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Abstract, For the model of 44-coupling a finite form of the local field equation is
proposed and checked in renormalized perturbation theory.

1. Introduction

As is well known the canonical quantization of the Lagrange density
1 mg A
$=§a,,Aoaqu——2£A02 —TOA04 (1.1

leads to a field equation and commutation relations which are meaning-
less, at least in perturbation theory. This difficulty is avoided in the ab-
stract formulation of quantum field theory which is based on general
principles such as Lorentz invariance, microcausality and spectrum con-
ditions [1]. Indeed, well defined power series can be constructed which
solve the basic equations of the theory to all orders [2]. Due to the general
nature of the principles the abstract formulation provides a frame for all
local and invariant interactions specifying only the number and types of
the fields involved and the masses and spins of the stable particles. The
question arises how in this framework a specific model can be charac-
terized by imposing a simple and meaningful condition on the field
operator.

By analogy to VArLaTIN’s formulation of quantum electrodynamics
[3] we propose the field equation

— (O + m?) A(x) = 4 lim j(z, £)

. A A — &) — £2<0 (1.2)
iz, &) = (x + &) A(z) Ag(::é) &) — (&) A(x)

as such a condition for the model (1.1) of 4%-coupling. The parameters m
and A denote the physical mass and (suitably defined) coupling constant

* The research reported in this paper was supported in part by the National
Science Foundation.
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162 W. ZIMMERMANN ¢

of the mode]. The : :-product is obtained from the ordinary operator
product by trivial vacuum subtractions

1A () A(2g) A (my): = A (1) A () A(@3) ~ 13)
— (A (2;) A (25)D9 A(25) — cycl. perm. terms .

for spacelike distances (2, ~ #;)? < 0, {i + j). Combined with the general
principles the field equation (1.2—3) provides a complete description of
the model in terms of renormalized quantities, but without reference to
a power series expansion’.

The limit & — 0 should be understood in the weak sense that (1.2)
holds for each matrix element between suitable state vectors. It is
essential, however, that the renormalization functions « and g are
independent of the state vectors. o and g are to a large extent arbitrary,
only the leading singularities at £ = 0 are relevant in (1.2). The right
hand side of (1.1) may be considered as an appropriate definition of the
local operator product 4 (x)? which otherwise is not defined.

The purpose of this paper is to study the field equation (1.2) in
renormalized perturbation theory. A check in perturbation theory may
be regarded as a preliminary test for the consistency of the scheme. The
given formulation should also be suitable for investigations independent
of perturbation theory. Recently Symanzix {6] derived an expansion
of GREEN functions in Euclidean quantum field theory which does not
have the shortcomings of perturbation theory. It should be interesting
to see whether the Huclidean analogue of (1.2) is satisfied by such an
expansion.

Field equations involving a limiting procedure of the form (1.2) were
first proposed by VALATIN for quantum electrodynamics and verified
in the lowest order approximations [3]. The validity of similar field
equations has been checked in a number of non-relativistic models [7].
A few years ago the discussion was taken up again for local relativistic
theories [8, 9, 10]. In LEHMaNN’s approach [8] the renormalization
functions are determined by simple assumptions for finite £2 < 0 which
reduce to the usual renormalization conditions in the limit & 0.
WiLsoN [9] checked field equations of the form (1.2) for meson-nucleon
interaction in some low orders of perturbation theory. He further
discussed the definition of arbitrary local operator products on the basis
of dimensional arguments. In an earlier version of the present work [10]
the field equation (1.2) and similar equations for meson-nucleon inter-

1 QOther finite formulations of models have been discussed in the literature.
We mention two examples. For the model of 43-coupling in six dimensions SYMAN-
zik [4] derived finite equations for the field operator which involve non-local
integral transformations. T. T. Wu [5] gave a finite formulation of Dyson’s integral
equations for the model of 4*-coupling.
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action were checked in all orders of perturbation theory. However, the
calculations were based on a rather intricate method of renormalization.
For a check of the proposal in perturbation theory the power series

A, 2) = 2 A, ( (14)

#(6, ) = _imn(s), 98, 1) = ﬁozﬂgm) (1.5

must be constructed such that to all orders of A

(i) 4 (x)is alocal relativistic field in the sense of the general postulates

(ii) A () satisfies the field equation (1.2).

The expansions (1.5) are determined by (1.4) if — as in this paper —
explicit representations of « and g in terms of Green’s functions of 4 ()
are used.

For the construction of the power series (1.4) the following three
methods are available.

(1) In perturbation theory Stmixmaxx [2] gave a gystematic treat-
ment of certain integral equations which form necessary and sufficient
conditions for (i). By appropriate choice of the parameters one obtains
an expansion (1.4) which should correspond to the model (1.1). In this
approach (i) is obviously satisfied. However, the structure of the ex-
pressions obtained is complicated and it should be difficult to check (ii).

{2) The straightforward way of constructing (1.4) is to iterate the
Yang-Feldman equation?

A (@) = Ain(@) = 4 [ Ages (v = 2') lim j (2", §) da” . (1.6)

If the iterated integrals exist, (ii) is automatically satisfied. Unfortunate-
ly, the iterated integrals are so complicated that it would be tedious to
prove the finiteness of each iteration step? <.

(3) The most convenient method of constructing (1.4) is based on
DysoN’s renormalization theory [13]. Starting from the Lagrangian (1.1)
the Gell-Mann-Low expansion of the time-ordered functions

Ty, ... 2) = TA()...4()) (1.7)

is formally derived. In its final form the renormalized Gell-Mann-Low
expansion is a power series

(@) . .. 2. A) = é':]/l"rn(xl ce ) (1.8)

2 In ref. [11] HepPp proved the Yang-Feldman equation in Wightman’s frame-
work for a dense set of collision states.
3 For a discussion of the formal iteration solution of the conventional field

equations see [12].
¢ Slightly more convenient is the analogous integral equation with A, as

Green’s function.
12#*
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with finite coefficients 7,. Putting all momenta but one of the Fourier
transform of (1.7) on the mass shell one obtains expansion (1.4) for the
matrix elements of the field operator. It is generally believed that the
renormalized Gell-Mann-Low expansion corresponds to a local relativistic
theory in the sense that (i) and the relation (1.7) between field operator
and 7-functions are satisfied for (1.4)5.

In this paper method (3) is used for the construction of 4 (x). Assuming
that (i) and (1.7) are satisfied it is shown that the field equation holds
for every order in A.

