounded space-time regions together with
their norm limits). The group G corresponds to some invariance group of
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the physical theory (e.g. spatial translations), and the condition of
asymptotic abelianness expresses the physical requirement that ob-
servables performed far away from each other should in the limit not
mutually influence themselves and are therefore quantum-mechanically
described by commuting operators. In this context a physically important
and mathematically basic problem is the investigation of invariant
states over the systems {21, oc} i.e. states Φ over 21 such that Φ(ocg(A)')
= Φ(A) for all A ζ 21 and g £ G: those are clearly candidates for the
mathematical description of physical equilibrium states since the latter
are homogeneous (invariant under space translations).

Meanwhile it has been increasingly realized that from a mathematical
point of view asymptotically abelian systems lead to a non commutative
generalization of standard (commutative) ergodic theory: indeed if we
take the (7*-algebra 21 to be abelian and thus isomorphic to an algebra of
continuous functions on some locally compact space X, the (supposedly
strongly continuous) homomorphism of G into the automorphism group
of 21 becomes a homomorphism into homeomorphisms of X, asymptotic
abelianness being automatically realized. A state over 21 invariant under
G will then be represented by a bounded Radon measure μ over X
invariant under these homeomorphisms. We thus obtain a special case
of the usual setting of ergodic theory — the specialization consisting in
that the measure μ is bounded and the Borel structure of X stems from
a locally compact topology (the fact that μ is invariant rather than quasi-
invariant is inessential and would be removed if we considered covariant
representations rather than invariant states). The latter restrictions are
however accompanied by a gain in flexibility in varying the (quasi)
invariant measure μ for a given system {21, α}.

The papers quoted above have revealed that basic theorems of stand-
ard ergodic theory still hold in the enlarged non commutative frame. The
original results of [1,2 and 3] have been generalized in several respects.
In [5, 6 a] and Part I of [6], results are given for an arbitrary group G.
The second part of [6] on the other hand gives further results generalizing
those of [2] for the case of a locally compact amenable group i.e. a
group possessing invariant means. In this paper we study the more
general "^-abelian systems", a notion defined in terms of the mean
described in [14] by GODEMENT and we investigate a non commutative
ergodic theory in this enlarged frame. One should however not conclude
from our results that amenable groups are irrelevant to the study of
asymptotically abelian systems: it is indeed because the present paper
is essentially confined to the study of the 'Vacuum theory" (i.e. represen-
tations generated by an invariant vector) that we can work with Gode-
ment's mean, since the latter is only defined on linear combinations of
functions of positive type on G.
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The paper comprises four sections : Section 2 presents results on
Godement's mean <Jl as well as a mild extension thereof needed in
Section 4. Section 3 presents a generalization of the mean ergodic
theorem treating not only invariant vectors, but also vectors trans-
forming under finite dimensional representations of the group θ.
Section 4 defines Godement's mean for algebraic elements modulated by
positive type functions on G and studies general features of ergodic
states, emphasis being put on the relationship to Mackey's theory of
imprimitivity systems [17]. The paper concludes mentioning a classi-
fication of ergodic states and some properties of the Eu states generalizing
results in [2].

§ 2. Properties of Godement's mean

In this section we collect known results mainly extracted from [13]
and [14]. We consider an arbitrary group G and denote by 39 (G) the set
of bounded complex functions on G. 39 (G) is a C*-algebra under linear
combinations of functions, the ordinary function product, the complex
conjugation / -> / of functions and the sup norm || l^. If G is locally
compact we denote by Ή (G) and &0(G) the sub C*-algebras of 39 (G)
consisting of continuous functions on 6? respectively bounded and
vanishing at infinity. We denote by 0* (G) the set of positive -type func-
tions on G i.e. functions / such that

for arbitrary gi ξ G and complex constants oci} i — I, 2, ... n. Since
@*(G) consists of bounded functions and is closed under complex con-
jugation the set Ϋ"(G) of complex linear combinations of elements of
0*(G) is a sub-*-algebra of 38 (G). Its closure m3S(G) ((7* -completion) will

be denoted by i^(G). It is well known (see, for instance [15] § 13.4.5)
that y '(G) (resp. &(G)} consists of all coefficients (resp. positive coef-
ficients) of arbitrary unitary representations gζG->UgoϊG i.e. func-
tions of the type g ζ Cr-> (φ\ Ug\ψ) (resp. (φ\ Ug\φ)} where φ and ψ are
vectors in the representation Hubert space of U. The fact that 0*(G)
is closed under multiplication and complex conjugation stems from the
existence of tensor products and conjugates of representations ([15]
§ 13.4.9). Since those operations performed on finite dimensional re-
presentations again lead to finite -dimensional representations, the norm-
limits of coefficients of the latter, called almost periodic functions on G,
form an uniformly closed sub-*-algebra AP(G) of i^(G). AP(G) can
be identified with the 0* -algebra of all continuous complex functions
on a compact group G whose continuous irreducible representations are
one-to-one with the finite -dimensional irreducible representations of G.
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G is homomorphically and densely mapped into G (in general in a many-
to-one way) and the above mentioned identification of almost periodic
functions on G with continuous functions on G is obtained by con-
tinuous extension of the former to G (for these facts see for instance [15]
§ 16). The mean ^M defined in [14] by GODEMENT is roughly speaking an
average process on elements / ζ i^ (G) which filters out the almost
periodic functions.

