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Abstract. For the model of ̂ -coupling a finite form of the local field equation is
proposed and checked in renormalized perturbation theory.

1. Introduction

As is well known the canonical quantization of the Lagrange density

leads to a field equation and commutation relations which are meaning-
less, at least in perturbation theory. This difficulty is avoided in the ab-
stract formulation of quantum field theory which is based on general
principles such as Lorentz in variance, microcausality and spectrum con-
ditions [1]. Indeed, well defined power series can be constructed which
solve the basic equations of the theory to all orders [2], Due to the general
nature of the principles the abstract formulation provides a frame for all
local and invariant interactions specifying only the number and types of
the fields involved and the masses and spins of the stable particles. The
question arises how in this framework a specific model can be charac-
terized by imposing a simple and meaningful condition on the field
operator.

By analogy to VALATIN'S formulation of quantum electrodynamics
[3] we propose the field equation

- (D + m2) A (x) = λ lim j(x, I)

., M ιA (x + ξ)A (x) A(x- I): - αtf) A (x) & < ° (L2>

as such a condition for the model (1.1) of A 4- coupling. The parameters m
and λ denote the physical mass and (suitably defined) coupling constant

* The research reported in this paper was supported in part by the National
Science Foundation.
12 Commun. math. Phys., Vol. 6



162 W. ZlMMEBMANN:

of the model. The : -.-product is obtained from the ordinary operator
product by trivial vacuum subtractions

) A (Λ?a) A (a?8): - A (%) A (xz) A (α?3) -
ί \_ ttj I

- {A (xj) A (x2))o A (xs) - cycl. perm, terms

for BpaceJiba άisi&noes (x^ — #y)a < 0, (i Φ /). Combined with the general
principles the field equation (1.2—3) provides a complete description of
the model in terms of renormalized quantities, but without reference to
a power series expansion1.

The limit ξ -> 0 should be understood in the weak sense that (1.2)
holds for each matrix element between suitable state vectors. It is
essential, however, that the renonn^Uz^tlon functions oc and g are
independent of the state vectors, α and g are to a large extent arbitrary,
only the leading singularities at ξ — 0 are relevant in (1.2). The right
hand side of (1.1) may be considered as an appropriate definition of the
local operator product A (%)** which otherwise is not defined.

The purpose of this paper is to study the field equation (1.2) in
renormalized perturbation theory. A cneck in perturbation theory may
be regarded as a preliminary test for the consistency of the scheme. The
given formulation should also be suitable for investigations independent
of perturbation theory. Recently SYMANZIB: [6] derived an expansion
of GHEEΪΪ functions in Euclidean quantum field theory which does not
have the shortcomings of perturbation theory. It should be interesting
to see whether the Euclidean analogue of (1.2) is satisfied by such an
expansion.

Field equations involving a limiting procedure of the form (1.2) were
first proposed by VAXATIN for quantum electrodynamics and verified
in the lowest order approximations [3]. The validity of similar field
equations has been checked in a number of non-relativistic models [7].
A few years ago the discussion was taken up again for local relativistic
theories [8? 9, 10]. In LEΉMAOT'S approach [8] the renormalization
functions are determined by simple assumptions for finite |* < 0 which
reduce to the usual renormalization conditions in the limit | ~> 0.
WILSON [9] checked field equations of the form (1.2) for meson-nucleon
interaction in some low orders of perturbation theory. He further
discussed the definition of arbitrary local operator products on the basis
of dimensional arguments. In an earlier version of the present work [10]
the field equation (1.2) and similar equations for meson-nucleon inter-

1 Other finite formulations of models have been discussed in the literature.
We mention Wo examples. For the model of ^-coupling in six dimensions SYMAK-
ZIK f4J derived finite equations for the field operator which involve non-local
integral transίormations, T. T. Wπ [5] gave a finite formulation of Dyson's integral
equations for the model of .̂ -coupling.
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action were cheeked in all orders of perturbation theory. However, the
calculations were based on a rather intricate method of renormah'zation.

For a check of the proposal in perturbation theory the power series

A(x,λ)= Σ λ«An(x) (1.4)
n—Q

«(£,*)= Σ **«,,(*), 9(ξ,λ)= Σλ«gu(ξ) (1.5)
n=0 n= 0

must be constructed such that to all orders of λ
(i) A (x) is a local relativistic field in the sense of the general postulates

(ii) A(x) satisfies the field equation (1.2).
The expansions (1.5) are determined by (1.4) if — as in this paper —

explicit representations of α and g in terms of Green's functions of A (x)
are used.

For the construction of the power series (1.4) the following three
methods are available.

(1) In perturbation theory STEIKMANN [2] gave a systematic treat-
ment of certain integral equations which form necessary and sufficient
conditions for (i). By appropriate choice of the parameters one obtains
an expansion (1.4) which should correspond to the model (1.1). In this
approach (i) is obviously satisfied. However, the structure of the ex-
pressions obtained is complicated and it should be difficult to check (ii).

(2) The straightforward way of constructing (1.4) is to iterate the
Yang-Feldman equation2

A(x) = Aίn(x) -λ! ΔΊM(x - x') Mm j(x', ξ) dx'. (1.6)
§->0

If the iterated integrals exist, (ii) is automatically satisfied. Unfortunate-
ly, the iterated integrals are so complicated that it would be tedious to
prove the finiteness of each iteration step3/4.

(3) The most convenient method of constructing (1.4) is based on
DYSON'S renormalization theory [13]. Starting from the Lagrangian (1.1)
the Gell-Mann-Low expansion of the time-ordered functions

τ(xv . . . xr) = {TA (x,) ...A (xr)\ (1.7)

is formally derived. In its final form the renormalized Gell-Mann-Low
expansion is a power series

Tfa . . . Xrλ) - £ fanfa. - - *r) (1-8)

2 In ref. [11] HEPP proved the Yang-Feldman equation in Wightman's frame-
work for a dense set of collision states.

8 For a discussion of the formal iteration solution of the conventional field
equations see [12].

4 Slightly more convenient is the analogous integral equation with ΔF as
Green's function,
12*
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with finite coefficients τn. Putting all momenta but one of the Fourier
transform of (1.7) on the mass shell one obtains expansion (1.4) for the
matrix elements of the field operator. It is generally believed that the
renormalized Gell-Mann-Low expansion corresponds to a local relativistic
theory in the sense that (i) and the relation (1.7) between field operator
and τ-functions are satisfied for (1.4)5.