The problem of overlapping divergencies presents a serious difficulty
in defining (1.8) for the model of 4%-coupling. In conventional renormali-
zation theory this problem was solved by T. T. Wu [5] using differentia-
tion with respect to the momentum variables. A most elegant method
of renormalizing arbitrary interactions was developed by BogorLiuBov
[14] working with a regularized Gell-Mann-Low expansion. As was
proved recently by Hepp [15] the coefficients of (1.8) constructed
according BogoriuBov’s rules approach well defined limits when the
regularization is removed.

Since the presence of a regularization parameter is inconvenient for
our purpose BoaoLIuBOV’s method is reformulated without regulariza-
tion. The z-functions are defined by the expansion (1.8) with the co-
efficients related to renormalized Feynman integrals. The integrand of
each Feynman integral is constructed algebraically by rules which
resemble those of BogoriuBoveé. With this definition a system of equa-
tions for the 7-functions is derived (see equ. (3.24)) which implies (1.2)
for the field operator.

The method can be extended to other renormalizable theories, except
for models where infrared divergencies cause additional complications.
The pseudoscalar meson-nucleon interaction has been worked out and
will be treated in a forthcoming paper.

In section 2 some notations are collected which will be used through-
out the paper. Section 3 contains a heuristic motivation of the field
equation and the formulae for & and g. The definition of renormalized
Feynman integrals is given in section 4 and applied in section 5 to the
derivation of (1.9).

Closely related to the present approach is the work by BranpT of
which only the first of a series of papers is available how [16]. In this
first paper BRANDT derives a set of integral equations from WILsON’s

5 A proof of this statement will be given in a separate paper.

¢ Orginally I defined the integrand of a renormalized integral recursively by
algebraic relation (4.33) of section 4. In this approach it is quite tedious to show
that the result is independent of the way the recursion is carried out. Using Bogo-
LIUBOV’s definition the relations (4.33) become algebraic identities.



Field Equations 165

form [9] of the nucleon field equation which are found to be equivalent to
corresponding integral equations of renormalized perturbation theory.

2. Notation of Green’s Funections
In this section we collect some definitions of Green’s functions and
their Fourier transforms which will be used in the work that follows
T@y.. . z,)=TA(x)...4A(x,)
Ty ... x) =TA@)...A®)) (2.1)
Ap@—y)=1(,y), Ap(p)=[e?*Ap(x)dx
f(py ... p,) denotes the Fourier transform of a function f(z; . . .x,) of r
four vectors

Hpy. .. p) = (2%)2[ G [z, .. ) day ... da,.  (2.2)
The truncated part of 7(x, . . . 2,) will be denoted by
Ny ... o) =7(2...2)7
Py -p) =P p)0(2 Py). (2:3)
We further introduce
C@y- o) = (=0 (pP—m?) ... (02— m®)qj(py... ) (24)

(P p)
At = Z 0 A (2.5)

A(py ... p,) is the conventional vertex function of A4-coupling. We will
also need partially truncated Green’s functions such as

([ XYy Ym) =T(@y oY) — Dan(Zy) ... (Zy) . (2.6)

The sum J, extends over all partitions of (z,...¥,,) into classes

Zy, . . ., Zy for which at least one class Z, contains 2; only, i.e.
2, S (@, )
for at least one «. Further we define
(@20l [ U] = 7@ Y) = Doy 1(Z) - n(Bn). (27)
The sum J;,, extends over all partitions of (z...y,) into classes
Z, . .. Zy for which at least one class Z, contains x; or y; only, i.e.

Z,C @) OO ZyS (Y- Un)
for at least one «.
The following related functions will frequently be used in this work

H(Eppy - pr)
1 .
=Wfdll Al 8(X - p) e TR ([ L L] Dy )
S(p+ 2 ») G(Epps- .. D)
1 —i(l—l)& > (2:9)
B <2n>4fd’1~--dl35(2lf—29>e TREE([ L) [py - - i)

(2.8)
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For n = 1 we use the notation

G(épp) = G(ép) - (2.10)
Apparently

1 . n
G(Ep) =Wfdl1 AL (Sl — p) et G RERA L Tp). (2.11)

The following definitions introduce functions with a particular one-
particle pole separated off. For n, m = 2 we define

N1 Dalth - - - )

_ 2 _ AP P =P (PG - - - )
NDy-- - Puly- - - Im) 7o)

(2.12)
p=Xp=-2g.

As is well known these functions do not have a one-particle pole at

p? = m2. Related functions are introduced by

T(pr- Pl s @) =F(p1- - Pul (01 - - - Tu]) —

5Dy Do — D) A DL+ O 2.13)
~ 0 p+ 2 a) Ao-.. = P) (P - 1) (n, m = 2)
A% (p)

op+ X 1) QUéppy... 1)) (r=3)

1 il — 7 ([ LYo p])
—_— . (—l)& 1
(MJ dly ... Al 8l — p) e T

(2.14)

It follows

G(§Z)P1-~~pr)
U ) A L = < AL oo A .o.p). (215
Qépp:- .- D) SRS, (ép) A(ppy - - - p,) - (2.15)

For r = 1 we define

G
Qepp) = Q(Ep) = 42 (216)
A% (p)
The normal product of field operators
N@,...z,)=:4(x)... A=)
is as usual defined recursively by Wick’s rule
N
T@, ...2,)=N(@,...2)+ 3 I[4p(x;, — ) N(X) (2.17)

s=1
with the contraction function Ap. The sum extends over all partitions of
(% . . . x,) into classes

(0;,2), « « « (@iy77,), X = (2p, ... 23), N=1
with empty X included. The mixed products
Ty o @Yy Yu)=TCA@®) ... A@): AW) .. . AYn)
Ty .o 2 Yy e o Yy - e - 20l)

=T(A@) ... A@,): Ayy) ... A(yw) :A(z) .. . A(2,))
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are defined by (2.17), but omitting the terms containing factors
Agp (x; — ;) or Ap(2; — 2;). The vacuum expectation values are denoted by

T(@y .o @iy Ym)= D%y Tty e Ym) Do

T(wy e o ity e e YRy 20) =Dy o Yy e YRy e e o 2i) )0

3. Heuristic Motivation

The model of a scalar field with A%-coupling is formally described by
the field equations

A (x)3: — ad(x)

— (O +m?) A(x) = 1~—lg+—y— 3.1)
and the commutation relations
[A(x)A( N=217 ﬁ-l- i03(x — y) a0 = g0 (3.2)

[A@) A@y)]=[A@) A@]=0
The operator product :4 (z,) 4 (x,) 4 (x,): is defined by (see (2.17))
1A () A (2) A (25):

3.3
= TA(») A(xy) A(x) — Ap (2, — x,) A (25) — cycl. perm. terms. 33)
For spacelike coordinate differences this reduces to (1.3). «, §, and y are
related to the conventional renormalization constants by
B a
— -1 = 2 2
Zy = y-1, Z2—1+y, 6m—/'tﬁ+y. (3.4)

As is well known the definition of the renormalized coupling constant is to
some extent arbitrary. For the purpose of this work it is convenient to
define A by the value of the vertex function at zero momenta

1=22% 4(0,0,0,0). (3.5)

In addition to (3.1), (3.2) it is assumed in this section that the field
operator 4 () satisfies the usual postulates of quantum field theory such
as Lorentz invariance, spectrum condition and asymptotic condition.

