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Abstract. A globalized version of the following is proved. Let ^ be a factor
acting on a Hubert space $P, G a group of unitary operators on 3? inducing auto-
morphisms of ,̂ x a vector separating and cyclic for 0t which is up to a scalar
multiple the unique vector invariant under the unitaries in G. Then either 0t is of
type III or ωx is a trace of ̂ . The theorem is then applied to study the representa-
tions due to invariant factor states of asymptotically abelian <7*-algebras, and to
show that in quantum field theory certain regions in the Minkowski space give
type III factors.

1. Introduction

In the operator algebra setting for quantum field theory and quan-
tum statistical mechanics there have been given several examples of
von Neumann algebras of types III and II19 see e.g. [1, 3, 8]. Then one
has a von Neumann algebra, a group of unitary operators inducing
automorphisms of it, and a unique invariant vector, and one shows the
von Neumann algebra is of type IIj if the invariant vector is a trace
vector and type III otherwise. In the present paper we shall prove
general theorems roughly to the same effect, and apply them to obtain
generalizations of results in the quoted papers and also to describe the
representations due to extremal invariant states of asymptotically
abelian C*-algebras.

2. Automorphisms of von Neumann Algebras

Our main results are proved in this section. The proof will be based
on the ideas of HUGENHOLTZ [8] together with those of Kovlcs and
Szϋcs [10]. We first recall terminology and results from [10]. Let ̂  be a
von Neumann algebra and G a group of *-automorphisms of ̂ . A state
ρ of ̂  (or more generally, a positive linear map of ̂  into another
von Neumann algebra) is G-invariant if ρ o g — ρ for all g ζ G. 0t is
G-finite if for each non zero positive operator Am 3% there exists a normal
6r-invariant state ρ of ̂  such that ρ (A) Φ 0. Denote by conv (g ( A ) : g ζ G)~~
the weakly closed convex hull of the orbit of A under G. Let 3% denote the
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fixed point algebra in St, so & = {A ζ & : g(A) = A for all g £ Q}. If #
is 6r-finite then £% r\ conv(^(J.) : g ζ 6r)~ consists of exactly one operator
φ(A) [10, Theorem 1]. The map φ : & -> ̂  is the unique faithful normal
6r-in variant positive linear projection map (expectation) of 0t onto ,̂
and ^ is (2-finite if and only if such a map exists [10, Theorem 2].
KOVACS and Szϋcs have pointed out to the author that their results also
yield a shorter proof of [13, Theorem 3.1]. We first modify a well known
result about strong convergence of operators.

Lemma 2.1. Let ̂  be a von Neumann algebra and ω a faithful normal

semi finite trace of 0t. Let {En}n=i,2>... ^e a sequence of projections in £%
such that ω (En) -> 0. Then En-+Q strongly.

Proof. Let F be a finite projection. Then 0 ̂  ω (FEnF) = ω (EnF) ^
^ ω (En) -> 0, and ω (FEnF) -> 0. Since the functional ω ( F) = ω (F J?)
is normal and finite, jE^-F -> 0 strongly by [6, p. 62]. Let ε > 0 be given.
Let 3? denote the underlying Hubert space, and let xl9 . . . , xk be a
finite set of vectors in Jtf*. Choose a finite projection F in & such that
\Fxj — Xj\ < ε/2, j = 1, . . . , k, which is possible since the ideal generated
by positive operators finite under ω, is strongly dense in &. Thus

Ifell ^ \\En(Fxj - x,)\ + \\EnFxό\\ ^ β/2 +ε/2=ε

for n sufficiently large, and JEJn-*Q strongly.
Our key result is
Theorem 2.2. Let &bea von Neumann algebra with no type III portion

(so $ is semifinite) acting on a Hilbert space $P . Let %> denote the center of
&, and let G be a group of * -automorphisms of &. Let ̂  denote the fixed
point algebra in & under G. Assume £§ — Ή and that & is G- finite. Let
φ denote the unique faithful normal G -invariant positive linear projection
of & onto & .Then & is finite, and if ψ denotes the canonical center trace
of @ [6, p. 267] then φ = ψ.