In this paper method (3) is used for the construction of A (x). Assuming
that (i) and (1.7) are satisfied it is shown that the field equation holds
for every order in λ.

The problem of overlapping divergencies presents a serious difficulty
in defining (1.8) for the model of .44-coupling. In conventional reiiormali-
zation theory this problem was solved by T. T. WTJ [5] using differentia-
tion with respect to the momentum variables. A most elegant method
of renormalizing arbitrary interactions was developed by BOGΌLΠJBOV
[14] working with a regularized Gell-Mann-Low expansion. As was
proved recently by HEPP [15] the coefficients of (1.8) constructed
according BOGOLΠJBOV'S rules approach well defined limits when the
regularization is removed.

Since the presence of a regularization parameter is inconvenient for
our purpose BOGOLIUBOV'S method is reformulated without regulariza-
tion. The τ-functions are defined by the expansion (1.8) with the co-
efficients related to renormalized Feynman integrals. The integrand of
each Feynman integral is constructed algebraically by rules which
resemble those of BoGOLΠJBOV6. With this definition a system of equa-
tions for the τ-functions is derived (see equ. (3.24)) which implies (1.2)
for the field operator.

The method can be extended to other renormalizable theories, except
for models where infrared divergencies cause additional complications.
The pseudoscalar meson-nucleon interaction has been worked out and
will be treated in a forthcoming paper.

In section 2 some notations are collected which will be used through-
out the paper. Section 3 contains a heuristic motivation of the field
equation and the formulae for α and g. The definition of renormalized
Feynman integrals is given in section 4 and applied in section 5 to the
derivation of (1.9).

Closely related to the present approach is the work by BRANDT of
which only the first of a series of papers is available how [16]. In this
first paper BRANDT derives a set of integral equations from WILSON'S

5 A proof of this statement will be given in a separate paper.
6 Orginally I defined the integrand of a renormalized integral recursively by

algebraic relation (4.33) of section 4. In this approach it is quite tedious to show
that the result is independent of the way the recursion is carried out. Using BOGO-
LIUBOV'S definition the relations (4.33) become algebraic identities.
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form [9] of the nucleon field equation which are found to be equivalent to
corresponding integral equations of renormalized perturbation theory.

2. Notation of Green's Functions

In this section we collect some definitions of Green's functions and
their Fourier transforms which will be used in the work that follows

T(x1...xr)=TA(x1)...A(xr)

r(xl...xr)={TA(xl}...A(xr)\ (2.1)

Δp(* - y} = τ(x, y), Δ'F (p) = / e**»Ap(x) dx

f(pι - Pr) denotes the Fourier transform of a function f ( x - L . . . xr) of r
four vectors

/(A 2»r) = - Ϊ

The truncated part of τ (x1 . . . xr) will be denoted by

η(xl. . .xr) = r(x1. . .xr)
τ

We further introduce

ζ (Pi Pr) = (- »)' (ί>ι2 -«»•)... (Pr2 ~ m*) ή(Pι Pr) (2.4)

(2.5). . r
Δ'f(p1)...Δ'r(pr)

. . . p±) is the conventional vertex function of A 4- coupling. We will
also need partially truncated Green's functions such as

τ(fo . α»] ft . . . yj =r(x1 . . . ym) - Σ**l(Zι) - - V(ZN) - (2.6)
The sum Σx extends over all partitions of (x1 . . . ym) into classes
Zl9 . . . , Ztf for which at least one class Zx contains xs only, i.e.

Zx ς (xv . . . , xn)

for at least one α. Further we define

r(fa a*] [ft ym]) = r(x, . . . yj - Σχ*η(Zι) - ί (̂ ) (2-7)
The sum 27® i/ extends over all partitions of (xl . . . ym) into classes
Z1 . . . ZN for which at least one class Zκ contains xi or y$ only, i.e.

Zxς(x1. . . xn) or ZΛς(yl... ym)

for at least one α.
The following related functions will frequently be used in this work

H(ξpp1,..pr)

ti-p)e-<κ-™ΐ([iί . . .y A ft) (2'8)

- - - 1,] [ft - - ft])-
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For n — 1 we use the notation

G(ξpPl) = G(ξp) . (2.10)
Apparently

°(ξ& = ϊϊπ)ϊfdlι 'dl* δ<<Σ ti - P) e-^-^ή^ . . . I3p). (2.11)

The following definitions introduce functions with a particular one-
particle pole separated off. For n, m ^> 2 we define

v a a } -Pn<il Urn)
rP (2.12)

As is well known these functions do not have a one-particle pole at
p* = m2. Related functions are introduced by

ft.] Ife ?»]) = *(feι A] tei ίJ) -

It follows

Q(ξPPl ...Pr) = "';; - <?(f P) Λ(PA . . pr) . (2.15)
zlF(^).. .ΔF(pr)

For r = 1 we define

G(fPA) = Q(fp) = -Sτ4. (2J6)

^^(^J
The normal product of field operators

. . . xr) = :̂

is as usual defined recursively by Wick's rule

T(Xl ...xr) = N(x1 ...xr)+Σ ΠΔ'^Xi, - *,,) N(Σ) (2.17)
s = l

with the contraction function Δ'F. The sum extends over all partitions of
(#!•.. xr) into classes

(a?!,̂ ), . . . (XiχXJN), Σ=(xhl... xht), N ̂  1

with empty X included. The mixed products

Tfa . . . xn:yl . . . ym) = T(.A(xl) . . . A (xn): A (Λ) . . . A(ym}}

T(:X!. . .Xn'.Vi- .ym'.*ι V)

- T(:A (x,) ...A (xn): A(Vl)...A (ym) :A (zj ...A (zr) )
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are defined by (2.17), but omitting the terms containing factors
Δ'F (Xi — Xj) or Δ'F (zι — Zj). The vacuum expectation values are denoted by

. . . Xn'.yi . . . ym)= (Tfa . . . xn:y1 . . . ym)\

ym :*ι . zr:) = (Tfa . . . Xn'Vi - ym *ι V)>o

3. Heuristic Motivation

The model of a scalar field with A 4- coupling is formally described by
the field equations

and the commutation relations

[A(x)A(y)]=(A(x)A(!/)] = Q .