By formal manipulations of field equations and commutation rela-
tions we will obtain expression for «, § and y in terms of Green’s func-
tions. The formulae obtained will suggest how to modify the field equation
in case of divergent renormalization constants.

In order to determine o we take the matrix element of (3.1) between
the vacuum state 2 and the one particle state @, of momentum p.
Kiéllen’s renormalization condition

(@ A ”)—W
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yields
o= (27)%2 (2,:4(0)*:D,) . (3.6)

Using the reduction technique we can express « in terms of Green’s
functions

- __ G
a=Q(m?, Qp PR

G(p) = [e~t2v (T:4(0)% A(y))ody (3.7)
= (e t?vp(000y)dy .

The constants § and y will be determined from the field equations
of the time ordered function of two or four arguments resp. As is well
known equ. (3.1—2) imply formally?

—(Dx +m?) T (xw, ...,
{T(@wex:y...2,) — aT (e, ... 2,)}+ (3.8)

ﬂ—l—

1 — .’L']') T(xl o o i jgg eoe e %'r)
iz
for the time-ordered products. The vacuum expectation value of (3.8)
gives the field equations of the z-functions.

The constant £ is easily determined from the field equation of the
propagator

_ﬁi (@~ adf)+ipi 59
— iy S e it
Setting p* = m? we get
B=41 :gj = m? (3.10)

since
P —-m)Aj=1 at p?=m?.

In order to determine y we use the field equation of 7 (2, . . . #,) which
for the truncated part implies

=B+ ) @pr + M) n(ay ... 2,)

(3.11)
= Az (i @t @@y ) — ) (X @5 25%4)).

With the notation
1 i Eps;
S P) G(py...py) = Tmfezzp’”’f(ixlxﬂf Xy y: ) Ay . . A2y (3.12)

7 For r = 1 the last term of the right hand side is ¢ O(x — 2y).

4
y+ B
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the Fourier transform of equ. (3.11) becomes

B+ ) (@2 —m)n(py. .. 2y = MGE(py- .- p)) — an(p...py)}- (3.13)
Defining

G(py - - . Pa)
Q2= G0 A0

and using (3.9) we obtain the relation

iy APy P) =AQ(Py - - - Py) -
With (3.5) the constant y becomes

- (2(’;)4 Q(0,0,0,0). (3.15)

—Gp)Apy-..p)  (314)

Hence we obtain for y the expression

r= _al'(T)”f dyy dy, dys (T :A(0)% A (y;) A (ya) A(Ys):)o +
¥ (3.16)
i f dy{T:A (0 A(y), .

By (3.7), (3.10) and (3.16) the constants «, # and y are all expressed
in terms of Green’s functions involving the formal interaction term
:A4 (z)3: of the field equation (3.1). This result suggests to modify the field
equation according to

. 2 PR A+ EA@)A(x— &) —a(f)Ad(z) _
(Q+m?) 4 (x) =2 lim e , £=(0,6)(317)

where the functions « (), §(£) and y (£) are obtained by the substitutions
tA(0)%: —>:4(8)A(0) A(=&):.

We thus get from (3.7), (3.10) and (3.16) the following representations of

o (&), B(&) and y (&) in terms of Green’s functions

a(f) = {AF( ) /dye DY (TA(E) A(0) A(—E): 4 >°}p,=mz (3.18)
& =1 W{A,( - [aye i (ra@AOAAwd)  ©19)
P O= a5 [ et TAO A A (40 44 A Do+

+Mfdy(T:A ) A(0) A(— &): A(y)Ds - (3.20)

Comparing with the definition (2.15) and (2.16) we have

a(§)=Q(& p) p=(m,0,0,0,0) (3.21)
ﬂ(,s):/laga(—ﬁ;”p, for p= (/% 0,0,0) (3.22)
y(&)= (2"’ Q(E0000). (3.23)

We thus arrive at the proposal tha’o the field operator satisfy the field
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equation (1.2) with spacelike limit &2 < 0 and the functions « (&) and

g(&) = B(&) + y(&)

expressed in terms of 4 (z) by (3.21—23).
In a similar manner one writes the field equations of the time ordered

products in the modified form
. N(éxz,...x,)

— 2 - ki S Rk Sl 2N

N(xwy...2,)=T(x+Ex,e—Ewy ... x)— (&) T (wxwy ... 2,)+  (3.24)

+ z’y(E).Z'lé(x — &) Ty oo o T @y o 0p)
j=

We finally give the Fourier transform of the vacuum expectation value

of (3.24)

2 _ 2 5 — 7 lim éppi...p,)
(p* — m?) T(ppy . .. py) = A lim 36 + 76 (3.25)

with
Alppy...p)=H(Epp, ... p) — (&) T(ppy-- - 20) +
+iy@E X 6@+ p) TP Pj-1Pit1- - D)

i=1
In the following sections it will be shown that (3.25) is indeed satisfied
by the power series of the 7-functions. The equation (3.1) of the field
operator and (3.24) then follow for matrix elements between suitable
state vectors.

4. Renormalized Gell-Mann-Low Expansion

In this section the 7-functions will be defined by a power series with
respect to the renormalized coupling constant A. Setting

T(py...p)= lim %(p,...pe 4.1)
g—=>+0
we express T(p, . . . p,&) in terms of the truncated part

TPy 08 =7H (... 0r8) (2 p) (4.2)

7 .
ﬁ(pl e pre) =_.l]; pﬁ — m? +1;;8(P52 + mz) C(pl e p,‘e) . (4'3)
7=

with

For { we give a definining power series which we write in the form
_ 1
(e 2 =F iy Ty p16) (t4)

The sum extends over the class ¥, of Feynman diagrams I" with the
following properties. (& (I") and Jr will be defined below.)