We first introduce a convenient notation for left and right translations
of functions on G. We define

where the notation is a reminder of the fact that translations are the same
as convolutions by Dirac measures. If we denote by Γ (resp. Γf) the
convex hull of δs, s ζ G (resp. εs, s £ G), the sets Γ * / and / * Γ', f ζΉ(G],
will thus denote the uniformly closed convex hulls of left resp. right
translates of the function / (note that for μ ζ Γ, v ζ Γ' we have
|| μ * /loo ^ ||/| |oo and || / * v|| a, ^ l l / l l o c ) . We are now ready to state the
results which we shall need.

(a) Let <§ be the set of f ζ & (G) such that the dosed convex hulls Γ * / and

f * Γ' both contain a complex constant. This constant is then unique and

the same for both. Denoting it by ̂  (f} one has the properties

(i) for all f ζ £ \Λ(f)\ ^ \\f\\^. 6ό is a closed subset of &(G).

(ii) for all f £ <ί, g ζ G and complex constants oc one has /, α/, δg # /,
'

and ^ ( f ) = ~ f̂ (/), ^(ocf) = α^(/), ^(δg # /) = ^(/ * ε f f)

(iii) / £ «f , / ̂  0 fr'mpfy .//(/) ^ 0.
Proo/. Let α £ / * Γ r\ C and 6 ζ / * Γ" n C (C denotes the set of

complex numbers). For each ε > 0 there are elements μ ζ Γ and v £ Γ'
such that

||μ * / — α j j o o ^ ε and ||/ * ^ — b^ ^ ε .

Thus, since a * v = a and μ * δ = b,

||μ * / * ^ — αl]^ ^ ε and ||μ * / * v — b^ ^ ε ,

whence a — b\ ̂  2ε and thus a = b since ε is arbitrary. The other
properties are obvious.

The existence and properties of *Jt on 1^'(G) will furnish the main
technical tool in the three subsequent sections. We merely quote the
two following results due to GODEMΈNT to whom the reader is referred
for proofs ([14] §§23,24).
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(b) One has i^ (G) Q $. ̂  is a two-sided translation invariant, unit
norm positive linear form over the C* -algebra i^(G) Q &(G).

The precise way in which almost periodic functions on G are "filtered
out" by Godement's mean ̂  is expressed by:

(c) Let g ζ i^ (G}; φ admits a unique decomposition, φ — φ± -f- φz with
Ψι> 9>2^(#)» φ^^AP(G} and ^(\φ2

2) = ΰ. If ψζii
r(G} and φ(g)

— (ψι\ Ug \ψ2) is a realization of φ as a coefficient of the unitary representa-
tion U of G on the Hubert space ffl , ψl9 ψ2 ζ_^, and if E1 is the smallest
projection in ffl containing all projections on finite-dimensional subspaces
invariant under U, with E2 = I — E^ we have

ψι(g) = (

Consequently the following are equivalent for φ ζ&(G}: (i) UW does not
contain any finite dimensional subrepresentation of G other than the trivial
one of zero dimension; (ii) ̂  (\ψ\2} = 0; (iϋ) ̂  (\φ\) = 0.

The equivalence of (ii) and (iii) is a special case of the known fact that,
for a positive element A = \φ\ of a (7*-algebra (here i^ (G)) and for an
arbitrary state Λί , ^/l (A) = 0 is equivalent to *Jt (A2) = 0. Indeed
Schwartz's inequality yields Jί '(A)2 ^ Jί (\] - Jί '(A2) and

The above mentioned isomorphism between AP(G) and Ή (G) (the
(7* -algebra of continuous functions of the compact group G) together
with the uniqueness of normalized Haar measure on G (a two-sided
invariant normalized state over Ή (G}} immediately entail:

(d) For any f ζ A P (G) one has

G

where f denotes on the right side the unique continuous extension of / ζ A P (G)
to G and dm is the normalized Haar measure on G.

The next result serves to establish the connection between the present
work and Part II of [6] :

(e) // the group G is amenable each left (or right) invariant mean η
over G reduces to <Jf on $ .

Proof. Letfζίί and choose μ ζ Γ(v £ Γ') such that \μ*]-
^ ε. It follows that

whence η(f) = ^/(f) since ε is arbitrary.

§ 3. A Generalized Mean Ergodic Theorem

This section describes Godement's means of group representations
modulated by elements of i^(G). We first give the
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Lemma 1. Let G be a group and g ζ G ~> Ug an unitary representation
of G in a Hilbert space &. For each f ζ i^(G) there is a unique bounded
operator M(f U) such that, for all ^1; ψ2 ζ ffl

( Ψ l \ M ( f ϋ ) \ ψ 2 ) = Jt{t(g] (Ψl\Uj \Ψz)} (1)

(we write ^(φ(g}} for <Jί(φ), g indicating a dummy variable). This
operator M (f U) is of norm not exceeding \f\^ and lies in the von Neumann
algebra generated by the Ugί g ζ G.

Proof, (See [6] Lemma 4.) The right hand side of (1) makes sense by
(b) of Section 1, and since <Jl is a normalized state over i^(G], it is
linear in <ψ2, conjugate-linear in ^ and of modulus not exceeding

l i / i l c o ' \\ψι\\ ' \\ψz\\ 5 whence the existence of a unique M(fU) satisfying (1)
and of norm g ||/||oo Further we have, for any bounded operator T on 3ft?