The operator product \A (x^ A (x2) A (x3) : is defined by (see (2.17))

A (xj A (x3) :

= TA fa) A (x2) A (x3) — Δp(xl — x2) A (x3) — cycl. perm, terms.

For spacelike coordinate differences this reduces to (1.3). α, β, and γ are
related to the conventional renormalization constants by

λ-~^. (3.4)

As is well known the definition of the renormalized coupling constant is to
some extent arbitrary. For the purpose of this work it is convenient to
define λ by the value of the vertex function at zero momenta

λ = Λ (0,0, 0,0). (3.5)

In addition to (3.1), (3.2) it is assumed in this section that the field
operator A (x) satisfies the usual postulates of quantum field theory such
as Lorentz in variance, spectrum condition and asymptotic condition.

By formal manipulations of field equations and commutation rela-
tions we will obtain expression for α, β and γ in terms of Green's func-
tions. The formulae obtained will suggest how to modify the field equation
in case of divergent renormalization constants.

In order to determine α we take the matrix element of (3.1) between
the vacuum state Ω and the one particle state Φp of momentum p.
Kallen's renormalization condition
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yields

α = (2π)3/2 (Ω, :A (0)*:Φ9) . (3.6)

Using the reduction technique we can express α in terms of Green's
functions

G(p) = f e-<" <T:A (O)3: A (y)\dy (3.7)

The constants β and γ will be determined from the field equations
of the time ordered function of two or four arguments resp. As is well
known equ. (3.1—2) imply formally7

{T(xxx:x1 ...xr)- xT(xx1 . . . xr)} + (3.8)

* Σ /?I v &(x ~ xi) T(X1 ' ' XJ-lXi + l ' ' ' Xr)
-

for the time-ordered products. The vacuum expectation value of (3.8)
gives the field equations of the r-functions.

The constant β is easily determined from the field equation of the
propagator

= Λ QW-QW _ j; + i v (3'9)

β + 7 P 2 — m2 ^ ' β + γ

Setting p2 = m2 we get

β^l^Q-atjf^m* (3.10)

since
(pa - m2) ̂  = i at #2 = m2 .

In order to determine γ we use the field equation oίτ(x1 . . . x±) which
for the truncated part implies

With the notation

V7 For r = 1 the last term of the right hand side is i — \ a δ(x
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the Fourier transform of equ. (3.11) becomes

(β + y) (Pi2 ~ ™2) η(Pι - A) = *{0(A
Defining

x ^(^1 Pi)

and using (3.9) we obtain the relation

iγΛ(pl. . -2>4) =

With (3.5) the constant γ becomes

,0,0). (3.15)

Hence we obtain for γ the expression

(3.16)

By (3.7), (3.10) and (3.16) the constants α, /3 and y are all expressed
in terms of Green's functions involving the formal interaction term
:A (x)* : of the field equation (3.1). This result suggests to modify the field
equation according to

\ |= (0,1) (3.17)

where the functions α(|), β (ξ) and γ (ξ) are obtained by the substitutions

We thus get from (3.7), (3.10) and (3.16) the following representations of
α(f), β(ξ) and γ ( ξ ) in terms of Green's functions

(3.18)

=TίΓ^ fdy1dytdy,(T:A(ξ)A(0)A(-ξ): :
<oΔr(OΓ J

+ iλJ'dy{T:A(ξ)A(Q)A(-ξ):A(y))0 . (3.20)

Comparing with the definition (2.15) and (2.16) we have

«(ξ) = Q(ξ,p) p=(m,0,0,0,0) (3.21)

/?(!) = λ l̂̂ -^ for p =(1^,0,0,0) (3.22)

) . (3.23)

We thus arrive at the proposal that the field operator satisfy the field
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equation (1.2) with spacelike limit |2 < 0 and the functions α(|) and

expressed in terms of A (x) by (3.21—23).
In a similar manner one writes the field equations of the time ordered

products in the modified form

- (D. + m*) T(χXl . . . αv) = A lim Nf*^γ $ , I 2 Φ O

N(ξxxl . . . xr)=T(:x+ξ,x,x-ξ: x1...xr)- «(ξ) T(χXί ...xr) + (3.24)
r

(χ - xi) τ(xι - xi-

We finally give the Fourier transform of the vacuum expectation value
of (3.24)

(pP - irf) f(PPl . . . ft) - A lim - (3.25)

with

. . . pr) = ff(f pft pr) - α(f) ^b^i Pr) +

Pi- ιPj+ i P r ) -

In the following sections it will be shown that (3.25) is indeed satisfied
by the power series of the τ-f unctions. The equation (3.1) of the field
operator and (3.24) then follow for matrix elements between suitable
state vectors.

4. Renormalized Gell-Mann-Low Expansion

In this section the τ-functions will be defined by a power series with
respect to the renormalized coupling constant λ. Setting

τ(pl . . . pr) - Hm τ(p1 . . . prε\ (4.1)

we express τ (p^ . . . pr ε) in terms of the truncated part

τ (ft . . . prs)* = ^ (ft . . . 2>re) δ(Σ PJ) (4-2)
with

^(A Prε) = ̂  ̂ -OT. + iβ(F,. + m.)g(gι Pr«) - (4-3)

For f we give a definining power series which we write in the form

ζ (Pi - Pr*) - Σ -7 Jr(Pι ...pre). (4.4)

The sum extends over the class ^r of Feynman diagrams Γ with the
following properties. (&*(Γ) and JΓ will be defined below.)
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The vertices of .Tare denoted by V1 . . . , VN (N ̂  1). We distinguish
external and internal lines of Γ. Each external line is attached to a
vertex of Γ, each internal line connects two vertices of Γ. Γ is assumed
to be connected and to have r external lines denoted by El9 . . ., Er. To
each external line E$ a momentum four- vector ps is assigned. Each vertex
of Pis either a 4- vertex or a 2 -vertex. At a 4- vertex join four (internal or
external) lines, at a 2- vertex join two lines8.