Field Equations 171

The vertices of I" are denoted by V; ..., Vy (VN = 1). We distinguish
external and internal lines of I". Each external line is attached to a
vertex of I, each internal line connects two vertices of I'. I" is assumed
to be connected and to have r external lines denoted by E,, . . ., E,. To
each external line #; a momentum four-vector p; is assigned. Each vertex
of I'is either a 4-vertex or a 2-vertex. At a 4-vertex join four (internal or
external) lines, at a 2-vertex join two lines8.

The intrinsic symmetry number & (I') is defined as follows [5]. A
permutation I7 of the vertices of I"is called an internal automorphism if

(i) IIV, and IIV, are connected by the same number of internal
lines as ¥V, and V.

(i) ITV,= V, if an external line is attached to V,. Then & (I') is
defined by

F () =g 232

where g is the number of internal automorphisms of I, « is the number
of vertex pairs V,, V, which are connected by two lines, § is the number
of vertex pairs which are connected by three lines and y is the number
of lines which connect a vertex with itself.

The terms Jr(p, . . . p,) of the expansion (4.4) will be defined as the
finite part of the Feynman integral J% belonging to the diagram I'. We
first give the rules of constructing the unsubtracted Feynman integral
Jp. I' need not be connected for the following definitions.

The internal lines connecting V, and V,, with direction® from ¥V, to

V,, are denoted by L,,, (0 =1, ..., v(ab)). To each vertex V, corre-
sponds the external momentum
q(Va) =(gq= 2 Py (45)
Ty€e&q

where the sum extends over the set &, of the external lines L, which are
attached to the vertex V,. Particularly we have ¢, = 0 for a vertex to
which no external line is attached. To each internal line L,,, we assign
the momentum 1,,, and require

l(Labo‘) = labo’ = —labg for a=b.

The Feynman integral J$ of the diagram I is constructed according to
the following rules. To each line L,;, corresponds the factor
)

Alv' (labd) = Byo — m? + i6(Bye + m?) ° (4:.6)
To each vertex V, corresponds the factor
Pa(s(bZ'a laba - Qa) . (47)
]

8 Internal lines connecting a vertex with itself are counted twice in this context.
® For the assignment of momentum variables it is convenient to introduce
directed internal lines.
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Here }@ denotes the sum over all internal lines L,;, (b = a) having V,

bo
as one of its endpoints. The factor P, is
P,=— (g—z:;; for a 4-vertex (4.8)

P,=A(A) + B(A) (12 — m?) for a 2-vertex (Fig. 1)

|
? A(A) + B(A) (BP—m?)
Fig. 1. Trivial self-energy diagram

+1 denotes the internal or external momentum corresponding to the
lines joining at the 2-vertex. 4 (1) and B(A) are power series with respect
to A with (finite) coefficients to be defined later.

With these insertion rules the Feynman integral becomes

JY@-..p) = Jim J %1 - .- pre)
0 (GZ pa)) JG (P .. pre)= 4.9)
= J 0 dlaye IT Ar(lare) nP 8 (X avo — )

abo
or

JU(p,...p8)= [dk,...dk Ip( kD) (4.10)
Ip=JTAx( aba)HP (4.11)

abo

[T denotes the product over all mternal lmes Ly of I'. In (4.10) the

abo
trivial integrations over internal momenta have been carried out in the

following manner. The arguments [,,, are written as
lave = Kavo + Tavs(gs - - - q) (4.12)
kaba = kaba(kl cee km) s (4-13)

The 7,;, are linear combinations of ¢, ..., ¢y and form a particular
solution of10

2 Tavo = Ga> rabu'l'rbau:O' (4'14)

The 7,4, are called basm internal momenta or r-momenta. The k,,, are
linear combinations of %;, . . ., k,, and form the general solution of

bZ,"” kabo =0, kaba + kbaa =0 (4'15)

with m of the forms %,,, chosen to be identical with %, ..., k,,. The
k.yo are called homogenous internal momenta or k-momenta, the set
(ky, . . ., k) is called a basis of independent k-momenta. Occasionally we

10 The momenta g, must satisfy momentum conservation for each connected
component of I.
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use the notation
Tavo = r(Laba)> kabo‘ = k(Laba) .

We introduce the following abbreviations

k= (ky...by), p=(Dr...P) (4.16)
K ={kijo}z, comry 4= (@---qn)- (4.17)

Equ. (4.5), (4.13) are written as
9=q(), K=K(k). (4.18)

We introduce the I-function I (XK, q) of the diagram I as the inte-
grand of the corresponding Feynman integral in terms of the variables
(4.17). Hence

Ir=Ir(K, q) (4.19)

is defined by (4.11) with (4.6), (4.8) and (4.12). In this notation the Feyn-
man integral becomes

I, 6) = [ Ay . . . Ak Ip(E (), 4(p)) - (4.20)
The finite part of a Feynman integral will be defined in the form
Jr(p)= lim Jr(p,e) (4.21)

where the R-function R (K, q) is obtained from I, (K, q) by a suitable
number of subtractions. For the precise formulation of the rules we will
need some definitions concerning the I-functions of reduced diagrams and
subdiagrams of I'.

Let Zin;(y) denote the set of internal lines and #”(y) denote the set
of vertices of a diagram y. To any set & C %, (I") we define a subdiagram
y of I' by the internal lines L € % and the vertices which are endpoints
of a line L in 2. The external lines of y at the vertex V € ¥"(y) are the
external lines attached to ¥V in I" and in addition as many external lines
as there are internal lines8 L of I" with endpoint ¥ and L ¢ Z.

A diagram is called a renormalization part if it is a selfenergy part
(proper diagram with two external lines) or a vertex part (proper dia-
gram with four external lines). The dimension d(I") of a proper diagram
I is defined as the dimension of the multiple integral (4.20). The re-
normalization parts I"form all proper diagrams with dimension d(I") = 0.

Let 9y, ..., 9, be mutually disjoint renormalization parts of I
Iy, ...y, denotes the reduced diagram which is obtained from I" by
reducing each y; to a point. The I-function Iy, ..,, (K,q) is defined
again by (4.6), (4.8), (4.11) and (4.12), but with the products in (4.11)
restricted to the lines and vertices of Iy, . .. y,.
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Let y be a renormalization part of I'. We define the I-function of
» by

LK, )= II 4r(®,,) IT P, (4.23)
Lint(¥) ¥ (y)
with (4.6), (4.8) and
l:bd = k}z,bo‘ + ’”&'ba(qy) qY(Va) = q},’ (424)
K =k}, Y rase 2mmn » € =@} vier o - (4.25)

The products in (4.23) extend over all vertices and internal lines of 4.
We next express kY, , g7 as linear combinations of k;,q, ¢, by
requiring

l?z’ba(Ky’ qy) = labo (K’ Q) (4.26)

for all Ly, € £ (y). According to

Z = Za la bo
Lapo € Lint(?)

