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Abstract. We present a reformulation of the axiomatic basis of quantum
mechanics with particular reference to the manner in which the usual algebraic
structures arise from certain natural physical requirements. Care is taken to
distinguish between features of physical significance and those introduced for mathe-
matical convenience. Our conclusion is that the usual algebraic structures cannot
be significantly generalised without conflicting with our current experimental
picture of processes occurring at the quantum level.

1. Introduction

The past few years have seen a widespread renewal of interest in the
old problem of just why the particular algebraic structure found in
quantum mechanics seems to work so well. One question we may ask is:
what natural physical requirements can we find to explain the rather
remarkable algebraic properties found in the usual quantum mechanical
formalisms, in which self-adjoint operators, representing observable
quantities, etc., act upon a Hubert space of states? Alternatively, we
may ask whether yet more general formalisms are possible, still being
physically sensible ? It may be that a definitive answer to these questions
is not possible, in view of the difficulty in deciding just what constitutes
a "natural" physical requirement.

The deepest results obtained in earlier attacks on the problem were
obtained by VON NEUMANN and coworkers [1, 2, 3]. Two main approaches
were used. These we may call the "Jordan algebra" and the "preposi-
tional calculus" approaches. In both of these, an attempt was made to
work from a set of axioms, possessing as much direct physical signifi-
cance as possible. However, it was found that the usual quantum mechan-
ical formalism was obtained only at the expense of introducing axioms
whose physical significance was far from apparent. This is clearly stated
by the authors. In the Jordan algebra approach, the point in question
is the distrihutivity axiom without which "an algebraic discussion is
scarcely possible" [2]. In the other approach, the relevant axiom is that
of the modularity of the lattice of propositions which property is "closely
related to the existence of an "a priori therniodynamic weight of states"
[3].
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In this paper we present a reformulation of these ideas, containing
some features of both the above approaches, but whose 'critical' axioms
are quite different. Our main result is a set of sufficient conditions
(axioms A.I to A. 12) for the usual quantum mechanical algebraic
structures to result. Several of these axioms are also necessary conditions.
The direct physical significance possessed by these axioms has led us to
conclude that no further generalization of the usual quantum mechanical
formalism is at present indicated.

At this point we would like to mention other attempts in the same
direction. SEGAL [4] has constructed a system which allows non-distrib-
utive algebras of observables [5, 6], which we regard as too general.
Perhaps the most important result of this investigation is the emphasis
on the need for a purely algebraic (i.e. independent of any particular
representation in Hubert space) formulation of quantum mechanics.
This seems particularly relevant for the quantum theory of fields, where
unitarily inequivalent representations are abundant. Consequently, we
have tried to make our approach as algebraic as possible. In a published
set of lecture notes, MACKEY [7] has given an excellent discussion of the
problem. On the basis of axioms of direct physical significance, he shows
that the propositional calculus takes the form of an orthomodular
partially ordered set. In lieu of a solution to the problem, he restricts the
discussion to the usual quantum mechanical formalism by directly
postulating the well-known structure, in his axiom VII. Most subsequent
investigations, notably of ZIERLER [8, 9] and VARADARAJAN [10], have

been based on the orthomodularity of the calculus of propositions.
Recently, PIRΌN [11, 12] has made notable progress, and POOL'S thesis
[13] contains a detailed exposition of the basic principles.

We have attempted to make this paper as self-contained as possible,
so that at each stage in the development we can distinguish between
those features that are of essential physical significance and those that
are introduced only for mathematical convenience. Thus our approach
is as 'finitistic' as possible, though we do not restrict our development
to finite-dimensional algebras and vector spaces. This freedom is essential
if the usual Heisenberg commutation rules are to be permitted.

In section 2, we summarize briefly the basic concepts of state, logic,
compatibility and orthomodularity. On this basis, the first seven axioms
are constructed. We distinguish between pure and mixed states in
section 3, and construct some very useful linear vector spaces with
certain topology and order properties of direct physical significance.
In section 4, we introduce the three critical axioms A. 10 to A. 12 and
discuss their physical justification. These are then used in section 5 to
derive our main result which is the equivalent, in our approach, of
MACKEY'S axiom VII [7]. To quote from the latter "the partially ordered
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set of all questions in quantum mechanics is isomorphic to the partially

ordered set of all closed subspaces of a separable infinite dimensional

Hubert space." This needs to be modified slightly if we allow super-

selection rules (cf. appendix, Ref. [7]).

2. States and Logics

a) Basics

In this section we summarize moderately well-known results in order

to introduce notations and basic definitions. For a more detailed account,

we recommend MACKEY'S book [7].

In the basic investigations of BIRKHOFF and VON NEUMANN, the

important notion of a propositional calculus associated with a given

physical theory was introduced. This is an abstract formulation of the

logical content of any theory in which the measuring process can be

reduced to a set of experiments of the elementary true-or-false type. The

elements of the calculus, taken to be in one-to-one correspondence with

such equivalence classes of experiments, form an abstract set 0* on which

we impose an order relation " ^ " , induced by the logical relation

a ^ b oa->b (2.1)

i.e., whenever an observation on a particular system leads to the values

'true' for a, then b gives 'true'. In the case of a classical mechanical

system, whose state at a particular time may be represented by a point

in phase space, the propositional calculus may be identified with the set

of all Borel subsets of phase space ordered by set inclusion. The proposi-

tion associated with a given set is that which gives the value 'true' on

systems whose representative point lies in the set, otherwise giving the

value 'false'.

The dual natures of the concepts of state and proposition are apparent

in the classical case. From an operational viewpoint, the definition of

either depends in an essential way on the other one, in that a state is

defined by the set of values taken on the set of all propositions and

distinguished from other states only by this means. Conversely, proposi-

tions are defined in terms of the set of all states. This features seems

unescapable in any theory directly related to experiment, leading us to

formulate the first set of axioms as

A x i o m A . I . f(a) = fib) for all f ζ SP oa=b;a,bζ 0>.

A x i o m A . 2 . 3 Φ ζ 0> such that f(Φ) = 0 for all f £ &>.

A x i o m A . 3 . f(a) = g(a) for all aζ^ <=> / = g; f,gζ^-

In accordance with convention, we assign the numerical values 0 and

1 to the logical values 'false' and 'true'. The example of quantum mechan-

ics shows that this set of values is too restrictive; we must allow all

values between 0 and 1, i.e., a state is a probability measure on the pro-



Structure of Quantum Mechanics 265

positions. In the classical case such a state may be regarded as describing
our information concerning a random member of an ensemble of systems
with a given probability distribution on phase space, thus introducing
an element of subjectivity into the concept of state. According to the
usual interpretations, this latter feature is an essential part of quantum
mechanics. In axiom A.2, the absurd proposition Φ is introduced, for
which every value is false.