Proof. Let ψ be a faithful normal center trace of ̂  [6, p. 266]. A
straightforward computation shows ψ og = gr1 oψ og is a faithful
normal center trace of ̂  for all g in G. Let ρ be a normal G -invariant
state of $. Then R = support ρ is invariant under 6?, so lies in < ,̂ hence
in ̂ . Restricting attention to R& we may assume E = I and ρ faithful.
Identify ^ with L^ (Z, v) for some locally compact Hausdorff space Z,

and denote by &+ the positive ^-measurable functions on Z} cf . [6, p. 260].
Since ρ is faithful on ̂  in particular, ρ extends uniquely to a faithful

normal trace of ̂ +, cf. [6, p. 262]. By [6, p. 266] there exists a unique

Qg in ^+ with 0 < Qg (ζ) < + oo locally almost everywhere on Z such
that for all A in ̂ +, ψ og(A) = Qgψ(A). Iίg,hζG then

14*
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so by uniqueness of Qg,Qgh= Q9Qh locally almost everywhere. Now
Qg = I for all g. For if not then there exists g in G and a measurable non
zero set Γ in Z such that Qg (ζ) < 1 on 7. Let P be the projection in ̂
corresponding to the characteristic function of Y. Choose a finite pro-
jection E\Ά& such that 0 < ψ (E) (ζ) < oo on Y (cut down Y if necessary).
Let s > 0 be given, and choose a positive integer n so large that

on Γ, hence 0 < Qsn ψ(E) P < εP. Thus

0 < e(Qv(EP)) = ρψ(g"(EP) ) < ε ,

and ρψ(gn(E P)) -> 0. Since ρ o φ is a normal and faithful trace of ̂  and
gn(EP) is a projection for each n, gn(EP) -> 0 strongly by Lemma 2.1.
Thus ρ(EP) = ρ(gn(EP))->0, and EP = Q contrary to assumption.
Thus Qg = I for all g in G, hence ψ = ψ o g for all g in. G.

Let now A Φ 0 be a positive operator in ̂  for which ψ(A) is finite.
Choose by [10], a net {Σ λ^g§(A)}xζJ in conv(^(^l) : g ζ G) which con-

K
verges strongly to φ(A). Let E be any finite projection in St. Then
ρoψ(E ) is ultra-weakly continuous [6, p. 80], hence weakly con-
tinuous on bounded sets. Since Σ ^κ9κ(^) ~> Φ(A) weakly,

K

K.

i o ψ(A)

= ρ o ψ ( A ) ,

using that ρ o ψ is a trace, hence ρ oψ(AF) ^ ρ oψ(A) for all pro-
jections F. Let Q be a central projection in & for which ψ(I)Q = + oo Q.
If Q =f= 0 we can choose a non zero positive operator A in ̂  such that
<^(^4) Q Φ 0 and 0 ̂  ^>C4) ^ Q. In fact, if this cannot be done, then for
every positive operator B in &Q for which *ψ(B) is bounded, φ(B)Q = 0.
Hence φ(Q)Q = 0. Therefore, if gr ζ G then 0 = g(φ(Q)G) = ^(Q) ^(Q),

so that <^(Q) (27 λκgκ(Q)) = 0 for every element Σ ^κffκ(Q) ^

conv(g(Q):g ζG). By [10] ^(Q)2-=0, and Q = 0 since ^ is faithful,
contradicting the assumption that Q Φ 0. Choose A as above. Let
n > ρ (φ (A) C)"1. Choose a finite projection E in ̂  for which Q ψ (E) ̂  nQ.
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Then by the inequality obtained above,
1 ^ ρ(Q) ^ ρ(ψ(A)) > ρ(φ(A) ψ(E»

^ ρ(φ(A) ψ(E)Q) ^ nρ(φ(A)Q) > 1,
a contradiction. Thus ψ(I) is finite, and & is finite. If ψ is the normalized
center trace then since ψ o g — ψf and since US = Ή, ψ = φ by uniqueness
of φ. The proof is complete.

Corollary 2.3. Let & be a von Neumann algebra with no type III
portion. Let G be a group of *-automorphisms of & such that the fixed point
algebra of & equals the center of &. Then & is finite if and only if & is
G-finite. Moreover, a normal state is a trace if and only if it is G-invariant.

Proof. If & is 0-finite then ̂  is finite by Theorem 2.2. Conversely, if
& is finite let φ denote the canonical center trace of ̂ . Then φ o g is a
center trace of & for each g in G, so by uniqueness of φ, φ is (^-invariant.
By [10, Theorem 2] & is (^-finite. The last statement follows from
[10, Corollary 1].