Y — — ¥
kaba - lab“ Tabo

the k7, , g7 are uniquely determined by this requirement. The choice of
basic internal momenta ¢,,,, ¢7,, selected for every connected sub-
diagram y of I'is called admissable if the £?, ~depend on the kg, only:

kyyy =k, (K), q) =q;(K,q). (4.27)

abs ~ "abo

With the substitution (4.27) I, becomes a function of K and g.
After these preparations we define now — following BogoLIuBOV —

the R-function of I" by _
Rr(K, q) = Br(K, q) (4.28)
if I" is no renormalization part and
Rr(K,q) = (1 - 7) Ry (K, q) (4.29)

if I'is a renormalization part of dimension d(I") = 0. The function R is
defined recursively by

RP(K5 Q) = IP(K’ Q) +
¢
+ 2 Iy, (K, 9) HP:IOW(KW, g7)  (4.30)

Vi Ve
K7 = KV"(K), th = q‘h(K: Q)
0,(K?, ¢) = — 5N R, (K7, ¢") . (4.31)

t‘:"" ), if applied to a function of ¢, denotes the Taylor series with respect
t0 ¢, . . . ¢, up to and including terms of order d(I"). The sum in (4.30)
extends over all sets s = (y; . . . 9,) of mutually disjoint renormalization
parts of I" with y; == I'. Let W, be the vertex of I}y, ...y, which is
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obtained by reducing y,. Then P, in equ. (4.30) denotes the factor (4.8)
which is assigned to W, in Iy, ... y M.

As will be shown in a forthcoming paper [17] the finite part (4.22) of
a Feynman integral thus defined is an absolutely convergent integral
for & > 0. The integral is independent of the choice of the basic internal
momenta qu44, ¢7,,- In the limit 6 -~ +0 J(pe) converges strongly
towards a covariant distribution (4.21) in p,, . . ., P

Finally we define the power series 4 (A), B(A) recursively by

A=~ ?f g Tolmd, L) =Tip - (432)
Bi)= = 3 g i), i) =250 (4.32)

The sum extends over the class " of all proper self-energy parts S
excluding the trivial diagram (Fig. 1) with one vertex only. This pre-
scription guarantees that the propagator satisfies the renormalization
condition
—i(p? —m¥) Ap(p) =1 at p*=m?.

Concluding this section we state an algebraic identity for R-functions
which will be crucial for the derivation of local field equations.

Theorem. Let I" be o diagram, W be a 4-vertex of I" with the property
that W does not belong to any renormalization part v == I' of dimension
d(y) > 0. Under this hypothesis the identity

— 674
Rr(K, q) = — i FrK,q) Re (KT, ¢F) —
~ X Ry (K, q) F,(K?,0) Ry (K?,0) (4.33)
YET(T, W)
K= K\(K) ¢=¢(K,q) for 6=1T,9,9
holds.

¢ is defined as subdiagram of I" by

L@ =Ly~ Ly, W)
where £ (7, W) is the set of all internal lines of ¢ with endpoint W. F, is
given by
Fr(K,q) = ITr,wAr (aso)
F,(K?, %) = [, WjF (o o)
with the products extending over all lines of & (y, W). T(I", W) denotes
the set of all renormalization parts y of I" with W ¢ ¥"(y) and o =+ I

(4.34)

1 Tt should be noted that in general these rules give more subtractions than
BogoLiuBov’s original prescription. This is for instance the case for the second
order selfenergy diagram. Apparently less subtractions are required if the sub-
tractions are made before the regularization limit is taken. I am indebted to Dr.
Hepp for many interesting discussions concerning this point and the equivalence
of both methods.
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We also write (4.33) in the abbreviated form

- (—Z%TFPR r= X Rn, PR3 (4.35)
where the superscript © denotes the value at zero external momenta.

The proof of this identity is elementary, and will be given in a
separate paper [17] for the general case of arbitrary coupling.

The theorem is related to HEpp’s Lemma 2.3 in ref. [15] .One differ-
ence is that in (4.33) the degrees of the subtractions in Ry, R refer to
I'|y and $ rather than to the original diagram I". This is desirable for the
derivation of field equations, but requires a restriction on I" and W as
stated in the hypothesis. In the general case one has more complicated
identities.

Rr=

5. Check of Field Equations in Perturbation Theory

a) Relation for A-Functions

In this section we will verify that the equation (3.25) for the 7-func-
tions are satisfied by the renormalized Gell-Mann-Low expansion
(4.1—4) to every order of A.

We begin checking the relation (r = 3)

(&) Appy ... p)=—i2Q(¢éppy ... p) + w(Eppy ... 1) (5.1)
where /A and @ are defined by (2.5), (2.14) and the function w satisfies

m o (Eppy ... p) =0 (5.2)

A(pp, - . . p,) has the expansion
Appy ... p) = lim A@pp, . . . pre) (5.3)
Apps .- pre) = | 2 i Telopy - pre) (65.4)

where ', is the class of all connected diagrams with » + 1 external lines,
but no external self-energy insertions. The momenta p, p;, . . ., p, are
assigned to the external lines denoted by X, H,, ..., E, The cor-
responding external vertices will be denoted by W, Wy, ..., W,.

The hypothesis of the theorem (page 175) applies to W for any
I'¢ A, since by definition W does not belong to any self-energy part of
I'. Identity (4.33) then implies

Br+ 2 Rey FOR} =~ U Fr Rp. (5.5)
Here C (I, W) is the set of all vertex parts of I"with W € ¥"(y). The case
y = I'is included provided N = 3. F), R2 denote F,, R; at zero external
momenta.
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The elements of C are totally ordered by inclusion, i.e.
ySy or yCy
for any two elements y, ¢’ of C. Let y, denote the smallest element of C
yoSy forall y€C.

We distinguish the following two types of diagrams in J,. I" is called
degenerate if two or more external lines are attached to the vertex W

Fig. 2. Exemple of degenerate diagram

(Fig. 2). I'is called non-degenerate if only one external line is attached
to W. I'is called trivial if it has one vertex only. All non-trivial degener-
ate diagrams have two external lines attached to W.