The next pair of axioms define the partial ordering of & in terms of
the usual ordering of the reals.

A x i o m A . 4 . For every a,b ζ £?, we have a ^ b if and only if f(a)^f (b)

for all f ζ y \

A x i o m A . 5 . For every a ζ &, there is an element a' ξ 0>y such that

f(a) + f(a')=lfσrάUfξSr.
The axiom A.4 is an extension of ordering by implication chosen so as

to accord with the classical case, when single systems are replaced by
ensembles with general probability distributions. The operation of
negation in the logic is likewise expressed in axiom A.5, again being the
obvious form consistent with classical theory. The properties of the
involutary order-reversing mapping a -> a' are

(a')' ^a aκaf ^Φ
{a v a') = Φf {aw b)f = a' A V . { ]

The trivial proposition Φ' is usually denoted by / and called the unit
element. The join (v) and meet (Λ) symbols denote as usual the least
upper and greatest lower bounds (when these exist) in the above order
relation. In the classical case, the propositional calculus is a Boolean
lattice, and orthocomplemented distributive lattice, in which join and
meet exist for every pair of elements. There is, in general, no good reason
for assuming that this lattice property always holds. However, there is
at least one case in which join and meet should exist, the case of orthog-
onal elements, defined in

a J_ b <^>a^b' (2.3)
where the perpendicularity symbol is used to indicate the orthogonality
of a and b. This again is based in the example occurring in classical
mechanics of disjoint subsets of phase space (and coincides in quantum
mechanics with the property of orthogonality of certain pairs of closed
subspaces of Hubert space). The next axiom expresses the essential
properties of this relation into our system

Axiom 4.6. (Orthogonality Axiom). If {a{\ i — 1, 2, . . ., n} is a set
of pair wise orthogonal elements of SP, then there is an element a of 0* (called
the sum of the aj such that

f(<*)=Σf("i) aϊl f ί S

defining the join a = a1 v a2 v v an.

19 Commun. math. Phys.,Vol. 6
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The restrictions imposed on 0* by the axioms stated so far are
summarized in the following theorem [7, 8, 10].

Theorem 2.1. 0* is an orthomodular partially ordered set, i.e. the
complementation a-> a' satisfies (2.2) and

a ^ b =^ (b ί\ a') v a exists and equals b . (2.4)

Equivalent useful versions of this weak modularity condition are
(for proofs in the lattice case see LOOMIS [14])

α^^α-h(αvδ') (2.5)

a < b and δ Λ α ' - 0 ^ α = δ . (2.6)

b) Compatibility and Incompatibility

The essential distinction between the proportional calculi of the
classical and quantum theories was pointed out by BIRKHOFF and
VON NEUMANN [3]: the occurrence of incompatible measuring processes
in quantum mechanics implies that the propositional calculus cannot
be the Boolean lattice, as with classical deterministic theories. In particu-
lar, the distributive laws

a v (b Λ c) = (a v b) Λ (a v c) (2.7)

a Λ (b v c) = (a Λ b) v (α Λ C) (2.8)

cannot hold for every triplet of elements in 0*9 even when each side of
the expressions exist. I t is inherent in the construction of classical
theories that for any state / of a single system and any pair of proposi-
tions a, b, we have f(a) and f(b) simultaneously taking one of the values
true or false. In the case of probability distributions, this becomes

f(a) + f(b) = f ( a v b ) + f ( a A b ) . (2.9)

In the case of a general calculus 0*, if a v b and a A b exist and (2.9) is
satisfied, we call a and b compatible [11, 12], and denote the relation by

δ. Various modes of expression of the compatibility relation are

b <=> {a Λ δ) v V ^ a (2.10)

b ^> (a Λ b') v b = (b Λ a') v a (2.11)

b <=> 3 c, d, β, with (i) a = c v e, (ii) b = d v e, (2.12)

(iϋ) e _L c, (iv) e J_ d, (v) c _L d .

A proof of the equivalence of (2.11) and (2.12) (for lattices) has been
given by FOITLIS [15]. That (2.10) is equivalent to (2.12) may be seen as
follows. Being given (2.10), define

e = aAb c = e ' Λ a d = e' Λ b . (2.13)
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The element e exists by assumption and the existence of c and d follows
from a simple application of axiom A.6. We have then to verify the
properties (i) to (v) of (2.12). Using Theorem 2.1,

(i) e ^ a, a = (a A e') v e = c v e, (ii) likewise,

(iii) e fg e v α' = c', i.e., β J_ c, (iv) likewise,

( v ) b y h y p o t h e s i s , c = e ' A a < a ^ (a A b ) v b' = e\ί b' = df

giving c J_ d. Conversely, d ± a => a ^ d' = (a A 6) v δ'. Q.E.D. Finally
(2.9) is an immediate consequence of (2.12) and from (2.9) we can obtain
the relation ay (a' A bf) = b' v (α Λ δ) which implies (2.10).

The connection between Boolean sublattices of 0* and mutually
compatible sets of elements is expressed in the following theorem,
proved by VARADARAJAN [10].

Theorem 2.2. A subset 3$ of the orthomodular partially ordered set & is
a Boolean sublattice (with the same zero Φ and unit I as £P) if and only if
(i) α, b ζ £$ => α<—> b and also a A b, a v b ξ ^ , (ii) a ζ £$ =#> a1 ξ &.

A simple corollary to this theorem is that α<-> b implies α<-> bf, etc.
We are not assuming that 0* is a lattice, and to ensure that sufficiently
many joins and meets exist, we suppose that

Axiom A.7. // α, b and c are three mutually compatible elements of έP
then a <-> b v c and a <-» b A C.

The property expressed in axiom A.7 is not possessed by a general
orthomodular partially ordered set, as is shown be the example of
RAMSAY [16]. In accordance with the fmiteness restrictions, we require:

Axiom A.8. There exist at most a countable number of elements in any
Boolean sublattice of &, and, for every element aζ &, at least one of (a, a')
is finite (i.e., any maximal chain joining a to Φ contains a finite number of
elements). Except where otherwise stated, we assume that the unit I is not a
finite element.