(Ψl\ US\Tψ2)]}

Thus M (f U} is contained in the bicommutant of all Ugί g ζ G.
The next theorem gives an explicit description of the operators

M ( f ϋ ) .
Theorem 1. Let G, U anάffl be as in the preceding Lemma and denote by

E the smallest (orthogonal) projector in ffl whose range contains all the
finite dimensional subspaces of ffl invariant under U and by UE the
restriction of U to E 2tf.

(i) If f ζ i^ (G} is the coefficient of a unitary representation of G disjoint
from the representation UE, M(fU) = 0.

(ϋ) Let

(2)

be the factorial decomposition of UE, with Σ the set of equivalence classes
of irreducible representations contained in UE, U^ an element of the class
a acting in the finite dimensional Hilbert space ^(σ), ffl '(σ) a Hilbert space
of dimensionality equal to the multiplicity of σ, and If^ the unit operator
in 2/f'^. If φW and ψW denote arbitrary vectors in 3f^ we have

\ ΌW\φW)Us} = d${\φW) (ψ^\ Θ Γ^}E(^ (3)

where E(aϊ is the projector in ffl on the subspace ffl^ 0 ffl'(σ) ana d(a)
is the dimension of a. In particular

M(ϋ) = E0, (4)

the projector onto vectors of 2/P invariant under U.



Ergodic States 7

Proof. Let t/(K) and U^ be two finite dimensional irreducible unitary
representations of G in the respective Hubert spaces ^(α) and ̂  O3)
and take ξ, η £^(α) and x, y ζ«#^>. It follows from (d) in Section 1 and
from the orthogonality relations on the compact group G (see [15]
§ 15.2.5; contrary to DIXMIEB we take scalar products con jugate -linear
in the first and linear in the second vector) :

if Z7<α> and U& are disjoint

if ϋm
Λvith d(x) — dimension of U^.

Proof of (i): Let f(g) = (u\ U'g\v] correspond to a unitary representa-
tion U' of G in the Hubert space ffi* disjoint from the representation UE;
let F1 be the smallest projector in ffl' whose range contains all finite
dimensional subspaces invariant under U' and write uλ = F^u, v^ — F ̂ v,
u2 = u — u^ v2 = v — vl and f^g) — (u^ UglVj), ί — 1,2. On the other
hand set EL = I — E. We have, with obvious notations

M(f U) = M (A UE) + M(f2 UZ) + M(i ϋ^) .

The first term vanishes because of the above orthogonality relations
since the finite dimensional representations UE and U'Fl are disjoint. The
two other terms however vanish by (c) of Section 1 due to the fact that
the representation UE^ and U'Fι have no non vanishing finite dimensional
subrepresentations (we remind that ^(\h\2) = 0 for a h ζ i^ (G) implies
Jί(φΐι) = 0 for all φ ζ 0^(6?)).

Proof of (ϋ) : in order to establish formula (3) we have to evaluate the
quantity

Jέ{(φ^\ Uy\ψW)(u Us\v)}, u,v^e. (5)
Let us write

and analogously for v. We have, correspondingly

(u Ug v) - (EW u\ U(/} ® Γ (σ) \E^ v) +

where the first term is the only one giving a non vanishing contribution
to (5) as shown by (i) applied to the representations UE^ and t/(σ/),
a' φ a. Writing
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we then have

(E«0u\ UM»Γ(«>\EWυ) = Σ Σ N ϋ^l
ί = 1 ΐ = 1

and thus using the above orthogonality relations

ί = 1 / = 1

whence formula (3).

§ 4. Representations of .//-abelian Systems
Generated by an Invariant Vector

Definition 1. Let {2ί, α} be a pair of C*-algebra 21 and a homomorphic
mapping g ζG -> ocg of a group G into the automorphism group of 21. To
each state Φ over 21 ive attach the following subset of £$(G]:

SΦ = {g ζ@-> Φ(Aι[ocg(A), B]A2} I A, B, A^ A2 ζ 21} .

The system {2ί, α} is called ^-abelian whenever for each state Φ over 21
invariant under G (i.e. such that Φ(αff(-4)) = Φ(A) for all A ζ2ί
g ζ G) and each f ζ 8Φ we have \f\ ζ $ and

{2t, a} *5 called weakly asymptotically abelian (cf. [6] Definition I)
whenever

a) (7 is α locally compact non compact topological group,
b) α ^s strongly continuous (i.e. ocg(A) is norm continuous in g for

each A ζ 9ί)
c) ^φ ζ ^0(G) for each G-invariant state over 21.
Notation. In addition to the preceding notation, given a state Φ over

21 invariant under G we will denote by πφ, Uφ the respective *-represen-
tation of 21, unitary representation of G (both acting in the Hubert
space ^φ) and cyclic vector Ωφ of fflφ (cyclicity is with respect to
πφ(2l)) determined by (cf. [15], 2.12.11):

(ΩΦ\πΦ(A)\Ωφ)^Φ(A)

πφ(*g(A))=U*πΦ(A)ϋ*_l9 A ζ 31, p ζ G (6)

C/^ ώJφ = ίύφ .

Furthermore we will denote by EΩ the projector in$Pφ onto the one-

dimensional subspace generated by the vector Ωφ; by E® the projector in
Jfφ with range {ψ ζ^fφ ϋfψ = ψ for all g ζ G}; by Eφ the smallest
projector in^φ whose range contains all finite dimensional subspaces of
$Fφ invariant under Uφ. Finally the von Neumann ring generated by
the πφ(A), A ζ 21 and Uf, g ζ G will be denoted by £%φ and its commu-
tant by dt'φ.
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We note that, since / ξ &0(G) implies that / £ $ and «Λf(/) = 0, weak
asymptotic abelianness implies <Jέ -abelianness. The latter, more general,
concept is interesting in situations where <xg(A) and B tend to commute
only for g -» σo along certain directions (possibly depending upon A and
B).