We further introduce a numbering v of the elements of £ (I, W), i.e.
the internal lines with endpoint W. Let I" be non-degenerate. In this
case we consider all numberings » which assign the numbers 1, 2 and 3
to the lines of .# (I', W) which are accordingly denoted L,, L, and L; with
direction towards W. If I' is degenerate and non-trivial we consider all
numberings » which assign the numbers (1, 2), (2, 3) or (3, 1) to the two
lines of & (I', W).

A relation for Jr will be derived for every I'€ ¢, and any numbering
y. Finally summing over all I'¢ ", and » we will obtain the desired
relation (5.1).

We begin discussing the simple example of a non-degenerate diagram
which is further restricted by the condition that L,, L, and L, all be
internal lines of y,. In this case

p*(W)=p forany y€C.

It is convenient to choose the r-momenta of L,, L,, L, as
r(L)=r(L) =%, yeC. (5.6)

We further select a basis &y, . . ., k,, of the momenta k,,, (Lgp0 € ZLint (1)
such that
18 Commun. math. Phys., Vol. 6
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(i) ky, k, correspond to L,, L, resp.
(ii) &, ..., k() form a basis of the momenta £,
(Lavs € Ling(y)) forany yeC.
With this notation we have
kY =1y, Ky =1k, for ycC.
Multiplying (5.5) by e~¢*1—%») and integrating over k,, . . ., k,, we obtain

Tr+ X Jrp X, = — S oy v, (5.7)
y€D (2 )
with
X, = [dk] ... dk}, e—i¢@~1) FIRY (5.8)
W,=[dky...dk,e®@—F, Ry (5.9)
Yp=[dky...dk,(e @k _ 1) R, (5.10)

In deriving (5.7) it was used that Ry, does not depend on the variables
ky, ks

Next we extend equ. (5.7) to the general case of a non-degenerate
diagram I"€ J,. Let Cy(I") be the set of all y ¢ C'(I") with

Ll’ Lz’ L3 € gint (7) .
Let further C; (I, ¥) be the set of all y ¢ C'(I") with
Lz‘ éE Zint(y) .

Note that for given I" and » at most one of the sets C; (I, ¥) is not empty.
We choose the r-momenta of Ly, L,, L, as

r(L) =1(L) =5, y€C, (5.11)
¥ (W)
2

r’Y(L. =

Further we select a basis &;, . . ., k,, of the momenta k, 6 (Lgp0 € Lint (1)
such that

() %y, k, correspond to L,, L, resp.

for y€C;, j=1,2,3. (5.12)

(ii) &7, .. kz’m) form a basis of the momenta %7,
(Laba € zint(y» for any y € 00) .
(iii) &Y, k3, . . . K}, ()41 form a basis of the momenta k7, |

(Lapo € Ling(y)) forany p€C, or y<CC;.

(iv) K, &%, ..., k;’n(y) +1 form a basis of the momenta k7, for y € C.
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With this notation we have
PW)=p, kl=1Fk, k="Fk for ycC, (5.13.0)
0 =Lk, K=k, +—’“2L for €0, (5.13.1)

p"(W)—-————Icz, B = ky + 2 for y€C, (5.13.2)

PN =L bk =25 for yeo,. (5133)

Multiplying both sides of equ. (5.5) by e~ *¢®* — %) and integrating over
ky, . .., k, we obtain

3 64 2
Ts+ X X TmpXipy=— g Wyt Yoo+ X X Yoy, (514)

1=0 y€eC; =1 ye0;
Here

Xoyy=[ak} ... AR, o—iE (B —kY) FORY
Xiyy=[ Ak ... AR}y 1 1 €8 FIRY
Xoyy= [ AR} AR ... Ak} (p) 41 e B FYRY
Xyyy = [ARY AR . .. Akp) 41 e~ 26 FIRY
Wpr,= [dk,...dk, e ¥ ®~k) FLR: (5.15)
Yr,= [dk ...dk,(1 — et k) Rp

Ekl
Yl}'v = fdkl dkm(y)+2 P dkm(l — 6 )Rp/y
X [k .. .dk;’,,(,)+1eifk¥F°R°
Ltk 1
Vop = [ by Al g - A1 = 62 %) Ropx

X [k} dkY...dkY 116 tfk’iF,?R,‘,’ .

Next we derive similar relations for degenerate diagrams I'¢ ¢,
with W = W,. Starting point is again the algebraic identity (5.5). If 2
and 3 are assigned to the lines of Z(I', W) we choose the momenta
corresponding to L,, Ly as

rL)=rL) =22 i_23 yeC. (5.16)
We select a basis &, ..., kytq of the momenta kyp5(Lyps € FLins(1)
such that

(i) lcz corresponds to L,

(ii) %3, ..., K}y +1 form a basis of the momenta &%, ,

(Lavo € Lint(y)) forany yeC(I).
Equ. (5.5) is then multiplied by
e+ zé(

20 4 2 4 1)

13*
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and integrated over k; with the result

Trt 2 oy Xy = (‘;“;4 Wet Yors+ 2 Yoo (51)
Y

Here

Xiyo=[ QY .. AR} 11 €T RY

. 3Pa
Wp,=fdk2...dk,,,+1e“( i) +k’)F R;

30a k
Yor, = [ dks,. dkm+1(l——e f(Sprge ’))Rp (5.18)
1,&'(3% )

Yijo=(01-¢ 2)) Jpyy X

X [y .. AR 11 € FORY .

If v assigns the numbers 1, 3 to Z (I, W) the corresponding relation
is obtained from (5.17) by interchanging the indices 1 and 2 and the
substitution & — — &.

If v assigns the numbers 1, 2 to Z (I, W) we set

r(L)=mL)=2F2 12, (5.19)

We select a basis &y, ks, ky, . . ., &y, +, of the momenta &, 44 (Lgp0 € Ling (1)
such that

(i) %, corresponds to L,

(i) A7, K%, . . ., Ky +1 form a basis of the momenta &%, ,

12 Mg»
(Layo € Line(y)) forany yecC(I).

Multiplying (5.5) by e2i%1¢ and integrating over k; we get

6:4
JI'+ 2 JF/V Xa‘yv (21) WTV—I- YOFI'
yel

Xaw = [dk]...dK} (y) e~2¥ £F) RY
= [dkydky...dky, e 2R Fr R
Ofv fdk dk . dk,.m+1(l - e_2ik15)Rp R

Summing now both sides of the relations (5.7), (5.14), (5.17) and (5.20)
over all possible I' € ", and assignments ¥ we obtain

y(&e) A(pp, - . . p,8)

(5.20)

(5.21)