The intrinsic symmetry number £?(Γ) is defined as follows [5]. A
permutation 77 of the vertices of Γ is called an internal automorphism if

(i) Π Va and Π Vb are connected by the same number of internal
lines as Va and Vb.

(ϋ) ΠVa= Va if an external line is attached to Va. Then &(Γ) is
defined by

where g is the number of internal automorphisms of Γ, α is the number
of vertex pairs Va, Vb which are connected by two lines, β is the number
of vertex pairs which are connected by three lines and γ is the number
of lines which connect a vertex with itself.

The terms JΓ(Pι Pr) °t tne expansion (4.4) will be defined as the
finite part of the Feynman integral JQ

Γ belonging to the diagram JΓ. We
first give the rules of constructing the unsubtracted Feynman integral
JΓ. Γ need not be connected for the following definitions.

The internal lines connecting Va and F6, with direction9 from Vb to
Fα, are denoted by Labσ (a = 1, . . . , v(ab}). To each vertex Fα corre-
sponds the external momentum

= qa= Σ pv (4.5)

where the sum extends over the set $ 'α of the external lines Lv which are
attached to the vertex Fα. Particularly we have qa = 0 for a vertex to
which no external line is attached. To each internal line Labσ we assign
the momentum labσ and require

l(Labσ) = laba= -laba for α Φ & .

The Feynman integral J°Γ of the diagram Γ is constructed according to
the following rules. To each line Labσ corresponds the factor

^'(Zα&σ) = ί.α-w + iβffl.o + m ) (4'6)

To each vertex Fα corresponds the factor

a**~9a (4.7)

8 Internal lines connecting a vertex with itself are counted twice in this context.
9 For the assignment of momentum variables it is convenient to introduce

directed internal lines.
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Here Σa denotes the sum over all internal lines Labσ (b =f= α) having Fα
bσ

as one of its endpoints. The factor Pa is

Pa = — 72^)4 for a 4-vertex (4.8)

Pa = A (λ) + B(λ) (I* - m2) for a 2-vertex (Fig. 1)

*
Fig. 1. Trivial self-energy diagram

±1 denotes the internal or external momentum corresponding to the
lines joining at the 2-vertex. A (λ) and B(λ) are power series with respect
to λ with (finite) coefficients to be defined later.

With these insertion rules the Feynman integral becomes

J°r(Pι •••Pr)= lim Jr(Pι - prε)

= 1 / "' r (4-9)

aba aba a = l bσ

or

Jr(Pι - - - Prέ) = fdki... ά~kmlr(kι. . . kmp1 . . . pr) (4.10)

aba a = l

JJ denotes the product over all internal lines Labσ of Γ. In (4.10) the
abσ

trivial integrations over internal momenta have been carried out in the
following manner. The arguments laύσ are written as

labσ = &αδ* + ^aba^l - fftf) (4.12)

^αδσ == ^αδσί^l ^w) > (4.13)

The rα6σ are linear combinations of ql9 . . ., qN and form a particular
solution of10

Σ*ral>a = qa> rabσ + Tbaσ = Q. (4.14)
6,σ

The rabσ are called basic internal momenta or r-momenta. The kabσ are
linear combinations of k1} . . ., fcrn and form the general solution of

Σakata = 0, kaba + k,aa=Q (4.15)
δσ

with m of the forms kabσ chosen to be identical with kly . . ., km. The

^α»σ are called homogenous internal momenta or ^-momenta, the set
(kv . . ., km) is called a basis of independent ^-momenta. Occasionally we

10 The momenta qa must satisfy momentum conservation for each connected
component of Γ.
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use the notation
raba = r(Lai)σ)> kabσ = k(Labσ) .

We introduce the following abbreviations

k=(k1...km), p=(Pl...pr) (4.16)

K = {kiia}L..σ£<?(Γ), ? = (ϊi ίtf) (4 17)

Equ. (4.5), (4.13) are written as

q = q(p), K = K ( k ) . (4.18)

We introduce the /-function IΓ(K, q) of the diagram Γ as the inte-
grand of the corresponding Feynman integral in terms of the variables
(4.17). Hence

IΓ=IΓ(K,q) (4.19)

is defined by (4.11) with (4.6), (4.8) and (4.12). In this notation the Feyn-
man integral becomes

J°r(P, e) = fdk1... dkm IΓ(K(lc), q(p)) . (4.20)

The finite part of a Feynman integral will be defined in the form

JΓ(p)= Mm JΓ(p,e) (4.21)
£-> + 0

JΓ(pέ) = /**!... dkm RΓ(K(k], q(p) ) . (4.22)

where the ^-function Rr(K, q) is obtained from Ir(K, q) by a suitable
number of subtractions. For the precise formulation of the rules we will
need some definitions concerning the /-functions of reduced diagrams and
subdiagrams of Γ.

Let c£?jnt(y) denote the set of internal lines and 1^(γ) denote the set
of vertices of a diagram γ. To any set £? C Jifint (Γ) we define a subdiagram
γ of Γ by the internal lines L ζ J? and the vertices which are endpoints
of a line L in ££ . The external lines of γ at the vertex V ζ i^(γ) are the
external lines attached to V in Γ and in addition as many external lines
as there are internal lines8 L of Γ with endpoint V and L $ Jδf .

A diagram is called a renormalizatioii part if it is a selfenergy part
(proper diagram with two external lines) or a vertex part (proper dia-
gram with four external lines). The dimension d(Γ) of a proper diagram
Γ is defined as the dimension of the multiple integral (4.20). The re-
normalization parts .Γf orm all proper diagrams with dimension d (Γ) ^ 0.