We now give
Lemma 2. Let {2ί, α} be an Jί-abdian system and Φ a state over 21

invariant under G. The set of functions

where f runs through Ϋ~(G)} ψl and ψ^ through fflφ and A through 21, is
contained in (ί. Furthermore ^{^/,Vl,Vβ,^} is linear in /, ψ2 and A, and
conjugate-linear in ψ^

Proof. Since ΩΦ is cyclic under πΦ(A) and since $ is uniformly closed
it suffices to prove that the set of functions

where A1; A% and A run through 21, is contained in $ and that

lίAz>A) *s linear in /, Alf A2 and A. For the proof we notice that

where

ί/ι(flO = ί(g) (ΩΦ\ πφ(Λ^2) Ufπ*(A) \ΩΦ)

with /x ζ ̂  (G) and /2 ζ /Sφ. By Definition 1, given ε > 0, Λve can choose
μ ζ Γ such that

lμ*\fz\'L^ε
We then choose a, μ' ζΓ such that

It follows

\\μ' * μ * Gft

^ \\μ

f * / / * / !
since the second term on the right hand side is majorized by || μ * (//2) || TO ̂
= 1 1 / 1 1 oo 1^ * 1/2! 11 co 1 A similar argument for right translations shows
that GftAl,Aa,A ί^ with

πΦ(A1A2) U<jπΦ(A) |βφ)} , (7)

λvhence the result.
Lemma 3. Let {21, α} be an <Jί-abelian system and Φ a state over 2ί

invariant under G with the notation of Definition 1. To each f £ i^ (G} there
exists a linear norm-continuous mapping Mf from 2ί to π(2ί)" n π(3ί)f

1 Note that we have proven that |/| £ <f, ^(|/|) = 0 and /2 ζ &(G) imply that
//2 ^ if and ^ ( f f z ) ::= 0; whence easily follows, incidentally, that ^(|/|2) = 0 <=>

= o.



10 S. DOPLΪCHEK. and D. KASTLER:

determined by
WΛ ,

(Ψl\ Mt(A) W = Jl{\(g] (Vl π(xs (A)) \Ψz}} , (8)

The correspondence fζV(G)->Mf is linear, positive (Mf(A)^0 if
/ ^ 0 and A^ 0), bounded (\\Mf(A)\\ ^ H / l ^ \\A\\) and such that
Mf — Mfι */ / = /i + /2 ί's the decomposition of § 2, (c)

*, ^ £ 91 (9)

s(#) — f ( g s ~ l ) } 9, s ζG. In particular, if we
take for / the constant function equal to I, we get a norm decreasing positive
linear map M± from *Ά to π(2ί)" n π(2l)r n t/^ ^β denote by U'G the
commutant of the set {Ug | g ζ G}). The Mf(A), A ζ Sί? / £ ^(G), /wrίΛer-
morβ satisfy for each B ζ π(^ί)/; ί̂ e relation

Mf(A)BEQ=BM(fU)π(A)EQ (11)

through which they are determined owing to cyclicity of Ω for π(9l). /τι

(12)

50 ί/ιαί M1 coincides with the restriction to 3i of the mapping M of [6],
Theorem 1 (see formula (7) above).

Proof (along the lines of [6] Lemma 1). The right hand side of (8)
exists and is linear in ψ2, f and A and conjugate-linear in ψ2 by virtue of
Lemma 2. Furthermore its module does not exceed \\f\\oo ' \\A\ - jjt^J |l^2|j ,
therefore we have a unique bounded operator Mf(A) satisfying (8); and
Mf(A) depends linearly upon / and A and has a norm exceeding \\f\\w \\A\\ .
As in the proof of Lemma 1 in Section 3 we show that, for each bounded

operator T on ̂  and all ψ1? ^2 ζ^7

(Ψl\ TMf(A)-Mf(A) T\ψ2-) = ̂ {f(g)(Ψl\ Tπ(^(A}} - π(as(A)) T\ψ2)}.

If T commutes with 57; (91) this is also the case for Mf(A)9 therefore
Mf(A) ζ π(9l)". On the other hand for T = π(B], B £ 21, the right-hand
term vanishes according to Definition 1 and thus Mf(A) £ π(2t)'. Finally
the properties (9) and (10) easily follow from the real character and
translation invariance of ̂ : we have, for ψlt

(Ψl\ MΊ(A) |̂ 2)

= (Va| M,(A*) |V0 = (Vil
and

,-ι |%) = (17* Vl Mf(A)
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As for property (11), it suffices to verify it f or B = / since Mf (A) £ π (21)'.
Verification is immediate using Definition (8) and taking account of (4).
Property (12) then follows immediately from (4). More generally if
g^G->χi(g)} i = I, 2, are one -dimensional unitary representations of
G we have

(13)

where EXz is the projector in ffl with range {ψ ζ^ffl Ug ψ = χ2(g) ψ,

g £ G} and analogously for Eχιχ2

Remark. We note that, in the case of weak asymptotic abelianness, the
Lemma can be proved without using the fact that the representation
Uφ of 21 was generated by the invariant state Φ. All we need for the proof
is the existence of a covariant representation of the weakly asympto-
tically abelian system {21, α} (i.e. a pair of * -representation n of 21 and a
continuous unitary representation U of G — both in the Hubert space
Jtf? — satisfying