. 5.22
=—ilQEpp: .. . pe) + 0Py ... pe) ¢22)
>0
where y and @ are given by the following power series in 4
yige) = 0 0(,0,0,0,0,0) (5.23)

r 3
Qerpr- B =t ¥ S0t G (524
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1 1 8 ‘
= —t&(h—1l
QO— 2m)* Ag&, Z4) fdllc . .dl3dk6(7=21lj_p)e 1&(h—1)

3
;E Aplie) Ryy .. . lyp, ... ke)

3 1 ;
Qo1 =gy & sy [ Badlsdk 60, +1, — po — p) 50D

€%y
3
‘]]l'/lp(ljs) Ba(lylspy - . - Pa—1 Pat1 - - - Drke) (6.25)
j=
_ 3 1 Cp — p) @t
Qo2 = (2 F@) [ abdldk 8+ 1 — pu — p) ¢4

AF(llg) Z"F(l?,“") By(Wlspy - - Pa—1Pat1- - - PrEE)

3 1 R )
Qaa_ (2:.[)4 AEA;, .5"(41) /dlldl2 dké(l1+l2 Do p)e

2
‘]ZJF(ZIS) By(hylopy - - - Pam1Paty - - - Prke)
;=

dk=dky...dkywy, k= (b, ..., knw).
&, is the class of all diagrams A with the following properties
(i) 4 has N + 3 external lines. B, ..., B, are called upper lines
(with momenta I, ...,10;), B, ..., Ey;, are called lower lines (with
momenta p,, . . ., Py)-

(ii) 4 contains no self-energy insertions into lower lines.

(ili) To each connected component of A at least one upper and at
least one lower line are attached.

(iv) There is no one-particle cut of 4 which separates the upper lines
from the lower ones.

4, is the class of all diagrams A with the properties

(i) 4 has 741 external lines. E,, B, are called upper lines,
B, ..., By, are called lower lines.

(ii) and (iii) as above.

In the limit & - +0 (5.24) becomes the expansion of @ (£pp; . . . py)
as defined by (2.15). Hence taking the limit ¢ -~ 40 we obtain the rela-
tion (5.1) which was stated in the beginning of this section.

o is given by the expansion

1 1 1
w (& R —  Yp+ = L Y.
Epp: pr)ré’{' g 2rezo;, .9’(1*)77%:(” v (5.26)
1 1 :
5 Y = Yoy
+2ref,, y(P)ZvaeC’Z:(F) &

with Y, ¥y,,, ¥,,, defined by equ. (5.15).

Each term in the expansion of «(£) is a continuous function of & for
£% & 0. The expansion terms of Q(&pp;...p,) and w(épp,...p,) are
distributions of &4, . in the variables p, p,, .. ., p, and depend con-
tinuously on & for &2 == 0. Moreover, each term of the expansion of w
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vanishes in the limit £ — 0
lim lim w(épp,...pe)=0. (5.27)

=0 e—~>+0
b) Relation for Proper Self-Energy Parts
In this section we will check the relation

7 (§) IT* (p?) = —iAQ(&, p?) + A (x(é) + o(&, p)) +

+i(* - m?) B(&) (528)
where
lim o(§,p)=0. (6.29)
The function I7* is as usual defined by
Ap = Ap + ApIl* Ay (5.30)

and has the expansion

1
¥ @) = ) —Jsp?) — AQ) — BA) (* —m?). (5.31)
sex <8)
The sum extends over the class J¢" of all proper self-energy diagrams

excluding the trivial diagram Fig. 1 with one vertex only. We have
IT* (m?) = IT*' (m?) = 0 (5.32)
which implies the renormalization condition
(P —mNAp=1i at p>=m?.
Js(p?) is given by
Js(p*) = lim Js(p, —p.e) (5.33)
Js(p, —p, &) = f dk Rg(p, —p, k, €)
with Rg as defined in section 4. We rewrite (5.33) in terms of the even

part of Rg with respect to p. Let f(p) be a function of the four vector p,
then we define f+(p?) by

@) =5 (H(p) + F(~ )
with
p=(/p%0,0,0) for p2=0

p=(0,)/-9%0,0) for p>*=<0.
Since Jg(p?) depends on p? only we obtain

Js(p?) = Hlf o JE (@2 ¢) (5.34)
where
JE (1 ¢) = [ dk RE (pPke) (5.35)

RF (1% &, &) = (1 — t3) RE (pke) .
Using (4.32) the expansion of /7* (p%) may be written as

II*(p*) = 111}_1017*(1)28) (5.36)
where
IT*(p2e) = 5 —2 _ Gy(p? 5.
() = 2 55y Gs@*) (5.37)

Gs(pPe) = (1 — s _ ) I (p2e) .
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A proper self-energy part S is called degenerate if both external lines
are attached to the same vertex (Fig.3). Otherwise S is called non-
degenerate. S is called trivial if it has one vertex only (Fig. 1). If § is

w

Fig. 3. Degenerate self-energy diagram

degenerate and non-trivial the corresponding integral Jg vanishes.
Therefore, we may restrict ourselves to non-degenerate proper self-
energy parts. Let W be one of the vertices of S. The hypothesis of the
theorem (section 4) applies to W for any S € £ since W does not belong
to any self-energy part other than § itself. Identity (4.33—35) states in

this case
6iA

Rg= — oy FsRg— 3 Rgy FOR) (5.38)
yeT (S, W)
which implies for R the relation
Ri+ X R FORY= -t (i) Ef (5.39)
yeT S, ) (27)

Es(pke) = Fs(pke) Rs(pke) .

We further introduce a numbering » of the elements of £ (8, W), the
internal lines with endpoint W. All numberings » are considered which
assign the numbers 1, 2 and 3 to the lines of £ (S, W). A relation for
Gg will be derived for every S € " and any ». Finally summing over S
and v we will obtain the desired relation (5.28).

We define the following subsets of 7'(S, W). C' (8, W) denotes the set
of all ¥ € C(8, W) for which §/y is non-degenerate. The elements of
C'(S, W) are totally ordered by inclusion. C"' (8, W) is the set of all
y € O(8, W) for which S/y is degenerate. Further we introduce Cy (S, W)
as the set of all y € C'(8, W with

Ll: Lz, L3 € gint (7/) .
Let C; (S, W, ») be the set of all y ¢ C(S) with

L; ¢ Lins(y) -
Similarly let Cy (S) denote the set of all y € C"'(S) with
Ll’ Lz: Ls S e'?int'. (7)
and C;' (S, W, ») be the set of all y € C"’(S) with
L; ¢ Lins()
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It should be noted that for a given diagran S at most one of the sets
0} (S) (¢ = 1, 2, 3) is not empty.