In our applications the automorphisms will be implemented by a
group of unitary operators, and there will be a unique cyclic vector
invariant under all the unitaries. The key situation occurs when the
invariant vector is also separating for the von Neumann algebra. The
following result describes this situation and is a direct generalization of
HUGENHOLTZ'S theorem [8].

Theorem 2.4. Let έ% be a factor acting on a Hilbert space 3?. Let G be a
group and g-> U(g) a unitary representation of G on J^ such that
U(g)^U(g)~1 = & for all g in G. Assume there exists a unit vector x
which is cyclic and separating for &k such that U (g) x = x for all g in G, and
that up to a scalar multiple x is the unique vector invariant under all U (g).
Then either & is of type III or ωx is a trace of &, in which case & is either
of type 7/j or of type In, n < <χ>.

Furthermore, if 0i is not assumed to be a factor, and if G is a connected
topological group and the representation g -> U(g) is strongly continuous,
then either & is a factor or the center of & has no minimal projections.

Proof. ωx is a faithful normal (^'-invariant state of ,̂ where G'
denotes the group of #-automorphisms U(g) U(g)~:L of 3%. Thus ^ is
(^-finite. Let 38 denote the fixed point algebra in ̂ . Then @ί = €/. In
fact, if [x] denotes the projection on the subspace generated by x then by
the Ergodic Theorem [12, §146], [x] ζconv(t%): g ζθ)~. Thus
[x] G &', and the state ωx is a homomorphism of έ%. Since x is separating
for &, & ̂  C as asserted. Assume ̂  is not of type III. By Theorem 2.2
•̂  is finite so either of type IIX or Iw, n < oo. Let φ denote the unique
faithful normal 6r-invariant positive map of ̂  onto .̂ Since 3% = C/,
φ(A) = ωx(A)I for all A in ̂ . Let ψ denote the normalized trace of ̂ .
By Theorem2.2 ωa(A) = ωx(ωx(A)I) = ωx(φ(A)} = ωx(γ(A}}, hence
ωx is the trace of ̂ , and the first part of the theorem is proved.
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Assume G is a connected topological group and that the representa-
tion (/-> U(g) is strongly continuous. Suppose ^ is not necessarily a
factor. Let ^ denote the center of 3%. Consider the projection [Ήx]
in «". If A ̂  then U(g)Ax = ϋ(g) AU(g)~lx ζ [tfx], since
ϋ(g) %U(g)-ι = % for all g in G. Thus ϋ(g) [Vx] U(g)~1 = [#&], and
U(g) U (g)~l restricts to a * -automorphism of the maximal abelian
von Neumann algebra Ήffix], which is isomorphic to Ή. Assume there
is a minimal non zero projection E in ίί. Then E' = E \Ήx] is one
dimensional in <S\Ήx\. Say 2; is a unit vector in E'. If g £ 6r then
J?" = Z7(gr) EfU(g)~1 is a non zero projection in #[#0?], so jF'.S' = 0 or
oτF'E' = E'. Thus either (U(g)z, z) = (F'U(g)z, z) = 0, or Z7(0r)s - e<βs,
in which case |(Z7(^)», z) \ = 1. Since the map g -> |(ί7(<7)2, z)| is continuous
on (r, and 6r is connected, its image is connected, and \(U(g)z, z)\ = 1 for
all 0 in G. Thus Z7 (0) ̂ ' U (g)-1 = E' for all g in £, hence U(g)Eϋ (g)-1 = E
for all g, and E ζ&, E = I, since in this case ̂  = C/ too. The proof is
complete.

We have been unable to conclude whether there exist a factor *Jt and
an abelian von Neumann algebra 2£ = ίί such that ̂  ̂  ̂  <8> ̂ .

In order to study the group of automorphisms information may be
obtained from the study of its action on the center *β of ̂ . Such a result
will be obtained later (Theorem 3.3). For the present we draw some
immediate conclusions from the proof of the above theorem.