Let γlf . . ., γc be mutually disjoint renormalization parts of Γ.
Γ/Yi Yc denotes the reduced diagram which is obtained from Γ by
reducing each γs to a point. The /-function /Γ/yι . . Ye (K, q) is defined
again by (4.6), (4.8), (4.11) and (4.12), but with the products in (4.11)
restricted to the lines and vertices of Γ\γ± . γe
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Let γ be a renormalization part of Γ. We define the /-function of
y b y

WW)= Π Δτ(Paha) Π Pa (4-23)

with (4.6), (4.8) and

(4-24)

" = (4-25)

The products in (4.23) extend over all vertices and internal lines of γ.
We next express k^bβ) qv

a as linear combinations of kabσ, qa by
requiring

ηba(Kv,qV)^lab(,(K,q) (4.26)

for all Labσ ζ <SP(γ). According to

the ^6o, g^ are uniquely determined by this requirement. The choice of
basic internal momenta qabσ) q%bσ selected for every connected sub-
diagram γ of jΓ is called admissable if the k%ba depend on the kabσ only:

klba = klba(V> ϊί = ?β

y (*>?)• (4-27)

With the substitution (4.27) IY becomes a function of K and q.
After these preparations we define now — following BOGOLIUBOV —

the 72-functiorι of Γ by
SΓ(K, q) = RΓ(K, q) (4.28)

if Γ is no renormalization part and

RΓ(K, g) = (1 - if(r)) Br(K, q) (4.29)

if Γ is a renormalization part of dimension d (Γ) ΐg 0. The function RΓ is
defined recursively by

Rr(K, q) = IΓ(K, q) +

+ Σ Ir,γ>...Ve(K,q) flP^On(K*,qK) (4.30)
yi Ve 7 = 1

K^ = ^Γ^ (K) , 5yτ = gyτ (Jf , ζ?)

Oy (JP', ̂ ) = - tBγ(Ry3 qη . (4.31)

), if applied to a function of q, denotes the Taylor series with respect
to q1 . . . qr up to and including terms of order d(Γ). The sum in (4.30)
extends over all sets s = (γl . . . γc) of mutually disjoint renormalization
parts of Γ with γ^ Φ /*. Let Wτ be the vertex of Γ/γ1 . . . 7C which is
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obtained by reducing γτ. Then Pτ in equ. (4.30) denotes the factor (4.8)
which is assigned to Wτ in Γ/γ1 . . . γc

u.
As will be shown in a forthcoming paper [17] the finite part (4.22) of

a Feynman integral thus defined is an absolutely convergent integral
for e > 0. The integral is independent of the choice of the basic internal
momenta qabσ, q%bσ In the limit ε->+0 J ( p ε ) converges strongly
towards a covariant distribution (4.21) in pv . . . , pr.

Finally we define the power series A (λ), B(λ) recursively by

.W), JS(PZ) = JS(P,-P) (4-32)

M, W) = - - (4-32)

The sum extends over the class Jf of all proper self-energy parts 8
excluding the trivial diagram (Fig. 1) with one vertex only. This pre-
scription guarantees that the propagator satisfies the renormalization
condition

-i(p2- m2) A'F(p) = 1 at p* = m2 .

Concluding this section we state an algebraic identity for ^-functions
which will be crucial for the derivation of local field equations.

Theorem. Let Γ be a diagram, W be a ^-vertex of Γ with the property
that W does not belong to any renormalization part γ φ Γ of dimension
d(γ) > 0. Under this hypothesis the identity

RΓ(K, q) = - -~γFr(K, q) BP(E*, <f) -

BΓlr(E,q)Fv(Kv,0)B9(Ef,0) (4.33)

q* = qs(K,q) for δ =
holds.

γ is defined as subdiagram of Γ by

where ^(γ, W) is the set of all internal lines of γ with endpoint W. Fv is
given by

= Πr, 3

with the products extending over all lines of J£(γ, W). T(Γ, W) denotes
the set of all renormalization parts γ of Γ with W £ i^ (7) and γ Φ Γ.

11 It should be noted that in general these rules give more subtractions than
BOGOLIUBOV'S original prescription. This is for instance the case for the second
order selfenergy diagram. Apparently less subtractions are required if the sub-
tractions are made before the regularization limit is taken. I am indebted to Dr.
HEPP for many interesting discussions concerning this point and the equivalence
of both methods.
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We also write (4.33) in the abbreviated form

77 Qίλ 77f T) (4.35)

where the superscript ° denotes the value at zero external momenta.
The proof of this identity is elementary, and will be given in a

separate paper [17] for the general case of arbitrary coupling.
The theorem is related to HEPP'S Lemma 2.3 in ref. [15] .One differ-

ence is that in (4.33) the degrees of the subtractions in Rp/γ, R$ refer to
Γ/γ and γ rather than to the original diagram Γ. This is desirable for the
derivation of field equations, but requires a restriction on Γ and W as
stated in the hypothesis. In the general case one has more complicated
identities.

5. Check of Field Equations in Perturbation Theory

a) Relation for Λ Functions

In this section we will verify that the equation (3.25) for the r-func-
tions are satisfied by the renormalized Gell-Mann-Low expansion
(4.1—4) to every order of λ.

We begin checking the relation (r ̂  3)

γ(ξ)Λ(pp1 ...pr) = -iλQ(ξpp1. . . pr) + ω(ξpp1. . . pr) (5.1)

where Λ and Q are defined by (2.5), (2.14) and the function ω satisfies

(5.2)

Λ (ppi pr) has the expansion

Λ(pp1 ...pr)= lim Λ(pp1 ...prε) (5.3)
e-» + 0

Λ(pp1 . . . prε) = Σ — =- JΓ(PPι - - - prε) (5-4)

where 3Fr is the class of all connected diagrams with r -j- 1 external lines,
but no external self -energy insertions. The momenta p, pl9 . . . , pr are
assigned to the external lines denoted by E, E17 . . . , Eτ. The cor-
responding external vertices will be denoted by W9 W19 . . . , Wr.

The hypothesis of the theorem (page 175) applies to W for any
Γ ζ C^r since by definition W does not belong to any self -energy part of
Γ. Identity (4.33) then implies

» Fϊ Rϊ =-wrFrRf (5 5)

Here C(Γ, W) is the set of all vertex parts of Γwith W ζ i^(γ). The case
γ = /'is included provided N = 3. F®, R^ denote Fγ9 Rγ at zero external
momenta.
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The elements of C are totally ordered by inclusion, i.e.