We do not wish to imply by axiom A.8 that it is necessary always to
work with such a logic, but that whichever logic is used, there is a physi-
cally equivalent one satisfying axiom A.8. A consequence of axiom A.8
is the existence of atoms, i.e. minimal non-zero elements in the logic £P.

c) Simple Logics

Let <€ be the centre of the logic &, i.e. the set of all elements which
are compatible with every other element. The elements of ^€ are essentially
classical in nature and possess the corresponding properties. In the
separable, atomistic case resulting from axiom A.8, it can be shown that
^ is generated by the atoms in <€, by taking finite joins and their com-
plements. There is a corresponding decomposition [10] of the entire
logic 0 into the direct sum of simple logics ^ l 5 ^ 2 , . . . in each of which
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the centre consists only of the zero and unit elements. In ordinary
quantum theory, the existence of superselection rules [17] implies the
presence of universally compatible non-trivial observables, giving rise
to the need to consider non-simple logics. However, for many purpose it
is sufficient to treat only simple logics, corresponding to a single super-
selection class. This simplifies many of the detailed statements of theo-
rems appearing in later sections.

d) Measurability of Propositions

In the preamble to axioms A.I to A.8, we used an undefined notion
of 'measurability' with reference to the elements of 0*. This term can
be justified only a posteriori, when a complete measurement theory is
developed within the overall theory with logic 0>. This is a requirement
of self-consistency on the theory, which will not be considered here. In
ordinary quantum mechanics, many studies of this problem have been
made [18, 19], though not with wholly satisfactory results.

3. Linearity and Observability

a) Linearity

There are still several natural requirements of an elementary nature
which one may impose on the space Sf of states in order to limit the range
of possibilities. One is to require a universal 'mixing' property for states.
Classically, this is always permissible; if we take any two ensembles X
and Y, each with given probability distributions x and y, then there is an
ensemble which we may denote by βX -f- (1 — β)Y, with distribution
βx -f (1 — β)y. In other words, that states of classical systems form a
convex subset of the linear vector space of all signed measures on phase
space. This is a feature which we may expect to retain in more general
theories as

Axiom A.9. For any f, g ζ £f and β ζ [0, 1], there is a state h ζ Sf

such that h{a) = βf(a) + ( ! - / ? ) g(a) for all aζ^>.

The uniqueness of A in A.9 is guaranteed by A.3 and it is said to be
mixture of the states / and g. The extreme points (if any exist) of the
convex set Sf are the pure states of the system.

The convex set Sf can be embedded in the convex cone ^ ^ of all real
multiples of the functions / ζ Si'. This cone is then simply the positive
cone of an ordered linear vector space ££ of additive functions on SP,
where Jδf = ^V f (— *&&>). The space L carries the natural norm [8]

||*| = supfl φ ) - x{a')\\ a ζ &} (3.1)

so that the unit ball is simply the convex cover of Sf \j (— Sf). The set Sf
can then be characterized in ££ as the set of positive elements of norm
one.
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b) Experimentally Distinguishable States

There is a further topology on S£ with direct physical relevance. As
emphasized by HAAG and KASTLER [20], a weak topology is particularly
appropriate for expressing the usual limitations imposed on any real
experimenter, in that within a finite time only a finite number of prop-
ositional observations of finite accuracy can be carried out. But a subset
of Sf of the form

U(f;pl9p, . . .,pn; εlf ε2,..., ε n )

= {g<g£ &; \g(Pt) - / t o ) | < v , i = 1,2,..., ^} (3.2)

defines a weak neighbourhood of / ζ ϊf in a certain weak topology which
we may call σ{5f, 0>). The positive numbers {ε̂ } we can regard as deter-
mining the limits of accuracy of each of the experiments in the set {p^
(the precise connection is not relevant). The collection of weak neigh-
bourhoods of / when {p^ runs over all finite subsets of £P and {εt } over all
finite sets of rational positive numbers forms a base of neighbourhoods of
/ in σ{6f, &). That this topology is Haussdorff (non-coinciding points
can be placed in disjoint neighbourhoods) follows from axiom A.I, as
for any f^-9^, there must be at least one atom a with f(a) Φ 0. The
weak topology (τ(Jδf, 0*) on ££ is defined in a similar manner.

According to the tentative arguments of HAAG and KASTLER [20],

the best any experimenter can do towards determining a state is to
determine at most a weak neighbourhood in Sf, rather that the un-
attainable ideal of a single point. Furthermore, we can see by means of
a simple counting argument that, to cover y , one needs only a finite
number of weak neighbourhoods, constructed according to equation (3.2),
for a given fixed set of experimental errors. In other words, there are
only a finite number of experimentally distinguishable states. Mathe-
matically, this is expressed by saying that £f is a(6^, ^)-precompact
(or totally bounded). This result is more usually proved by embedding
£f homeomorphically in the space of all functions on 0i (taking values
in [0, 1]), this space being compact in the Tychonoff product topology.

c) Pure States

λVe cannot yet say whether £f possesses any extreme points at all.
As any weak neighbourhood of such a pure state will inevitably contain
mixed states, the distinction is never quite clear cut. For convenience,
however, we can always extend £f by adding elements which do not
affect the physical content, but which ensure a full set of pure states. The
appropriate mathematical technique is that of completion, in the uni-
form structure determined by the completely regular topology σ(Sf, 0).
In the sequel, we assume that this process has been carried out and hence
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that y is σ(£f, ^-compact. The Krein-Milman theorem [21] then
ensures that £f is the weakly closed convex hull of the set of its extreme
points, thus making precise what we mean by a full set of pure states.

We can deduce further elementary consequences, making use of
known results for cones with a compact base [21, 22]. In particular, the
normed space ££ is complete and hence is a Banach space whose closed
unit ball is a(£P} ^-compact. The cone ^#> is σ(J£, ^)-locally compact
and a(J£, 0)-closed (and hence norm-closed). From these properties it
follows that j£f is canonically equivalent [23] to the Banach dual space
of a normed linear subspace [0] of the Banach dual Jδf' of j£? itself. The
space [0~\ is defined as the linear span of the image of 0> under the
canonical imbedding

τ : 0> -> <£'\ < τ ( α ) , x ) = x(a) f o r a l l x ζ & . (3.3)

As no ambiguity will arise, we will omit τ in the sequel and identify an

element of 0) with its canonical image on S£'.

The norm in [0] is the one induced in it by the embedding in Jδ?\

However, except in the finite dimensional case, \0*~\ itself is never a

Banach space. For the purposes of comparison with ordinary quantum

mechanics, it is convenient to introduce also the Banach space [0], the

completion of \0\ We can obtain an indirect characterisation of this

completion by using the method of GROTHENDIECK [21, p. 148, 24], for

which the elements of [0>] can be identified with those linear functionals

on j£? which are σ{J£, ^-continuous on bounded subsets of S£. The

natural inclusions [0>] C φ] C &' are all σ(JSf", ^)-dense. j£f is the

Banach space dual of both [0] and \βP\ and the topologies σ(J£?, [^])

and σ(J^, φ]) both induce the same topology σ{S?, 0>) on Sf.