Ugπ(A) U'1 = π(α,μ)), A ζ 21, g £ G)

such that in addition the subspace of vectors of ffl invariant under U is
cyclic for π(2l) in 3Ί?. If the group G is amenable with right or left
invariant mean η the construction above with η instead of ̂  can be
applied to the universal representation of 21 (direct sum of all cyclic
representations cf . [6] Lemma 1) yielding a linear mapping A ξ 21 ->

~~*" ^K/£α0(^)) °̂  norm = I!/ I I co from 2ί to the center of its von Neumann
eveloping algebra 21**. The above mapping Mf can then be obtained by
composition with the representation π extended to 21** in the standard
manner ([15], 12.1.5):

Mf(A) = π(ή(fs*s(Aty. (14)

Theorem 2. Let {21, α} be an Λί -abelian system and Φ a state over 21
invariant under G with the notation of Def. 1 . We then have that

a) The set of operators E®πφ(A}E<Q is abelian (and consequently
'Q is a maximal abelian von Neumann ring).

b) The von Neumann ring 8R!φis abelian and isomorphic
c) The following conditions are equivalent
(i) EΩ = EQ (uniqueness of the ''vacuum" )

(ϋ) for allAζζl Jt{Φ(A*^(A}} - \Φ(A}\*} - 0
(in) for all A ξ 21 and ψl9

- Φ(A) (Ψl \ y2)} = 0

(weak clustering property).

2 This ring furthermore consists of the Gr-invariant elements in the center of the
representation π (c.f. (12) and the stated properties of the mapping M in (15); [6,
Theorem 2]).
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(iv) M1(A) is a multiple of the identity (equal to Φ(A) I) for all
Aζ2l.

(v) The set of operators πφ($i) \J {Uf g ζ G} is irreducible (or &φ

consists of all bounded operators on ^fφ) .
(vi) £%φ is a factor.
(viii) Φ is an extremal element of the convex set of states over 21 in-

variant under G.
We do not give the proof of this theorem for which we refer the reader

to refs. [1] through [6]. We limit ourselves to noticing that a) imme-
diately results from the ^-abelianness condition whereby

^{(ψi πφ([oCg(A), B]) \ψ2}} = 0, Ψlί y2 ζtfφί A, B, ζ 21 ,

and taking account of expression (4).
Invariant states Φ satisfying the equivalent conditions (i) through

(vii) are called extremal invariant or ergodic states (E -states).
The abelian character of E^πφ(^i}E^ together with the cyclicity of

Ωφ imply [6] that the commutant &φ of the von Neumann algebra
generated by the πΦ(A) and Uf, A £ 2ί, g ζ G, is abelian; and further-
more that the mapping M from &φ to &'φ determined by

M(T}Ef = E%TE%, Tζ&φ (15)

is normal and onto (consequently E^^ΦE^ and &f

φ are isomorphic as
von Neumann algebras).

Theorem 3. Let {21, α} be an ^-abelian system and Φ a state over 21
invariant under G. With again the notation of Definition 1 the following
are equivalent

(i) EΩφ = Eφ

(ϋ) forallAζ<
(iii) for all A ζ 21 and

π*(αβ- (.4)) 1̂ ) - Φ(A) (

Proof. The implication (iii) => (ii) is trivial. Further (ϋ) => (i) as a
consequence of (c) of Section 2 taking account of the cyclicity of Ωφ and
the relation

- \Φ(A)\* = (πΦ(A)ΩΦ \ UfE^ | πΦ(A)Ωφ)

where E^φ = I — E Ωφ. In order to prove the implication (i) Φ (iii) it
suffices to show that, as a result of (i), the function

- Φ(A) Φ(A1A2)\

is contained in <o for all A^ A2, A ζ 2ί and that moreover ̂  (f] = 0. We
have

Kg) ^ \Φ(Aι[*g(A), AJ)\ + \(πφ(AξA*) ΩΦ \ ϋ*E±φ | πΦ(A)ΩΦ
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and (ϋi) follows from (c) of Section 2 using Lemma 2 and ^-abelianness

of {91, α}.
The invariant states Φ satisfying the equivalent condition (i) to (iϋ)

are obviously ergodic states. We will call them weakly mixing states or
Ej-states (see Definition 2 below) because they are a generalization of the
weakly mixing states of standard (commutative) ergodic theory.

Theorem 4. Let {91, α} be an Jί-abdian system and let Φ be an ergodic
state over 21 with the notation of Definition 1 leaving out for shortness the
subscripts and superscripts Φ. We adopt also the notation of Theorem 1 (see
formula (2) in Section 2) for the decomposition of UE into factors. Further-
more we set, for A ζ 91, σ ζ Σ and φ, ψ ζ^f(σ)

M$v(A) = Mj(A) where f(g) = (φ\ U^\Ψ) . (16)
Then

(i) One has UgMtfv(A) U~l = Jf<°L (A), g £ 0.
a ψί v

(ϋ) The vectors M(^ψ(A)Ω belong to the subspace ̂  (σ) <g> ^'(σ). More
precisely, if {φ-^ is an orthonormal base of ^^, the M^\ψ (A)Ω deliver

for appropriately chosen A, ψ an orthonormal base of a subspace of ffl
equivalent toJ^W.