γ C γ' or γ' Q γ

for any two elements γ, γ' of C. Let γQ denote the smallest element of C

γQ Q γ for all γ ξ C .

We distinguish the following two types of diagrams in JfΓr. Γ is called
degenerate if two or more external lines are attached to the vertex W

Fig. 2. Exemple of degenerate diagram

(Fig. 2). Γ is called non-degenerate if only one external line is attached
to W. Γ is called trivial if it has one vertex only. All non-trivial degener-
ate diagrams have two external lines attached to W.

We further introduce a numbering v of the elements of &(Γ9 W), i.e.
the internal lines with endpoint W. Let Γ be non-degenerate. In this
case we consider all numberings v which assign the numbers 1, 2 and 3
to the lines of 3? (Γ9 W) which are accordingly denoted L19 L2 and LB with
direction towards W. If Γ is degenerate and non-trivial we consider all
numberings v which assign the numbers (1, 2), (2, 3) or (3, 1) to the two
lines of J^(Γ, W).

A relation for JΓ will be derived for every Γ ζ C^r and any numbering
v. Finally summing over all Γ ζ $fτ and v we will obtain the desired
relation (5.1).

We begin discussing the simple example of a non-degenerate diagram
which is further restricted by the condition that L19 L2 and Z/3 all be
internal lines of γ0. In this case

pv(W) = p for any γ ζ C .

It is convenient to choose the r-momenta of L19 L2) L3 as

r(i,) = t*(A)=f, γζO. (5.6)

We further select a basis klf . . ., km of the momenta kabσ (Labσ ζ oS?ίnfc (/*))
such that
13 Commun. math. Phys., Vol. 6
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(i) klt k% correspond to Llt L2 resp.
(ii) & £ , . . . , &^(y) form a basis of the momenta kv

abβ

(£αδσ€^int(y)) for any γζC.

With this notation we have

*£ = *!, *g = 4a for y ξ (7.

Multiplying (5.5) by e-*^ <*»""*«) and integrating over Ic^ . . . , km we obtain

r̂ + 2Vr/yZy=-^lFΓ+ΓΓ (5.7)
γ£D (Zπ>

with
(5.8)

Wγ= fdk^.. dkm e-«<**-WjFΓ Λ? (5.9)

7Γ=fdk1... dkm(e~ίξ^~^ - 1) jf^ (5.10)

In deriving (5.7) it was used that TJ/yy does not depend on the variables
b If

1* 2*

Next we extend equ. (5.7) to the general case of a non-degenerate
diagram Γζ Jfr. Let 0Q(Γ) be the set of all γζC(Γ) with

Let further Ci(Γ, v) be the set of all γζC(Γ) with

•M^int(y).
Note that for given Γ and ι> at most one of the sets (7Z (Γ, v) is not empty.
We choose the r-momenta of L19 L%, L3 as

=f, γ£C0 (5.11)

for γζC,, 7 = 1,2,3. (5.12)

Further we select a basis ^1? . . . , km of the momenta kabσ (Labσ ζ «S?int (J
1))

such that

(i) klf &2 correspond to L1? L2 resp.

(ii) JfcJ, . . . , ̂ (

r

m) form a basis of the momenta kγ

aba

(A*6σ£^int(r)) for any y 6 (70) .

(iϋ) &J, fc^, . . . ̂ ( ) + 1 form a basis of the momenta i£ftσ

(^αδσ6^int(r)) f or any γ ζ C2 or y £ <78 .

(iv) ftg, JfcJ, . . . , i^(y) + j form a basis of the momenta k^ba for γ ζ Oj.
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With this notation we have

= kz for γζ00 (5.13.0)

-|- for γζG1 (5.13.1)

! + -ίf- for γζCz (5.13.2)

for ζ θ . (6.13.3
1 , , = _

Multiplying both sides of equ. (5.5) by 0— *£(*! — #») and integrating over
&1? . . . , km we obtain

3 β*;. 2

, = - l ^ r , + 3rr,+ £ 2; 7,,,. (5.14)

Here
= * -«*-*>

(5.15)

lift
'

— f*
. . . dkm(l - e 2 ')

X / di^

Next we derive similar relations for degenerate diagrams Γζ Jfr

with W = Wa. Starting point is again the algebraic identity (5.5). If 2
and 3 are assigned to the lines of &(Γ, W) we choose the momenta
corresponding to L2, LB as

i = 2, 3, γ ζ σ . (5.16)

We select a basis &2> •> ^w+i °f ^ne momenta kabσ(Labσζ
such that

(i) ^2 corresponds to £2

(ii) A;^, . . . , &^(y) + 1 form a basis of the momenta k^bσ

(£.»„€ JSfintty)) for any yζC(Γ).

Equ. (5.5) is then multiplied by

13*
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and integrated over k3- with the result

Jr+Σ Jr/γX/γv = - -7!
v€0 (*π>

Here

= /dk2... dfcm+ί(l - e"r!' + + *')ΛΓ (5.18)

If v assigns the numbers 1, 3 to 3?(Γ> W) the corresponding relation
is obtained from (5.17) by interchanging the indices 1 and 2 and the
substitution ξ -» — ξ.

If v assigns the numbers 1, 2 to J^(jΓ, W) we set

= , . (5.19)

We select a basis kv k3) k±, . . ., &m+1of the momenta kabσ(Lab σ ζ ^intί-Γ))
such that

(i) &! corresponds to ̂
(ϋ) &£, AJ, . . . , ̂ (y) + ! form a basis of the momenta kv

abβ

(La,σζ<?inί(γ)) for any y6O(Γ) .