Corollary 2.5. Let the assumptions and notation be as in Theorem 2.4.
// ̂  is not a factor and <£ denotes the center of & then <β' is a homogeneous
von Neumann algebra of type /. The projection ]$x~\ belongs to {U (g) : g ζ G}'
and is an abelian projection with central carrier I in W. In particular,

In some applications the invariant vector x will not be separating for
.̂ As in Corollary 2.5 it is immediate that the support \β' x\ of ωx is

invariant under the unitaries, hence Theorem 2.4 can be applied to the
von Neumann algebra 3%x = \β'x\ & \β' x\.

Corollary 2.6. Let <%bea factor acting on a Hilbert space ffl. Let Gbea
group and ff->U(g) a unitary representation of G on ̂  such that
U(g) ^U(g)~1 = & for all g in G. Suppose there exists a unit vector x in
3? cyclic under & such that up to a scalar multiple x is the unique vector in
3? invariant under all U(g), g £ G. Then & is of type III if and only if
£&' is not finite.

Proof. Let &x be as above and apply Theorem 2.4 to it. If 01 x is of
type III then so is 3i'x = \β'x\g&'9 which is isomorphic to ̂ ' since x is
separating for $?', hence 3V is of type III and therefore 3t by [6, p. 102].
Otherwise ωx is a faithful trace of 01 x, so by [6, p. 235] 01 x is standard
and finite. Thus 01' ^ 3k'x is finite, contrary to assumption. The converse
is immediate [6, p. 102].
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3. Asymptotically Abelian <7*-Algebras

In the different generalizations of asymptotically abelian (7*-algebras
[7, 11, 13] the extremal invariant states give rise to von Neumann
algebras satisfying the assumptions of Corollary 2.6, and by Theorem 2.4
the center will with the added assumptions in the theorem either have
no minimal projections or the von Neumann algebra is a factor. At least
in the situations described in [11] and [13] the invariant factor states
will always be extreme. Since we shall need this result and later the more
restricted results in [13] we shall study the situation in that paper. If j/
is a <7*-algebra and 0 a group for which there is a representation g-+rg

as *- automorphisms of <sf9 we say G is represented as a large group of
automorphisms if for all ^-invariant states ρ of <$$ and A in j/,

Gθϊiv(πQ(τgA): g ζ G)~ r\ πq(s/)' φ 0,

where ρ = ωx o πQ is the canonical decomposition of ρ as a composition

of a vector state ωXρ due to a cyclic vector, and πQ is a *-representation of
jtf on a Hubert space 34?ρ. For such an invariant state there is a unitary
representation g->• Uρ(g) of G on 3?Q such that UQ(g)πQ(A) UQ(g)-1

= πρ(rgA) and Uρ(g)xQ = xρ for all g in G. Then ρ is an extremal G-
invariant state if and only if xρ is up to a scalar multiple the unique
vector invariant under the Uρ(g) [13, Theorem 3.7]. It is immediate
from Theorem 2.4 that if ρ is extremal and xρ is separating for nQ(^}~
(cf. [7, Theorem 3] for equivalent conditions) then if it is a factor,
πρ(jtf)~ is finite if and only if ρ is a trace of jtf, and πq(£#)~ is of type III
otherwise. More generally we have

Theorem 3.1. Let jtf be a C*-algebra and G a group represented as a
large group of *-automorphisms of <$# . Let ρ be a G-invariant state of <$#
for which $ = πq(stf)~ is a factor. Then the following conditions may
occur.

1) 3t is of type III if and only if M' is not finite.
2) 0t is finite if and only if ρ is a trace, in which case & has coupling 1.
3) & is of type 1^ or II ̂  if and only if £%' is finite and ρ is not a trace.
Proof. From the preceding remarks 0t satisfies the conditions of

Corollary 2.6, hence 1) is immediate. Let E=[3$'xρ]. Then E ζ&,
E&E is a factor, and xρ is separating and cyclic for E&E as acting on E.
As pointed out in the proof of Corollary 2.6 EUQ(g) = UQ(g)E for all g
in G, and Theorem 2.4 is applicable to E0HE. We may assume 0k is not
of type III (so 3t' is finite by 1)). By Theorem 2.4 ΈΛΈ is either of
type IIj or ϊn with n finite and of coupling 1, and ωXρ is a trace of E&E.