(iii) For each pair σ, ar ζ Σ the representation U^ Θ f/(σ /) is not
disjoint from U.

(iv) For each a ζ Σ one has 5 ζ Σ where U^ is the conjugate of the
representation U^.

Proof. Property (i) immediately results from (10) applied to the
definition (16). From it follows that the M*£\Ψ(A)Ω are contained in

J^(°) ® Jf'(σ) and span a subspace of ̂  equivalent to ̂ σ) if they are
linearly independent. However one gets from (11)

Mj(A)Ω = M ( f U } π ( A ) Ω

and, specializing to the choice of / in (16), by use of (3),

M^Ψ(A)Ω = d${\φ) (ψ\ ® ΓW}EWπ(A)Ω (17)

so that one has

(M^V(A)Ω M^(A)Ω} = δkldrf\\y\\* \\(Eψ® /'<">) E^π(A)Ω\\* (18)

Λvhere Eψ is the projector onto ψ in^f ^σ). Thus the M^]ψ(A) are mutually

orthogonal and of common length. By the cyclicity of Ω, the latter can
be chosen equal to unity for an appropriate choice of A and ip, whence
(ii). Due to irreducibility of π(9l) W UG the vectors M^\^(A)Ω,

k = 1, 2, . . . ίZ(σ), then generate a subspace cyclic for π(Ά) in $P and
thus, if we choose a coefficient /' ζ & (G) of the representation ί/(σ/>, σ' ζ Σ,
and a B ζ 91 such that Jί"τ/ (5)β φ 0 \ve have at least one k for which
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Mj>(B) M(£ίψ(A)Ω Φ 0. The noii-disjointness of Z7<σ) ® ί/(σ/> and ?7

then results from the fact that, for a finite dimensional group representa-
tion, any quotient representation is equivalent to a subrepresentation.

Finally let / be a coefficient of the representation U^} a ζ Σ and A an
element of 31 such that Mj(A*)Ω Φ 0. We have Mj(A*)* = M f ( A ) Φ 0
(cf. (9)) and thus Mf(A)Ω Φ 0, since Ω is separating for π(3l)'. But
Mf(A)Ω ζ^(5° Θ ̂ f'(5) so that σ ζ Γ.

The rest of this section handles the more special situation where the
system {31, α} is supposed to be weakly asymptotically abelian and
discusses further the relationship with the standard ergodic theory. In
this connection, the next theorem will allow us to apply MACKEY'S
results [16] by reduction to a commutative (7* -algebra.

Theorem 5. Let {21, α} be a weakly asymptotically abelian system with
a non compact group G and Φ a state over 31 invariant under G with the
notation of the preceding Theorem. We denote further by N the stabilizer of
E i.e. the intersection of the kernels of all finite-dimensional subrepresenta-
tions of U. If we assume the quotient group & = Θ/N to be either compact or
connected (which is true if G itself is connected) the set of operators Eπ(A)E>
A £21, is abelian.

Proof. N is obviously a closed invariant subgroup of G, so that
^ — G/N is a topological group. By definition, the direct sum of all
finite dimensional representations of & is faithful. Thus, by [15], 16.4.6,
^ is a direct product K^ x T with Kλ compact and T = Rn, n integer
^ 0 (R° is the group with one element; if n = 0, ̂  is compact). Let τ be
the canonical homomorphism of G onto ̂ , set Gf = r~1(T) and, for a con-
tinuous character χ ζ Φ of the group T, let Eχ be the projector with
range {ψ ζ^ | Ug>ψ = χ(τ ((/')) ψ for all g' ζ G'}. The first step in the
proof is to show that Eχ& is stable under U and that

Now G' is obviously a closed invariant subgroup of G with N an in-
variant subgroup of G'. Each character χ ζ ί1 defines a one -dimensional
unitary representation g' -> χ(τ(g')') of G'} different characters yielding
different representations so that F = Σ $χ *s a sum °ί orthogonal

x£T
projectors. Clearly E ^ F. Take now a ψ ζEχ^. For arbitrary g ζ G}

g' ζ G' we have g~l g' g ζ G' and thus Ug-ίg'gψ = χ(r(g~lg'g}} ψ
~ χ(t(g')}ψ because r(g')£T is in the center of .̂ Thus U g>Ό gψ
~ %(r(y'ϊ) U 9 y>> showing that^Jf is invariant under U. Let Uχ = UEχ

be the corresponding subrepresentation of U. Obviously Uχ (n)
= χ(t(nγ) = I for n ζN so that C7% = Fχ o τ where Vχ is a unitary
representation of Ή . The kernel J of F^ contains all elements kt £ ̂  with
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k ζ K, t ζ T and χ (t) = 1 . Therefore &/J is compact, Vχ (and also Uy) is
a sum of finite -dimensional representations and Eχ ^ E whence F ^ E
(19) is established3.