There is one particular pure state which needs separate treatment.

Let \0*f\ denote the linear span of the finite elements of [0] and \0*f\ its

completion. Then [βPf] is a norm-closed subspace of \0*\ as the cor-

responding linear functional In which takes the value 0 on [0*f] and 1 on

/ is clearly norm-continuous. The dual of \0*^\ is thus the factor space

<^l^h, where &h is the one-dimensional subspace spanned by h. Clearly

h is a pure state, but of no particular physical relevance, arising solely

from our insistence on including non-finite elements in 0*.

d) Primitive Observables

At this stage of the development, the linear subspace [0] of 3?' is not
very well characterised, because we have as yet no prescription for
determining how many ways there are of representing a point of [0*~\ as
finite linear combinations of elements of 0>. Thus there are several
different ways that one can extend the usual definition of an observable
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in terms of elementary propositions. We follow the 'spectral resolution'
definition proposed by MACKEY [7] as being the most appropriate,
though our scheme is still too general to say whether even the sum (in
[^]) of two propositions is always an observable in this sense. In classical
and ordinary quantum mechanics, sums of observables are always
observables.

Definition 3.1. A primitive observable is an element of [έ?] of the form
λxaλ + λ2a2 + -f- λnan where {λ^ is any set of distinct non-zero real
numbers and {a{} is a set of painvise orthogonal elements of 0*.

This definition of an observable, involving only a -finite number of
compatible propositions, is essentially the weakest one we can make.
However, in the sequel, it will turn out that all the more general types
of observable are limits in a certain sense of these primitive observables
and so the definition is satisfactory for our purposes. We say that two
primitive observables are compatible, when all the component proposi-
tions are pair wise compatible. The set {λ^ is the spectrum of the ob-
servable. Note that the norm in JS?' of the observable is just max{ |^ | ;
i - I, 2, . . ., n).

e) Order Structures

The space ££' is an ordered linear vector space [21] if we take as
positive cone the cone ^^> dual to the cone *€ #>. Thus *€'&> consists of all
continuous linear functionals on ££ which are non-negative on ^ ^ . The
qualification "continuous" is in fact superfluous, as a theorem due to
KLEE [21, p. 228; 25] shows that any positive linear functional on J£ is
automatically continuous, «£? being a complete metric space generated
by a closed positive cone.

An ordered linear space (E, C), satisfying
a) E = C — C, where C is the positive cone
b) E admits a norm || || such that, for any xvx2ζC, we have

!ki + «y = NI + !WI
c) Every positive linear functional of (E,C) is || ||-continuous, is

called a 6r£-space by MILES [26]. Thus our space (J^7, *% <?) is a 6rZ-space,
whose dual space is thus a GM-space [26]. Hence the ordered linear
space (Jδf'} *$'#>) has the properties; (i) the cone Ή'c? contains an internal
point e and (ii) the support function of the convex set (^^ — e) r\ (e — Ή'y)
is a norm. In our case we take e as the unit / of ^ , in which case the
unit ball in JS?' is identical to the above convex set, i.e. the intersection
of the positive and negative cones with vertices at — / and I respectively.

The positive cone φf]+ of φf] is thus φf] r\^ and φ>]+ is just

the set of elements of the form x + ocl, where x ζ [&f]
+ and α j|> 0. In

consequence, [^f]
+ and [^] + possess the same set of extremal generators.
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4. Self-adjointness and Reversibility

a) Introduction

We turn now to the 'critical' axioms which give rise to the usual
algebraic structure of states and observables. An example of a proposi-
tional calculus which satisfies all the axioms stated so far (except that /
is finite here) is given in Fig. 1. This is a lattice, and a simple enumeration

Fig. 1. An orthomodular lattice satisfying Axioms A.I to A.9

shows there to be eight distinct pure states, spanning a four-dimensional
state space. On the seven atoms a,b, . . . g, the most general state takes
the values 1 — γ — δ, α, β, α + ^ + y + ί - 1, y, δ, 1 — α — β respec-
tively. Here α, β, γ, δ are real numbers in the interval [0, 1] satisfying
α + /? ^ 1, γ -\- δ ^ I, α + j S + y + ό ^ l . The pure states are ob-
tained when (α, β, γ, δ) take the following sets of values: (1000) (0100)
(0010) (0001) (1010) (1001) (0110) (0101). Clearly there is no one-
to-one correspondence between pure states and atoms, in contrast with
the usual quantum mechanical lattices (of closed subspaces of a Hubert
space). In order to find a physical motivation for the final axioms, we
have to look more closely into the interpretation of propositions as
elementary measuring processes.

b) Elementary Observations

Much of the usual quantum theory of measurement [18] is indepen-
dent of the detailed algebraic structure of the theory, in that it can be
formulated in terms of the concepts of states, observables, transition
probabilities, etc., already introduced. We will concentrate upon only
one aspect of this theory, that of the close connection between the
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observation and the preparation of a state. We always take states to
refer to larger ensembles, so that the state can be determined by a
complete set of measurements without effectively changing the state.

Each elementary proposition may be associated with a ' "filtering"
process in which one imagines a portion of a given ensemble passing
through the appropriate selection apparatus, the rest being rejected. The
useful analogy of a semi-permeable membrane is an important feature of
VON NEUMANN'S work [18]. Thereupon, a measurement of the fraction
transmitted gives one physical datum concerning the state to be deter-
mined. This transmission coefficient is just what we mean by the value
f(b) of the state / on the proposition b. However, not only does the selec-
tion apparatus assist in performing an observation, it can also prepare a
state, the one in which the transmitted ensemble finds itself. The crucial
point to be met now is: what happens when this new ensemble is sub-
jected to a further selection process identical to the one which formed it ?
Certainly, the most desirable result is that of complete transmission. This
accords with both the idempotent nature of propositions in the classical
case and the results of experiments for many simple systems (e.g.
polarization experiments). Furthermore, it seems reasonable that the
most 'selective' processes should produce the purest states. In the
optimum case, this determines a unique one-to-one correspondence
between (physically distinguishable) pure states and (physically distin-
guishable) atomic propositions. Furthermore, we can extend this cor-
respondence to be linear on J ^ into [£?f], in order that mixed states may
be prepared by suitable combinations of selection processes acting 'in
parallel'. This correspondence will certainly be an algebraic isomorphism
between the vector spaces J£f and [&f] of finite linear combinations of
pure states and atoms respectively, but need not necessarily be onto if
the spaces are enlarged. The linear map

σf:#,^[i?f] (4.1)

so defined is norm-reducing, as the extreme points of the unit ball in
££f (the pure states and their negatives) are all mapped into elements of
norm one in [έ?f]. Let a be the extension of the map σf to the completed
spaces S£ 1 and \&f\ The idempotence property requires that {/, #(/)) = 1
for every pure state /, and the uniqueness requires that for any pure
state g =j= /, we have (g, σ(/)) < 1. Summarizing:

Axiom A.10. There is a one-to-one continuous linear map σ : J2?f -> [£?/]

which maps the positive cone ^^ onto a dense subcone of \βP/\, taking pure

states into atoms and such that (g,σ{f)} ^ 1, where f,g are pur estates,

equality being attained only for f — g.