Suppose £% is finite. Let tr denote the normalized trace. Then since
each UQ(g) Uρ(g)~l is an automorphism of ̂ , tr composed with it is a
trace, hence by the uniqueness of the trace [6, p. 90],
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for all A in ̂ , g in G. Thus tr o τtρ is a 6r-invariant state of j/. Moreover,
tr is weakly continuous on bounded sets and if tr = ωy o π, π is normal.
Denote by S^SA an(^ &SA ^ne se^ °f self-ad joint operators in j/ and &
respectively. Since πρ(<β/s.4)ι — the unit ball in πρ(^SA) — is weakly
dense in (&SA)I by the Kaplansky Density Theorem [6, p. 46], so is

factor, and tr o πQ = ωy o n o πρ is a 6r-invariant factor trace, hence is
extreme [13, Theorem 3.7]. Now ωXρ restricted to E&E is a trace, so by
the uniqueness of the trace, ωXρ \ E&E = λ tr | E&E. Thus, for A ^ 0

ωXρ(A) = ωXρ(EAE) = λtr(EAE) = λtr(EA) ^ λ t ΐ ( A ) ,

and ρ ̂  λ tr o πρ. Since tr o πρ is extremal, ρ = tr o πρ) and ωXρ = tr.
Thus E = I, & has coupling 1, and ρ is a trace. Conversely, if ρ is a
trace then ωXQ is the unique trace of ̂ , hence & is finite. This completes
the proof of 2), and hence of 3).

We shall see below that under some stricter conditions if ^ is a
factor then [xρ] — the projection on XQ — is the only finite dimensional
projection in &(3ήfQ) — the bounded operators on J^ρ — commuting
with all the UQ(g), viz. ρ is an EΓstαte. Our next result states a similar
property for \β'x^ as a projection in ̂ .

Corollary 3.2. Let the assumptions and notation be as in Theorem 3.1.
Suppose & is either of type 1^ or 11^. Then E = \β'fxρ] is the unique non
zero finite projection in 0t invariant under the Uρ(g), g in G.

Proof. From the proof of the theorem E&E is finite of coupling 1 and
with ωXρ as the trace. Suppose F is a finite projection in & invariant under
the Uρ(g). If F !Ξ> E then the argument in the proof of the theorem
applied to F&F yields F = E. In the general case letG = EVF. Then
G is finite [6, p. 243]. If y ζE, zζF then Uρ(g) (y + z) = Uρ(g) y +
+ Uρ(g) z ζE V F = G, so G is invariant under the Uρ(g). From the
first part of the proof G = E, and F ^ E. Now xρ is separating and
cyclic for ES&E. From the proof of Theorem 2.4 the fixed point algebra
for the automorphisms in E&E is CE. Thus F = 0 or E. The proof is
complete.

The remaining part of this section consists of results which are more
or less known [4, 9], but which show useful characterizations of strongly
clustering states in our setting, a situation which occurs for invariant
factor states. If j/ is a (7*-algebra, G a group, and g -> rg a representation
of G as *-automorphisms of si we say £# is asymptotically άbelian with
respect to G if for all self-adjoint operators A in jtf there exists a sequence
{gn(A)}n = l t 2 j... in G such that

lim || [τ
n—>oo
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for all B in si . A ^-invariant state ρ is strongly clustering if

whenever ^4 and B are self -adjoint in j/. ρ is an EL-state if [#ρ] is the
unique finite dimensional projection in «^(Jfρ) commuting with all the
UQ(g). Our first result points out the relevance of the center of πρ(^)~ in
order to study the group of the unitaries UQ(g).

Theorem 3.3. Let ̂  be a C*-algebra asymptotically abelian with respect
to the abelian group G. Then every strongly clustering state of jtf is an
EΓstate. In particular, every invariant factor state is an EΓstate.

For the proof of this we shall need the argument given in
Lemma 3.4. Let <%? be a C*-algebra asymptotically abelian with respect

to the group G. If ρ is a strongly clustering state of si then [xρ] is the only one
dimensional projection in ^(^Q) commuting with all the U ρ ( g ) .

Proof. Let E be a one dimensional projection different from [xρ],
and suppose E commutes with all the UQ(g). Then a = \\Exρ\\ < 1. Let
y be a unit vector in E. Then UQ(g)y = χ ( g ) y with χ a character of G,

hence U^g^E = χ(g)E. By [13, Theorem 5.4] if A ζstf then, with

ωXρ(πρ(A))I = weak limZ7ρ(0rΛ) πρ(A)

Thus, as n -> oo,

Xβ(πs(A) Eπβ(B))\ = \χ(g) ωXg(Ue(gn} πβ(A)

\ωXί(EπQ(B})\ ^
£ α|πβ(.4)%|| \\πβ(B)xβ\\ .