Multiplying (5.5) by e"2**1* and integrating over ^ we get

J J X ="^Wrv+ Γ°Γ" (5.20)
... dk™ (γ) β-2«*ϊ f J« Λ9

= fdk.dk, . . . dkm+ίe-^^FΓRr
rv = / dk.dk,... -™e ( < }

Summing now both sides of the relations (5.7), (5.14), (5.17) and (5.20)
over all possible Γ ξ Jf. r and assignments v we obtain

1 . . . 1 . . .3J l ,β)

ε > 0

where y and Q are given by the following power series in λ

β) (5.23)

f Qaί+Q0 (5.24)
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3

Π Δp^ε) RΔ(lλ . ..I3p1 . . .prks)
7 = 1

β.ι = τAr £ OT fdl2dl,dkδ(l. + h ~ Pa - P) ̂ e(Λ + w

(Jπ) Jζ^r «^v^) J
3

77 4pft e) JSj (ϊaί,Λ . . . pβ_ j pα+ , . . . pr&ε) (5.25)
? = ι

" l dl dk 6(1 + l - -

) ΔF(l9ε) RΔ(kkP^ ' ' Pa-lPa+l

f
\Δl J

cβ/r is the class of all diagrams Δ with the following properties
(i) Δ has N + 3 external lines. Ev . . ., E3 are called upper lines

(with momenta Il9 . . ., Z3), E^ . . ., EN+3 are called lower lines (with
momenta pl9 . . ., pN).

(ϋ) Δ contains no self-energy insertions into lower lines.
(iii) To each connected component of Δ at least one upper and at

least one lower line are attached.
(iv) There is no one-particle cut of Δ which separates the upper lines

from the lower ones.
gβγ is the class of all diagrams Δ with the properties
(i) A has r+l external lines. E1} E% are called upper lines,

E3) . . ., EN+z are called lower lines.
(ii) and (iii) as above.
In the limit ε -> +0 (5.24) becomes the expansion of Q(ξppι. . . pr)

as defined by (2.15). Hence taking the limit ε -> +0 we obtain the rela-
tion (5.1) which was stated in the beginning of this section.

ω is given by the expansion

ω(ξpp1...pre) = Σ -Jrrϊγr+^r Σ -Jπ^Σ Σ γιvv

' y€Cl(Γ) (5.26)

with YΓ) Ylγv, Y2γv defined by equ. (5.15).
Each term in the expansion of α(|) is a continuous function of ξ for

|2 Φ 0. The expansion terms of Q(ξppι. pr) and co(ξpp1. . .pr) are
distributions of ̂ r + 4: in the variables p, p1} . . ., pr and depend con-
tinuously on I for |2 Φ 0. Moreover, each term of the expansion of ω
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vanishes in the limit ξ -> 0
lim lim ω(ξppι . . . prε) = 0 . (5.27)

b) Relation for Proper Self -Energy Parts

In this section we will check the relation
*) + iλ(«(ξ) + o(ξ,p) )

where
lim o({,3») = 0. (5.29)

6->+ 0

The function 77* is as usual defined by
^ = ̂  + ^77*4ί (5.30)

and has the expansion

Σ -^ <W) -A(λ)~ B(λ) (p* - m*) . (5.31)

The sum extends over the class Ctf* of all proper self-energy diagrams
excluding the trivial diagram Fig. 1 with one vertex only. We have

J7* (m2) = 77*' (m2) = 0 (5.32)
which implies the renormalization condition

(p* - m*)Δ'F = i at p* = m2 .

J5(^2)= lim J8{p,-p,e) (5.33)
e-> + 0

^te -P> e) = / dkEs(p, -p, Jc, ε)
with JR^ as defined in section 4. We rewrite (5.33) in terms of the even
part of Es with respect to p. Let f(p) be a function of the four vector pt

then we define /+ (p2) by

/+(2>2) = γ
with

-p == (|/^ o, 0, 0) for ^ ̂  0

ί> = (0, }/-p2, 0, 0) for ^2 < 0 .
Since J^ (p2) depends on p2 only we obtain

Js(p*)= lim Jί(p«,β) (5.34)
e-> + 0

where
2

? e) = / ί * Λί (^2^ε) (5.35)

Using (4.32) the expansion of 77* (p2) may be written as
77* (p*) = lim 77*(p2ε) (5.36)

β-^ + O
where
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A proper self-energy part S is called degenerate if both external lines
are attached to the same vertex (Fig. 3). Otherwise S is called non-
degenerate. 8 is called trivial if it has one vertex only (Fig. 1). If 8 is

Fig. 3. Degenerate self-energy diagram

degenerate and non-trivial the corresponding integral Js vanishes.
Therefore, we may restrict ourselves to non-degenerate proper self-
energy parts. Let W be one of the vertices of 8. The hypothesis of the
theorem (section 4) applies to W for any 8 ζ 3f since W does not belong
to any self -energy part other than 8 itself. Identity (4.33—35) states in
this case

Ss = —^fsSs- Σ Rshnty (5-38)
(*π) γζT(S,W)

which implies for E£ the relation

*ί+ Σ * ί / y ^ = - ( l - φ ) Λ ί (5.39)

= Fs(pkε)

We further introduce a numbering v of the elements of j£? (S, W), the
internal lines with endpoint W. All numberings v are considered which
assign the numbers 1, 2 and 3 to the lines of &?(S, W). A relation for
Gs will be derived for every 8 ζ Jf and any v. Finally summing over 8
and v we will obtain the desired relation (5.28).

We define the following subsets of T(S, W). C'(S, W) denotes the set
of all γ ζ C(8, W) for which 8/γ is non-degenerate. The elements of
C'(S, W) are totally ordered by inclusion. C"(8, W) is the set of all
γ ζ C(S, W) for which 8/γ is degenerate. Further we introduce 00(8, W)
as the set of all γ ζ C'(S, W with

Let Ci(S, W, v) be the set of all γζC(S) with

£,ίJ2?int(y)

Similarly let OQ (S) denote the set of all γ ζ 0"(8) with

LvL2)L^^ini(γ)

and 0" (8, W, v) be the set of all γ ζ 0" (8) with
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It should be noted that for a given diagran S at most one of the sets
CΪ(S) (i = 1, 2, 3) is not empty.