Thus to prove the Theorem it is enough to show that, for χ' ', χ" ζ ί
and ^ 4 5 Aζζί

Ey/π(A1) Eπ(A2}Eχ,, = ̂ π(42) En^E*. (20)

where the left hand term is equal to

ΣE/π(Al)Eχπ(A2)Eχ,. (21)

Now since G/G' = (G/N)I(G'/N) = ^/T = /^ is compact and 6? is non
compact, by Proposition 1 p. 31 of [19], Gr must be non compact and
the system (21, α'}, where α' is the restriction of α to 6r', is weakly
asymptotically abelian. Therefore if we denote by Mj(A), f ζ &(Gf), the
means defined for the group G' as was done in (8) for the group G, we
have by (13), for χls χ2 ζ Φ and A £ 21

where χ1? ^2 denote also the functions χ1 o r, _^2 ° τ on '̂ Thus (21) can
be written

M A E ^ V E M A πA

thus proving (20) q.e.d.
Remark. We note that in the preceding proof the fact that the re-

presentation π of 21 was generated by the invariant state Φ was not
actually used. All we need for the proof is that (π, U) is a covariant
representation of the weakly asymptotically abelian system {21, α}.

We will now see that Theorem 4 renders available for the study of
covariant representations of weakly asymptotically abelian systems
Mackey's theory of imprimitivity systems. Since we work in a (7* -algebra
frame we have in fact to deal with the more special case in which Borel
structures are provided by locally compact topologies.

Lemma 4. Let 21 be a C* -algebra, g -> ocg a homomorphίc mapping of the
locally compact group G into the homomorphism group of 21 such that
g -> <x,g (A) is norm continuous in g for each A ζ 2ί and (π, U) a covariant
representation of the system {21, α} in a Hubert space 3tf '. Let E be a pro-

3 At this point the proof of the theorem is reduced to the abelian case for which
a proof was given by G. GALLAVOTTI and D. KUELLE (private communication).
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jector in the commutant of the set {Ug g ζ G} such that Eπ($i)E is abelian.
We denote by 211 the commutative C*-algebra of operators on E ̂  generated

by the Eπ(A)E, A £21, by 0 its spectrum and by M <-> M the Gelfand
isomorphism:

M(s) = (s,M}, s£0, M ζ3«, Λ"ζ^0(6) . (22)

(i) // we set Uj = EUgE and define

** W = Uj M U*>9 M ζ 9ZI, g ζ G (23)

βί α homomorphism g~> ocg of G into the automorphism group of 971 «mc&
g -> <Xg (M) is norm continuous in g ζ G for each M £ 2ί.

(ii) T^e dual action of G on 0 given by

<[<7] β, Jf > = <β, a,., (M )>, β £ 0, 0 £ G, Jf ζ 9n (24)

defines a homomorphism g -> [g] of G into the homeomorphism group of Θ
such that (s, g) -> [g]s is continuous from β x G to 0.

(iii) Ze£ ^5 caW P ίΛe unique regular spectral measure on 0 such that,
for all M ξ 3S

Jf = / M ( s ) d P ( s ) . (25)

TΛe support of P is the whole 0 and we have, for all Borel subsets Δ of 0

ΌjP(Δ}ϋ^=P(\g]Δ). (26)

(t/15, P,g~^ [g]} is called the system of imprimitivity attached to E.
// the set of operators π ( A ) , A £ 2ί α?ι̂  Ugί g ζ G is irreducible in ffl,

this system is ergodic. The converse is true if E 3^ is cyclic for π(2l) inJti?
and invariant under π(2l)' r\ U'G.

(iv) Let the covariant representation (π, U) be generated as above by a
state Φ over 21 invariant under G with corresponding cyclic invariant vector
Ω ζEJtf*. The Hilbert space E^ can then be identified with L2(<£, μ)
where the bounded G-invariant Radon measure μ on 0 is defined by

{μ,A}=(Ω\M\Ω}, M^ϋ(Q) (27)

with the elements of 22c acting multiplicatively

(Mψ}(s) = M ( s ) ψ ( s ) , ψζL^e^μ), M £ 9H, s £0 , (28)

whilst the group acts by "shifts of the variable"

{ϋfψ}(a) = ψ(\ίr1]a), ΨζL2(e,μ),gίG,Sζe. (29)

The spectral measure P is then of unit multiplicity: we have

{P(A)Ψ} (s) = χΔ(8) ψ(s], ΨζL2(e, μ), s ζ<5 (30)

where χ^ is the characteristic function of the Borel subset Δ of 0.
Proof, ocg defined by (23) is such that
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Thus, for M a polynomial of elements of the type Eπ(A)E, A ζ 21, and,

by density, for a general element of 9H, M -> <zg(M) is *-homomorphic

and norm continuous in g (the latter property stems from the assumed

norm continuity of ocg (A) in g for A ξ 21). The mapping g -> [g] defined in

(24) is evidently homomorphic; and [g] is continuous in the *-weak

topology as the transposed of a continuous operator, and is therefore a

homeomorphism. For s, s f £6> and Mi ζ Oil, i = 1, 2, . . . n, we have, on

the other hand

Kfo] «, Af,> - <[</'] β', M,>| £

<: 1<[£7] β, Jf,> - {[g] s', Mt}\ + Kfo] a', M,} - {[g'] s', Mt}\ ^

£ \<a, α^Jf,))-^', α^Jf,))! + K-^ ) - a^Jf,)! .

The condition that the first term be less than -~- amounts to choosing s'

in a *-weak neighbourhood of 5 and the second term is less than -^ for

0'in a neighbourhood of g\ thus we have the continuity of (g,s)-> [ g ] s .

The uniqueness of the regular spectral measure P yielding (26) is well

known (* -representations of abelian 0*-algebras are one-to-one with

regular spectral measures on their spectrum) . If the support of the spectral

measure P was smaller than β, one could find an M Φ 0 vanishing on 6>

so that M = 0, a contradiction. Relation (26) is obtained by setting

ocg (M) for M in (25) and using (23) and (24). Let us next denote by t% the

von Neumann algebra generated by the π(A), A ζ 21 and Ug, g ζ 6r; and

by £%E the von Neumann algebra of operators on E ffl generated by 921

and the Uj, g ζ G. Since E commutes with the Ug, &E contains E&E.