Since XQ is cyclic, if 2, w are vectors in J^ρ then \(Ez, w)\ ̂  α||z|| ||w||.
Applying this to z = w = y we obtain a contradiction. The proof is
complete.

Proof of Theorem 3.3. If the theorem is false we can find a minimal
finite dimensional projection E in {Uρ(g):gζG}' orthogonal to [xρ].
Since G is abelian, the minimality of E implies Uρ(g) E = χ(g)E with χ
a character of G. A contradiction is now obtained in exactly the same
way as in the proof of Lemma 3.4 (with a = 0). If πρ (<$tf)~ is a factor then
ρ is strongly clustering by [13, Corollary 5.5], hence ρ is an Erstate.

KASTLER and ROBINSON [9] have shown that if jtf is asymptotically
abelian (in the stricter sense that G = 1RW, and lim||[τg^4, B]\\ = 0
whenever g -> oo in Rw) then ρ is strongly clustering if and only if
Uρ (g) -> [xρ] weakly whenever g -> oo, a result shown by BOUCHERS in
quantum field theory [4]. As we shall need this result in our applications
to quantum field theory for translations of space-like vectors, we include
a more general proof.

Theorem 3.5. Let jtf be a C*-algebra asymptotically abelian with respect
to the group G. Suppose the sequence {gn(A}} = {gn} is independent of A
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for each self -adjoint A in <$# . Then a G -invariant state ρ of $i is strongly
clustering if and only if Uρ (gn) -> [xρ] weakly.

Proof. Suppose ρ is strongly clustering. Since the map U -> Z7* is
weakly continuous and [XQ] is self -adjoint we may as well show Uρ G/J"1 ->
-> [xρ] weakly. Let xv . . . , xk, y\> >y k ^e vectors in ρ̂. We may
assume that there exist Aj} Bj in πQ(<sf) such that xj = B3xQ, yό = A^xρ.
Let ε > 0 be given. Choose n so large that

\(Uρ(gn) Af Uρ(gn)-ι Bόxρ, XQ} - ωXρ(Af) ω,ρ(^,)l < ε

for 7 = 1, . . .,k. Then

= \(Uρ(gn) Af Uρ(gn)~ι B5xQ9 xρ)

= \(UQ(gn) Af UQlgn)-iBsxQ, xρ) - ωXρ(Af] ω.ρ( ,̂)

< ε,

and UQ(gn)-l-> [xρ] weakly. Conversely, if Uρ (gn) -> [xρ] weakly, let
A, B £ πρ(Λ/). Then, as ^ -> <χ>,

(UQ(gn) A UQ(gn)-ι Bxρ, XQ} = (Λ^, Fρ(^Λ) J[*^ρ)

-> (B»ρ, [ ρ̂]^*α;) = ω^(B) ωXρ(A) ,

and ρ is strongly clustering.

4. Quantum Field Theory

We assume we have assigned to every bounded region 0 in the four
dimensional Minkowski space <Jί a <7*-algebra £#(Φ) of operators on an
infinite dimensional Hubert space 3?. We denote by 3%(Φ) its weak
closure and assume ̂  (Φ) contains the identity operator / on 3? . More-
over, we assume there is a strongly continuous unitary representation
a^U(a) of the four dimensional translation group, which we shall identify
with ,̂ such that the following properties are satisfied.

1) The spectrum of U(a) is contained in the closed forward light-
cone Ψ*+.

2) £/(Φ) and <$# (Φ -f a) are related by the equation

st(0 + a)= ϋ(a) d(Θ] ϋ(a)~1 .

3) If two regions Φ and Φf are space-like to one another then

4) If ΦζO' the
5) If {Φn} is any covering of the unbounded region Φ C ̂  of bounded

regions Φn C Φ, then the von Neumann algebra generated by the family
{<&(& n)} is independent of the covering, and is denoted by &(Φ).