In the sequel, the image under σ~x of an atom a will be written a.
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c) Reversibility and Compatibility

The action of the filtering process associated with a proposition a may
be represented by a linear operator E(a) acting on S£\ In terms of an

E(a)f

Fig. 2. Illustrating the projection operator E(a)

obvious diagrammatical notation (Fig. 2), we have \\E(a)f\\ = (a, /) for
any state / ζ $f. From A.10, we find

E(a)d^d; E(a)b = (a,b)d (4.2)

| |^(α)δj | - 1 <=>a = b . (4.3)

We can now formulate our final axioms,
Axiom A.ll. // / is a 'pure state, then, for any aζέ?, E(a)f is propor-

tional to a pure state.
Axiom A.12. If a ^ b, then E(a) E(b) = E(b) E{a) = E{a).
In effect, A. 12 states that for the case of comparable propositions, we

obtain the usual classical laws for composition of transmission prob-
abilities (Fig. 3). Both g and h are pure states and (a, /) = (b, /) (a, ίi).

Fig. 3. Illustrating Axiom A. 12 for a pure state /

This clarifies our interpretation of simultaneous observability for a and b
for a given state /, in that we can still determine (a, /) after (b, /) has
been determined by processing the whole of the ensemble in the state /.

In axiom A.ll, we find a qualitative requirement which seems
essential if our system is to be capable of describing a maximal set of
reversible processes. Suppose all the elementary selection processes are
capable (at least in principle) of being performed reversibly. Then the
process splits an ensemble into two subensembles, the 'reflected' and the
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'transmitted' ensembles, in such a manner that it is possible to reconstruct
the original ensemble by reversing the entire process. A typical example
is that of the splitting and recombination of polarized beams of particles
under conditions such that the 'phase relations' (as described by ordinary
quantum mechanics) are undisturbed. However, this is an experimental
property which can be described and checked independently of the
particular interpretation given by ordinary quantum mechanics.

One consequence of this form of reversibility is that, on starting with
an ensemble already in a pure state (as determined by a complete set of
measurements), then the partial ensembles created by the idempotent
selection process must also be in pure states. This is clear, if we can
construct a statistical theory involving the usual concepts of entropy,
etc., satisfying the usual relations for reversible and irreversible processes.
A lengthy discussion is given in VON NEUMANN'S book [18], based of
course on the usual quantum mechanical formalism. However, the
arguments used are not dependent on the particular algebraic structure
associated with quantum mechanics. In order to carry through VON
NEUMANN'S arguments, one needs only the existence of a 'spectral
resolution' of a state. We show in theorems 4.12 and 4.13 that the
axioms ensure this, but we have not found an argument not involving
axiom A. 11 itself.

d) Self Adjointness

We proceed to further characterise the operators E{a).
Lemma 4.1. // b is an atom and E(a)b = 0, then b J_ α.
Proof. Clearly <α, δ> - 0, i.e. {a1, b) = 1. From A.ll, E(a')f> = 6,

where c is an atom ^ a'. From A. 12, E(c)b = (c, δ)c = c, hence b = c,
giving the required result.

Theorem 4.2. (Commutativity Theorem). For any a,b ζ &>, then
E(a)E(b) = E{b)E(a) = E(ahb) if and only if a^b.

Proof. For any state /,

E(a) E(b)f = E(a) (b, f)g = (a, g) <b, f)h (4.4)

E(b)E(a)f=E(b)(a,f)k=<b,ίc)(a,f)ΐ (4.5)

where g g b, h < a, h ^ a, I < b. Let a = c -f β and b — d -f- e as in
(2.12). Then from (4.4) and c 1 b, we find

E(c) E{a) E(b)f = E{a) E(c) E(b)f = 0 = <α, g) <6, f)E{c)h (4.6)

so either (i) c _]_ h or (ii) E(a) E(b)f = 0. In case (i), the relation (a, h}
^= (c, h} + (e, Λ) = 1 gives {e, ί ) = 1, so E(e)h = m, for m ̂  e. But
E(m)h = E(m) E(e)h = m, i.e. (h, m) = 1, giving m = h. Thus we get

E(e) E(a) E(b)f = E(e)f = <e, f)ή = <α, g) <6, f)h (4.7)
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where n ?g e. Hence

<e, /> = <α, $> <δ, /> and h = n (4.8)

A corresponding treatment of (4.5) gives

<e, /> = <6, £> <α, /> and I = w (4.9)

and the required result follows immediately. In case (ϋ),

E(a) E(b)f= 0 = «c, £> + <e, <?» «ί, /> + <e, / » ί .

Thus either (a) {d, /) -f- (e, /) = 0, whence / _L e or / ^ e' = a' v b\ or
(b) (c, $) -f (e, $) = 0, where g _[_ e or g ^ c' and also g ^ b hence
^ ^ ^ = δ Ae'.Butg ^ d implies {{d, /> -f <e, f))g = E(b)f = E(d)E(b)f
— E(d)f — (d, fy§, giving (e, /) = 0. This means that / ^ e' = a' v 6'.
In both (a) and (b), we get / ^ α' v δr, hence E(a \b)f = 0.

Conversely, suppose E (a) E (b)f = E (b) E (α) / = E {a Λ 6) /. For /
take any atom ^ (a A b)' A a. Then E(b)f = 0, and, from Lemma 4.1,
f 1_ b. Hence (α Λ 6)' Λ α J_ 6. Similarly, (α Λ b)' A b ± a. Thus
a = (a A by A a -\~ a A b; b = (a A by A b -i~ a A b is a decomposition satis-
fying 2.12, resulting in <x<-> b. This completes the proof.

Theorem 4.3. // a ζ 0> and b is any atom, then ay b exists and E(af)b
= (a\ b} σ~1((α v b) A a').