Therefore if & is irreducible in 3F , the same holds for E&E, and a for-

tiori for &E (or equivalently for the system of P(Δ) and U g ) in E ffl .

Conversely if E ζ ̂  and £%E is irreducible, (&%)' = (<^')#4 reduces to the

scalar s. But if E 3? is cyclic for π(2ί) it separates ffi and thus £%' also

reduces to the scalars and ̂  is irreducible. Finally, if π is generated by an

invariant state Φ, cyclicity of the corresponding vector Ω ζ E ffl for

π(2l) in Jf entails cyclicity of Ω for the commutative 0*-algebra 221 in

E ffl . The Segal-Gelfand construction applied to the state (24) over 2H

then shows in the familiar way (cf. [21] § 17.4) that E ffl is isomorphic

to L2(&, μ] with the property (27). On the other hand for M £ 921 and

g ζG we have by (23) U^MΩ = <xg(M)Ω whence for the corresponding

element M ζ t f Q ( e > ) CL2(&, μ) using (24),

(s) = QCg(M) (s} = M([g-1] s) .

On the other hand the spectral measure (30) in our case evidently fulfills

(26), completing the proof of our Lemma.

4 Proposition 1 Chapt. I § 2 of [20].

2 Commun. math. Phys., Vol. 7
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Theorem 4 in the setting of the appended remark together with the
previous Lemma allow a direct application of Theorem 2 in [16] to give

Theorem 6. Let (π, U) be an ergodic covariant representation of the
weakly asymptotically abelian system {21, α} with a non compact separable
G (ergodicity means irreducibility of the system π(A), A ζ 21 and Ug,
g ζ G) and let E, & be as in Theorem 5 with Σ the set of irreducible finite-
dimensional components of U acting on Hilbert spaces 34?(σ). Denote further-
more by K the compact group obtained by taking the closure of φ(G), where
φ is the homomorphic continuous map g ζ G -> {ϋ^\ a £ Σ} into the
product of unitary groups in all ffl(a), a ζ Σ. Then there exists a closed
subgroup H of K, a unitary representation L of H and a unitary map W of
E ffl onto the Hilbert space of the representation UL of K induced by L such
that

(i) WBW-l = BL

(ϋ) WU*W-ι=ϋ*(g}farάll g £G

where BL and B are the complete boolean algebras of projections determined
respectively by the canonical imprimilivity system of UL and the imprimi-
tivity system attached to E.

We conclude this section by noticing that the classification of ergodic
states given in [2] can be generalized to the case of non abelian groups in
the following manner.

Definition 2. Let {21, α} be a weakly asymptotically abelian system and Φ
a state invariant under G with the notation of Definition 1. Let NΦ be the
kernel of the representation g -> U®EΦ and &φ the quotient group ^φ = GJNΦ.
We distinguish the following three classes of ergodic states.

(i) Φ is called an Ej-state (or weakly mixing state, cf. Theorem 3 above)
whenever the only finite dimensional subrepresentation of Uφ is the one-
dimensional subrepresentation spanned by the invariant vector Ωφ i.e.
&Φ = G/Nφ is the group with one element.

(ϋ) Φ is called an EΠ-state if it is not an Ej-state and if the quotient
group ^φ — G/NΦ is compact. In other terms an EII-state is an ergodic
state for which &'φ is compact and contains more than one element.

(in) Φ is called EIΠ-state whenever &φ is not compact.

Remarks. We add some remark on ^//-states over a weakly asymp-
totically abelian system {21, α}; the proofs are either immediate or
easily deduced from what preceeds and the literature.

1°) If Φ is an J£/rstate it follows from (19) that

EΦ3FΦ = {ψ/ψ ζ^φ) Ugψ = ψ all g ζ Nφ} .

This property is trivial for jGJrstates, where Nφ = G, and false in
general, though not always for Jζ/m-states.
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2°) Let Φ be an ergodic state over {2ί} α} and Σ the set of all irre-
ducible components of the tensor products of finite subfamilies of Σ
(see Theorem 4). If Eφ^fφ is separable and &φ connected, the following
are equivalent

(i) Γ-^φ;
(ϋ) Φ is an ^//-state.
If we assume &φ to be connected, EΦ3J?Φ separable implies that

{% % € ^> Eχ Φ 0} is a countable subgroup of ΐ (see equation (19));

whence the equivalence of Σ = &φ to the fact that ί1 is countable (or
n = 0).

3°) Let <Ά be separable and Φ an ^//-state over {21, α}. Using the
methods of Section 5 in [2] (where some points of rigour need to be
fixed as will be done in a forthcoming paper), or alternatively of [4], one
can show the existence of an ergodic state φ over the weakly asympto-
tically abelian system {21, α | NΦ} such that the unique decomposition of
Φ into extremal JVφ-invariant states can be written

Φ(A) = fψt(A)dm(ξ)
%Φ

where ra is the Haar measure on ̂ φ and ψξ is defined by the relation

ψτ(g)=φ°<Xg> 9 6 #

with τ the canonical homomorphism of G onto &Φ.
An Eπ-state is thereby uniquely represented as the average of a state

with 'lower symmetry".
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