6) There exists up to a scalar multiple a unique vacuum vector x
cyclic under 8%(Jt}, i.e. U(a)x — x for all a in Λ '.
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It is clear that the relations 2), 3) and 4) hold for the ffl(Φ) as well.
Under the above assumptions ARAKI [2, Corollary 1] has shown
&(Jί) = a (3^). Furthermore, he has shown [1] that if Φ is the region
of points (PQ, plt p2ί p9) in Jt such that pl > 0, \pQ\ < \pj\9 then St(0) is
a factor not of type I. We shall generalize this and prove a general
result which implies 3% (Φ) is of type III.

Theorem 4.1 . Suppose we have a local field theory satisfying axioms 1 ) — 6) .
Let & be an open unbounded region in the Minkowski space Jί such that
there exists a non zero space-like vector a in ̂  for which & = Φ + Rα,
and such that there exists an open non void region space-like to Φ. Then
3t (Φ) is a factor of type III.

Proof. By the Reeh-Schlieder Theorem [5, Lemma 5], since £%(Jί} is
all bounded operators, x is separating and cyclic for 31 (Θ). By hypo-
thesis H(λa)&(Φ) U(λa)-ι = 0t(β) for all real λ. Let Λ denote the
fixed point algebra in Ά(0) of this one-parameter group of auto-
morphisms. Since x is the unique vacuum vector [#] = E(0), where by
Stone's Theorem

U(b) = f e * * *dE(p)

for b ζ Jί. Let si denote the (7*-algebra generated by all 9t(Q'} with 0'
bounded regions in Jt '. Then si is asymptotically abelian with respect
to the translation group ,̂ where the sequences {gn(A)} = {gn} are
chosen to be translates of space-like vectors. Since si- = 3% (JV) = 3% (30?),
ωx is strongly clustering on si [13, Corollary 5.5], see also [2, Proposi-
tion 4]. By Theorem 3.5, or by [4, Lemma 4], U(na)->E(0) weakly as
n -> oo, hence E(ϋ) ζ {ϋ(λa) : λ ζ R}". In particular, if E is a non zero
projection in Si then E E (0) = E (0) E Φ 0 as £Jxή=Q. Since 13(0) is one
dimensional E ̂  ®(0). Hence (/ - E)x = 0, and E = / since x is
separating. Thus & = C7.

In order to show ̂  (Φ) is a factor we modify the argument in the proof
of [2, Proposition 2]. Let N be a neighborhood of the origin in Jt and
0' a bounded subregion of 0 such that 0' + Λ°C Φ. Let A be a self -adjoint
operator in the center of St(&). Let B ζ&(Φr), and let

F(u) = (U(u)Ax,Bx)

G(u) = (U(-u)B*x,Ax) .

From the spectrum condition F and G are boundary values of analytic
functions holomorphic in the forward and backward tubes respectively.
If uζjV then, since U(-u) BU(u) ζ@(Φ}, F(u) = G(u). From the
edge-of-the-wedge theorem, see [14] the functions are analytic con-
tinuations of one another. In particular, F(u) = G(u) for all u in Jt '.
Thus, using the spectrum condition once more, F(u) is the Fourier
transform of a (complex) measure, whose support lies in the intersection
of the forward cone with the backward cone, hence is 0. Thus F(u) is a
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constant. In particular,

(Ό(u)Ax9 Bx) = (U(Q)Ax, Bx) = (Ax, Bx) .
Since by the Keeh-Schlieder Theorem x is cyclic under 3t(0'),
U(u) A U(u)~1x = Ax for all u ζ *Jί. In particular this holds for u = λa,
λ ζ R . Since x is separating for 31(0), U(λa) Aϋ(λa)-1 = A for all
λ ζ 1R, and A £ ̂ , which is the scalars by the preceding paragraph. Thus
9t(0) is a factor.

If ^?(0) is not of type III an application of Theorem 2.2 shows
ffl(0) is finite and with ωx as the trace. Let 0' be a bounded non void
subregion of 0. Then ωx is a trace of ^(0'), and by the Reeh-Schlieder
Theorem x is separating and cyclic for 0i (Φr). In particular ω^ is a faithful
trace of Sί(0')' [6, p. 89]. Let &' be a bounded non void region in Jί.
Then there is a vector δ in ̂  such that 0" + δ is space-like to Φ'9 hence
U(b)0(0") U(b)-it &(&')'. Since ϋ(b)x= U(b)~1x = x, ωx is a trace
of 31(0"). A straightforward argument now shows ωx is a trace of ^pf),
contradicting the fact that &(*J%) = £$(34?). The proof is complete.
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