Proof. Clear ly E(a')b =-- <α', S>c = <c, 6>c, w h e r e c S α ' L e t d ( P

satis fy d ^ a,b. T h e r e l a t i o n dί<-> α' a n d T h e o r e m 4.2 give !£(<#) (c, Syβ

= E{d)E(af)b = E(a') E{d)f = E(a)$ = <c, S>c, i.e. c g rf (or E{a')b = 0,
but in this case b ^ a and the theorem is trivially valid). Hence we have
α v c -< ίZ, and also ^(c r) <c, δ>c = 0 = ^(c r) E{a')ΐ> = j^(α') ^(c')£
= E(afAc')f giving b^avc, using theorem 4.2. Collecting these
results, we get a,b 5g α v c ^ any upper bound of α, 6. Hence α v b exists
and equals a v c = α + c. From c ^ a'} orthomodularity gives
c = ( α v c ) Λ α ' = (a v b) A a', the required result.

Corollary 4.4. // bv b2, . . ., bn, are any finite set of atoms, there exists
a set of mutually orthogonal atoms aλ, a2, . . , # m {m ̂  n), such that
Vδ α = Vα,

This follows by repeated application of the preceding theorem.
Lemma 4.5. // a is an atom and x ζ &, then (x, α) = 1 <=> a < x.
For, A.11 gives E(x)ά — c, where cis an atom majorized by x. Hence

E(c) E(x)ά = E(c)ά = c, which implies a = c. The converse is trivial.
Definition 4.6. Let x be any finite proposition, then by [x] (resp. [x])>

we denote the closed subs pace of 3? (resp. [&]) spanned by {dj (resp. {a}),
where {aj is the set of atoms ^ x.

Lemma 4.7. // x ζ [-̂ /]> then [x] is the eigenspace of E(x) with eigen-
value 1.

Proof. For any atom a 5g x, we have E(x)ά = a, so it is clear that
[x] C the required eigenspace. Conversely, if / ζ Jίf, then / is the sum of a
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suitable norm convergent series

/ = ΣΣ
n— i

Suppose E(x)f = f, then, using (A. 11), we see that / also possesses a
norm convergent representation

where cn ^ x for all n. Hence, [x] being closed, / ζ [x].
Lemma 4.8. If x ζ [&f] and [x]° is the polar of [x], then for any state

f, we have f- E(x)fζ [x]°.
Proof. For any a ^ x, axiom A.12 gives (a, E(x)f}d = E(a) E(x)f

= E(a)f= <α, f)d. Thus (a, f - E(x)f) = 0. The atoms a ^ x span [x\
and the result follows.

The results of this series of lemmas are summarized in:
Theorem 4.9. If xζ [&f\, then the dual of [x] is canonically isometric

to [x].

Proof. I t is a standard result [21] that the Banach dual of the closed

linear subspace [x] is canonically isometric to the quotient space

^fl[x]°. Let {/} be the equivalence class in this quotient containing a

given pure state /ζ ££P Then / = E(x)f + (/— E(x)f), so Lemma 4.8

requires that E(x)f lies in the same equivalence class. But ||i7(a;)/|| ^

<^ ||jf|| = l5 hence {/} lies in the unit ball of ^fj[xf. Taking into account

Lemma 4.7 and that the unit ball in <£f is (£f + (— S?)) r\ J2?f} we con-

clude that the canonical mapping J^?

//[Λ;]0<-> E(x)&f is isometric.
This theorem has important consequences, in that [x\ and [x]

possess all the properties of the original spaces [&f] and ££f, obtained by
setting x = I (in the above we have restricted x to lie in 0*f, for sim-
plicity in statement, but this is not essential). In particular, the positive
cones of [x] and [x] can be identified by using the map σ (4.1), as well as
being dual to each other. In order to illustrate the general case, we
first suppose x = a v b, where a and b are two different non-orthogonal
atoms. Then 0, a, b, αv b, (a v b) Λ a' — z and (α v b) hb' = y span a
three-dimensional space 3Γ (cf. theorem 4.3) which is a subspace of
[ay b]. The convex hull of the set of points is a subset of the positive
cone in 3~.

Lemma 4.10. The open linear segments a . . . b and z . . . y cannot both
lie on the boundary of the positive cone in [α v 5].

Proof. If λa i- (1 — λ)b (0 < λ < 1) were such a point, then, by
theorem 4.9, there must be an atom u < a v b such that (u, λά +
4- (1 — λ)S) = 0. This gives (u, a) = (u, δ) = 0. But, from Lemma 4.1,
this requires that u _\_ a and u _[_ b, i.e. u _[_ ay b, a contradiction.
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Thus there must be a further boundary point c in the plane of
a, b, y, z. Moreover, c must be an atom. For, if it were a convex com-
bination of two or more other atoms, we can repeat the above argument
to show that these atoms are orthogonal to c and also less than a v b,
arriving at a contradiction. Thus a v b = c + w, where iv — [awb) i\c'
(Fig. 4).

1/2 avb

Fig. 4. Illustrating the linear relations between atoms in the proof of Lemma A. 10

Repeating the above arguments for all pairs of atoms <a v b, we see
that all boundary points of the positive cone of [aw b] are atomic. This
property is essential in the proof of:

Theorem 4.11. (Spectral theorem, first part). Any element in [β?f]
of the form λa + μb, ivhere a and b are different atoms, possesses a spectral
resolution of the form λ' c + μ d, where c J_ d.

Proof. If a _[_ b, there is nothing to prove. Otherwise, following
Lemma 4.10, we construct the plane containing the elements 0, a v b
and λa + μb. This intersects the positive of [a v b] in a cone bounded by
two atoms, c and d, say. Furthermore, c + d — a v b and c _[_ d. Pro-
jecting onto these directions, shown dotted in Fig. 5, gives the required
resolution.

Lemma 4.12. The bilinear form (. , .) on [aw b] x [aw b] defined by
p, q -> (jp, q) is symmetric.

Proof. Let p and q be atoms. Then the linear functional z-> (z, q),
z ζ [a v b], is, by definition, the element q (cf. Theorem 4.9). Consider the
linear functional r, which, on atoms, is defined by r: p -> (g, p) and else-
where by linear extension. This is clearly a positive linear functional of
norm 1 and moreover satisfies ((a v b) Λ q'', f) = 0. But the only state in
[aw b] which is orthogonal to (awb)Λq' is q itself, i.e. q = r and hence
(q, p) = (p, q).
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If [a v b] is a finite dimensional space, the positive cone, being its
own dual under a symmetric bilinear form, is called self-adjoint [28—33].
Several studies of these cones have been made, mostly in connection with
the algebraic structures that they support when the group of all auto-
morphisms is transitive (homogeneous cones). In our case we will show
that homogeneity is a consequence of the axioms.

(λa + μb)

Fig. 5. Illustrating the spectral resolution of λa + μb

Theorem 4.13. (Spectral theorem, second part). Any finite element of
[&] possesses a spectral decomposition.