Apparently, the total set T is the union of the subsets C'i9 C". Accord-
ingly identity (5.39) takes the form

*s++f ΣBέirWBΪ+Σ ΓΛί/^Λ9 = — |̂ .(l-φ)^. (6.40)
ί = 0 γζC'i i = 0 γζ.C\' (*π)

We choose the g-momenta of L19 L2, L3 such that relation (5.11) holds
for γ £ CQ, CQ and (5.12) holds for all other γζC. Further we select a
basis B = (&1? . . ., km) of the momenta &αδσ (Labσζ ^^(8)) such that

(i) kL9 &2 correspond to the lines L19 L2 resp.

(ii) & £ , . . . , &^(y) form a basis of the momenta kγ

abσ

(Lα6σ6^int(r)) for any r$ Q

(iii) kv, k%, . . . , &^(y) + ! form a basis of the momenta k*b

(^α6σζ^int(r)) for any γ ζ 0^ or y ζ Q

(iv) fcg, fcy, . . . , k^Y) + ! form a basis of the momenta kv

ab

f or any y

ba

(v) Let y ζ C" (S) with f = 0, 1, 2. 5y denotes the set of all klbσ ζ B
with Labσζ J^int(y). Then Bγ form a basis of the momenta

(vi) Let γ ζ C'^ (S) . Bγ denotes the set of all I%bσζB with La bσ ζ J^int (7) .
but excluding k*. Then Bγ form a basis of the momenta

With this notation we have the relation (5.13.i) for γξ CKS) or

Multiplying the identity (5.40) by exp(— iξ(k1 — k2)), integrating
over the internal momenta and applying the operator (1 — t^_m*) we
obtain

(5.41)

Σ Σ
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Here
X'0v =

... dkm e-«<**-« J?£

Γs = / dk, . . . dkm(l - β-*ί <*.-*.)) E+
__ 3ί_

- e * ') Λj X

»

^y = / dk, dkmM+2 . . . dkm(l -e*ξ *) Etlv X

X

V = / 77 d*β».(l - e " " 1 ) Λ& X

'

The quantities C7 are obtained from the corresponding Y by

In deriving (5.43) it was used that Js/y = 0 f or y ζ G" (S). Finally we
sum over all proper self-energy parts and all possible v with the result

γ(ξ, ε)Π*(pί, ε) = -iλQ(ξ, p, ε) + ίλ(α{£, ε) + o(ξ, p, ε)) +
(5.43)

x, β and Q are given by the power series (5.23—25) with

e) = Q(ξ,p,-p,B)

p = (]/ψ, 0, 0, 0) for p* g: 0 (5.44)

p = (0, |/- jja, 0, 0) for p* g 0
and

at ,2 =
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For (5.44—45) we used symmetry in kv k2 and the fact that Es is in-
variant under the substitution

Taking the limit ε -> +0 we obtain the relation (5.28). For o(ξ, p} ε) we
have the expansion

ί=1 ' (5.46)

Every term of this expansion vanishes in the limit ξ -> 0.

c) Field Equations for τ-Functions and Field Operators

We begin deriving the field equation for the propagator. From (5.28)
we obtain

= -iλθ(ξ, p) + α(α(|) + o(fj>)) Δ'F(p) + (5.47)

+ ί(p*-m*)β(ξ)^(p).
This yields

*-m*Δ

Dividing by β(ξ) + γ (ξ) and taking the limit ξ -> 0 we obtain

- Inn . - (5.49)

This is equ. (3.25) in case of the propagator.
In order to derive the field equation of an arbitrary τ-function we

multiply both sides of (5.28) by Δ'FΛ. Using (5.1) and (2.15) we get

γ (f)) (P* - ™2) JP (P)Λ(pPl ...pr)

..Pr) (5.50)

For r(^^! . . . pr) this implies

. . Pr) - λ(α(f) + o(ξp)) f (pa . . . pf) + (5.51)
r

+ < 7 (f) Σ <3(P + ft) ^(^1 ft + l ft + l - Pr) + V(%PPl Pr)
7 = 1

where
lim
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Dividing by β(ξ) + γ(ξ) and taking the limit |->0 we obtain (3.25).
Hence we have proved that the system (3.25) is satisfied by the renor-
malized expansions of time ordered functions.

From (5.51) it is not difficult to derive the field equation (3.24) for
the matrix elements

(5.52)

between state vectors Φg0 ξ An. ^outδ ζ A>ut of the form12

α
outα ωι « out

φfc *« = 3*(kι)...2*(ka)Ω (5.53)
out out out

kf = ra2 , Tcf = ωt = J/k,a + m2 .

The matrix elements (5.52) can be expressed in terms of τ-f unctions by
using the reduction formula

<[. . . [8T(xxί . . . xr),

β (*,)... β (kn) (2 π)»/2 / β-'fr* + *»*> τ(pp1...pr:k1...kn:).( '

On the other hand (5.51) yields 13

+ o(ξp) ) τ(PPl ...p. .k,... k^) + (5.55)
r

+ ft) *(ft ft-l ft + 1 Pr A - - *nO

where

X (5.56)

X f (f ζ . . . Ϊ3 :pp1 ...

Putting the momenta k$ on the mass shell (with appropriate signs of kf)
and taking the Fourier transform with respect to xs we obtain

- (Π. + m2) φx, ...xr) = λ Km w (5.57)

12 An and Z>0ut denote the free field domains for the incoming and outgoing
fields as defined in ref. [18]. It is understood that the tested field operators A (/)
are defined on a domain D with the properties D C An* D C Dout and ̂  (/) -̂  £ -D

is For r = 0 the third term on the rigth hand side is missing, for r == 1 it is
ft) *(:*i . •*»:)•
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with

v(xxί ... XT) = <[... [8T(xxί . . . xr), A&fa)] . . .

w(ξxx, ... xr) = <[... [SN(ξxx, . . . xr), J£(fc,)] . . . At(kn)]\

(for the definition of N see equ. (3.24)). Working out the multiple com-

mutators and folding by test functions F and G one finally obtains (3.24)

for matrix elements (5.52). The field equation (1.2) of the field operator

A (x) is the special case of (2.24) with r = 0,

and spacelike limit ξ -> 0.

I am grateful to Drs. DELL'ANTONIO, DYSON, HEPP, LEHMANN, STEINMANN,
SYMANZIK, WIGHTMAN, K. WILSON, and T. T. Wu for interesting and helpful
discussions.
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