Proof. We need consider only a strictly positive element

x = λ^Λ- — • + λnbn, λ{> 0,

which we take as an internal element of the positive cone of
fyj] = [δj v v bn~\. Any other element can be translated into a strictly
positive one by adding a suitable multiple of the appropriate order
unit ψ.

The closed hyperplane (ψ, z) = 1 contains all the atoms fg ψ. The
positive cone intersects this in a weakly compact convex subset £fψ of £f.
Thus the linear function (x,z) (z ζ 6^ψ) attains its minimum (>0) on
some extremal subset of SPψ. Let a be any atom on which the minimum
is attained. Then the hyperplane H: (x — (α, x) a, z) = 0 contains a,
but if b (4= a) is any other atom, then we have

(x - (α, x) a, b) ^ (α, x) — {a, x) {a, b) = (a, x) (1 — (a, b)) > 0 .

Hence x — {a, x)a is a relatively internal element of the positive cone
of [a' Λ ψ]. Thus we have the orthogonal decomposition of x into positive
elements; x = (α, x) a + (x — (a, x)a). Repetition of this process will
lead, after a finite number of steps, to a complete spectral resolution into
multiples of pairwise orthogonal atoms.
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5. Algebras of Observables

a) Jordan Structures

The usual Jordan product of matrices

£(e/ + /e) = \{efe - (I - e) f(I - e) + f) (5.1)

suggests that we introduce the following definition

a^b = \{E(a) b - E(a') b + b) (5.2)

of an algebraic product operation for any pair of atoms a, b.
The first main theorem of this section is:
Theorem 5.1. The product a o b defined in (5.2) satisfies (i) commuta-

tivity, a o b = b o α, and (ii) a o (b o c) = b o (a o c) for any set of three
atoms with a o b.

Proof, (i). Using Theorem 4.3 and Lemma 4.12, we get

a o b = | ( (α, b) a - (a', b) {a v b) Λ a! + b) . (5.3)

Using a v δ = a + (α v δ) Λ α' = δ + (α v 5) Λ δ' and (αr, δ) = 1 — (α, δ),
we can rearrange the terms into the form

!((&, «) (δ + (δ v α) Λ δ;) - ( δ v α ) Λ δ ' + α)

which is just boa. Hence the commutativity.
(ii) From the definition (5.2), the difference a o (b o c) — δ o (a o c) is

<τ([|0E(α) + I - E(a% \{E{b) + I - E{b'))} c) .

But if a _L b, then all the projection operators appearing in the commuta-
tor bracket commute (cf. theorem 4.2) and thus the difference vanishes.

We can now extend the definition (5.2) to arbitrary members

x = Σ α t α i a n d V = Σ βjbj °f \β*f\ by linearity to

i j

The distributive property of a o δ is an immediate consequence of the
definition. Uniqueness of the extension by linearity in the second member
y follows from the definition. Commutativity then ensures uniqueness of
linear extension in the first factor. Moreover, the form (5.2) is still valid
if a and δ are any finite propositions.

Lemma 5.2. Forany x ζ [&f], the Banach space [x], when endowed ivith
the product operation (5.3), is a real simple Jordan algebra.

Proof. For any pair of atoms a,b ^ x, we conclude from theorem 5.1
that α o δ ξ [avb]. Thus [x] is closed under the product operation.
Furthermore, if [x] is finite dimensional, there exists only a finite number
of atoms in any orthogonal set on [x]. Noting that y2 -f z2 = 0 =̂> y2

= z2 = 0 (use the spectral resolution theorem 4.13 on y and z) we see
that all the conditions for a finite real Jordan algebra are satisfied [1].
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In particular, the second condition in theorem 5.1 implies the more
usual condition y2 o (a o y) = (y2 o a) oy for any a, y £ [x]. This is
proved by JORDAN et al. [1]. The infinite dimensional case will not
concern us in the sequel and we omit the proof.

Lemma 5.3. The (infinite) Jordan algebra [&f] is simple.

Proof. Suppose [&f] were not simple, then there would be a non-
trivial idempotent element x in the centre of [^f], i.e. one for which the
left translation

Lx:y-+xoy (5.5)

on [έPf] commuted with all other left translations [1, Sec. 9]. But from
(5.2) and the remarks following theorem 5.1, we have

Lx = \(E(x)-E(x') + I). (5.5)

Hence [(E(x) - E(x'))9 (E(z) - E(z'))] = 0 for all idempotent z ξ \&f\
Using arguments similar to those appearing in the proof of theorem 4.2,
we conclude that x<-> z for all z ξ \8Pf\ in contradiction with our initial
assumption that 0* is a simple logic (Sec. 2 c).

Lemma 5.4. Any Jordan subalgebra of [&], which is of the type [x], is
simple.

Proof. This can be proved in the same way as Lemma 5.3, or by
using a theorem due to ALBERT [34]. When x is a finite element and [x]
finite dimensional, then [x] is a real simple finite Jordan algebra, which
have been completely classified [1] into

(i) 91 the usual algebra of the reals

(ϋ) 0N for N = 3, 4, . . ., the algebra with basis given by a set of
(N — 1) linearly independent matrices {γμ} and a unit /, satisfying

Ύμ ° 7v = \ (γμ 7v + 7v γμ) = δμyl; γμ o I = γμl.

(iii) 9?ς̂  γ = 3, 4, 5, . . ., χ = 1, 2, 4. The algebra of (γ x y) Hermi-
tian matrices in which the elements are real numbers (χ — 1) or complex
numbers (χ = 2) or quaternions (χ = 4). The Jordan product is a ob =
•| (α?> + ^^) i n terms of the usual matrix product.

(iv) 9K| the algebra of 3 x 3 Hermitian matrices with Cayley number
(octonion) elements.

If there exists a set of at least four orthogonal atoms in \0*\ then the
only possibilities lie in class (iii). The Jordan product can be extended to
[^] = [<Pf] φ [λl], being the algebra obtained by formally adjoining an
identity element. If [^] is regarded as a countable union of finite
dimensional algebras, the classification problem is then reduced essentially
to that of the finite dimensional algebras. Using the notion of direct
limit of algebras [35], we may represent [^] as the direct limit (no

20 Commun. math. Phys., Vol. 6
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topology) of the direct limit system ({[%] θ {λl}}, {Πxy}) directed by
inclusion. The maps Πxy : [x] θ {λl} -> [y] φ {λl} are the canonical
injections. Corresponding to the three main types of Jordan algebra in
class (in), we find

Theorem 5.5. There are three distinct simple infinite Jordan algebras
9Jl̂ o 0/ the type \&\ being the operator algebras in a separable infinite
dimensional Hilbert space, formed from self-adjoint operators which differ
from a multiple of the identity by an operator of finite rank. The Hilbert
space is defined over the reals (χ — I), the complexes (χ = 2) or the quater-
nions (χ = 4).

Proof. In any direct limit system representing \β\ the algebras [x]
must all be of the type 2ft*, where γ is determined by the dimension of
x (or rather, a spectral resolution of x). Note that 9K| == &χ+2

 a n ( ^
$J\x = 9ΐ. Moreover, the value of χ must be the same for all algebras in
the system. Indeed, for any pair of comparable algebras in the system,
the smaller may be obtained from the larger by decomposition relative to
a suitable idempotent [1, theorem 8] (cf. lemma 4.7). Hence, in any
common decomposition of the pair relative to a maximal set of pairwise
orthogonal unresolvable idempotents, the value of χ resulting [1,
theorem 17] must be the same for both algebras. Any two algebras in the
system are subalgebras of some common larger algebra and the result
follows immediately. Thus the three essentially distinct direct limit
systems (for χ= 1, 2, 4) determine, at least algebraically, the three
infinite Jordan algebras SJlΐL defined above.

b) Extended Classes of Observables

The three Jordan algebras of theorem 5.5 are the smallest infinite
dimensional analogues of the algebras 92}£ (γ ^ 4), if we insist on the
presence of an identity element. These are the algebras of primitive
observables (Def. 3.1). However, the algebras used in ordinary quantum
mechanics, especially those of all self-adjoint bounded operators on a
Hilbert space, are much larger. By relaxing our finitistic requirements
and allowing limiting operations in \&\ we can include these cases. If
we keep the same set of states, the largest possible space consists of all
linear forms on j£f, i.e., the algebraic dual «£?*. By embedding \0>\ in j£P*
and adjoining appropriate limits in the weak σ{J£*, 3?) topology, we can
construct various extended spaces. In particular, the Banach space ££' is
given as the union of the σ(j£f*, «£?)- closures in j£f* of all bounded sets in
m [21, p. 143].

For each of the three Hilbert spaces J^χ, χ = 1, 2, 4, we obtain the
following realisations of the various spaces defined in section 3.
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(i) [&] is the completion of [&] in norm, i.e. the usual operator
bound, and so consists of all self-adjoint operators which differ from a
multiple of the unit operator by a compact operator.

(ϋ) S£\Mh is the Banach space of all self-adjoint trace-class operators,
Λvith trace norm [36]. The duality between [^] and Jδf becomes

where the state / is represented by the trace class operator Of.
(ϋi) (J^l&h)' is the Jordan Banach algebra of all bounded self-

adjoint operators on Jf7 [36].
Correspondingly, we have enlarged the original lattice of propositions.

However, we regard any larger lattice, up to the lattice of all projection
operators as being physically equivalent to the one obtained initially,
i.e. the lattice gp formed from projection operators of finite ranks and
their complements. The equivalence is understood in the same sense as
the dual case discussed in section 3 b, i.e. for any given finite number of
states in £f and corresponding finite errors, the weak neighbourhood of
any proposition so determined always contains finite ones.

6. Notes and Comments

1. Axioms A. 11 and A. 12 can probably be replaced by many suitable
alternatives. In the finite-dimensional case, it is known [28—33] that a
necessary and sufficient condition for a self-adjoint convex cone to be
the positive cone of a real Jordan algebra is that it possesses a transitive
group of automorphisms. In the weakly infinite dimensional case con-
sidered here, a similar statement may be expected to hold. There are
many conditions which ensure such homogeneity, but we have not
discovered any physically satisfactory ones. For example, if the in-
volution x -> — x"1 is order preserving, then this is a sufficient condition.

A natural requirement on the theory is that the order preserving
one-to-one transformations of Jδ? which leave invariant the set of states
Sf should be transitive on the pure states. It is this type of transformation
which is required to describe the development in time of an isolated
system according to some reversible equation of motion. Furthermore,
it is known that such order preserving one-to-one maps are necessarily
linear in all cases of interest [31] and hence are automorphisms of the
order cone. Full transitivity may require somewhat more than this.

2. We do not know if axiom A. 12 is independent of the earlier axioms.
We suspect this to be the case, although we know of no supporting
counterexample.

3. For the case of logics which are not simple, but can be expressed
as direct sums of simple logics, the axioms do not require modification.
20*
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The resulting algebras are then the direct sums of the simple algebras

corresponding to the simple logics.

4. The cases for and against the use of scalars from each of the real,

complex and quaternion fields have been treated fully in several papers

[38, 39, 40].

5. All the algebras we have considered are essentially of von Neumann

type I, as we have explicitly postulated sufficient minimal idempotents.

While we feel that no more physical content will be found in more

general algebras, nevertheless it would seem to be of importance to

cover the cases of types I I and III as well. That the usual field commuta-

tion rules give rise to such algebras is well-known [41, 42, 43]. For this,

the recent studies of Jordan 0*- and TF*-algebras will be useful [44].

6. The considerations of Sec. 3b can be developed further if we are

given a realization of the abstract set of states 5^ in terms of a particular

physical picture of the universe. With any experimenter E, we may

associate a 'subjective state space' 6^^ which depends on the maximum

experimental resolution of which he is capable. This space may be de-

fined as the pair {Sf, TE) in which TE is a certain set of weak neighbour-

hoods in 8. For any real experimenter, there are not sufficient of these

neighbourhoods to separate the points of Sf. We cannot in general

define it as a quotient state space in which indistinguishable elements

are identified, as they do not necessarily fall into equivalence classes.

HoΛvever, pairs of elements of £f may be classified into 'distinguishable'

if they satisfy the Hausdorff separation property of Sec. 3 b, and in-

distinguishable otherwise. From this viewpoint, the purity or degree of

mixedness of a state is a highly subjective characteristic. Indeed, we

may remark that some pairs of states remain indistinguishable for all

conceivable experimenters: It is unreasonable that experimental

accuracies which, require measuring tools greater than the size or mass of

the universe and operating longer than the lifetime of the universe

should be considered! Thus states of sufficient complexity which we may

term 'macroscopic' may be expected to lose much of their quantum

mechanical nature. We do not wish the pursue further the details of

this classical limiting process here.

VON NEUMANN'S quantum mechanical theory of the measuring

process [18] may be interpreted from this viewpoint, in that his contro-

versial 'projection' postulate loses many of its apparently paradoxical

properties if it is recognised that the projected and unprojected states

are, to the relevant experimenter, indistinguishable. This point has been

treated in detail by JATJCH [19].

The author would like to thank Prof. M. H. STONE for pointing out some errors
in an earlier version and for useful comments.
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