Apparently, the total set 7' is the union of the subsets C}, C;'. Accord-
ingly identity (5.39) takes the form

R+ 3 5 B4, F 0RO 3 X Ry, FORI—— S (- ) B (540)
i=0 yeC; i=0 yecy (27)

We choose the g-momenta of L,, L,, L, such that relation (5.11) holds
for y € G}, Cf and (5 12) holds for all other y € C. Further we select a
basis B = (ky, . . ., ky) of the momenta k,,; (Lgps€ FLin (S)) such that

(1) ky, &y correspond to the lines L,, L, resp.
(ii) &, ..., k}(y) form a basis of the momenta k%;,

(Laba e gint (7)) for any y E 06)

(iii) &7, &, - . ., K}y(5) + 1 form a basis of the momenta £, ,
(Layo € Liny(y)) forany y€Cy or yeCy
(iv) K, k3, . . ., K}y(y) 4+ 1 form a basis of the momenta £, ,

(Lavo € Liny(y)) forany y€Ci(S).
(v) Let y € C;'(S) with ¢ = 0, 1, 2. B, denotes the set of all &;, ¢ B
with Ly € Liye(y). Then B, form a basis of the momenta
k%ba(Laba € gint(?/)) .
(vi) Let y € 03’ (8S). B, denotes theset of all k%, , € Bwith L, € ZLing ().
but excluding k3. Then B, form a basis of the momenta
k%bcr(Labu € gint(y)) :

With this notation we have the relation (5.13.i) for y € C;(S) or
Ci' (8S).

Multiplying the identity (5.40) by exp(—i&(k, — k,)), integrating
over the internal momenta and applying the operator (1 — £l:_,.) we
obtain

Gslpe) + 3 2 Gspy(pPe) Xiy(&2)

1=0 yEC ;
= (gu) (1= ) €F (2&e) + Us(@®ée) + (5.41)
2 2
+2 iy (p2Ee) + ;‘ 2 Uy, (p*Ee) .

ecy

~
m
Q

NS

%
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Here
X{,y = [dk]...dkp, e—iE (] —F}) FSR;;’

= fdky dk}lﬂ(‘y)-l—l elEnggRg
Xzy J AR ARy ... ARy 11 e~ FY RO
Xiy= [ Ak} AR . .. kY 11 e~ 20¢H FORY
Ef = [dhy .. .dk, e ittt gF
Yg=[dky...dk,Q1 — e t®—k) RE

3@

_Y1y fdk dk1n(y)+2 .dk,(1 — e )RS/V X (5.42)
X [dkY. .. Akl s eiékwﬂ RY
, ch
Y27=fdk2dkm(y)+2...dk (1—62 )RS!;,,X

X [ Ak dRE ... Ak}, 4q e 8 FORY
r _ﬁékl
Yl,,-——f]]dka,,o(l——e 2 ) R, x
B

X [ ]]dkab,, ¢i¢K FY R

1" Ekg
Yz‘y fndkubo(l_ez )Rék/yx

By
X f]]dk,,bd e— @f’f{FgR}? .
The quantities U are obtamed from the corresponding Y by
U=(1-16:_,2)7Y.

In deriving (5.43) it was used that Jg, = 0 for y € 0;'(S). Finally we
sum over all proper self-energy parts and all possible » with the result

y (&, &) IT*(p?, &) = —iAQ(£, p, &) + i A(x(&, &) + o(&, p, €)) +
+i(* —m?) B(€, ) -
o, f and @ are given by the power series (5.23—25) with
QEpPe) = Q& p, —p, ¢)
= (//p*0,0,0) for p2=0 (5.44)
~ (0,)/=p%0,0)for p2<0

(5.43)

and
x(£e) = Q(EmPe)
e 5.45
B(Ee) = 2 22Lre) 3@(51) ) ( )

at p?=m?.
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For (5.44—45) we used symmetry in k;, b, and the fact that Eg is in-
variant under the substitution

p—>—p, ki—~>—k;.

Taking the limit ¢ — + 0 we obtain the relation (5.28). For o(&, p, &) we

have the expansion
1 - ,
0(5’ p’ 8) _—SGZ,;{‘T(’ST US'I_?S%; (S) 2 A:JU?W»"'

(5.46)

[

1 1 '
+5 2 2 X XU
2 SeA 'SP(S) =1 ’yECéc-(IS) » i

Every term of this expansion vanishes in the limit & — 0.

¢) Field Equations for t-Functions and Field Operators

We begin deriving the field equation for the propagator. From (5.28)
we obtain

(&) IT* () Az (p) = — 4G (&, p) + iA(x(§) + 0(ép)) Ap(p) + (5.47)
+i(p* — m?) B(£) dp(p)

This yields
(B + v(&) (p* — m?) ﬁz’r(p) (5.48)
= 2Q(& ) — A(x(&) + o0& P) dp(®) +iv(d) .
Dividing by £(&) + y (&) and taking the limit & — 0 we obtain
(p? — m?) Ap(p) = l(Q(E, p) — a(8)) 47 (p) +iy(8) (5.49)

B&) + (&)

This is equ. (3.25) in case of the propagator.
In order to derive the field equation of an arbitrary z-function we
multiply both sides of (5.28) by AzA. Using (5.1) and (2.15) we get

(B(&) + (&) (p* — m?) Az (p) A(ppy - . . ;)

_ ., Gépp...p) /
= ﬂ——&(pl) S A(@(&) + o(£p)) Ap(p) A(ppy - - - p,) (5.50)

+iwEpp ... pr) -
For 7(pp, . . . p,) this implies

(B(&) + y(&) (p* — m®) T(pp; . . . D)
= AH(&pp,...p) — A(a(&) + o(€p) E(ppy - - - D)) + (5.51)
+ iy(é),Zrl 0@+ P)T@y. - Pitr Pivr - 0) +9(EPDPL- .. 1))
fho

where
lim (Eppy ... p)=0.
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Dividing by £(&) + y(£) and taking the limit £ — 0 we obtain (3.25).
Hence we have proved that the system (3.25) is satisfied by the renor-
malized expansions of time ordered functions.

From (5.51) it is not difficult to derive the field equation (3.24) for
the matrix elements

(@gutb’ T(ay ... xr)%a) (6.52)
between state vectors @F , € Dy, @Fp € Doy of the form12
Fo_ dyky s dsk, b1 kg
¢:)Illlta_ Do, v Fik,...k,) diglllt
Dyt = A (k) - A (ka) 2 (5.53)
out out out

kiz = mz, k,io = W; = szz + m2 .

The matrix elements (5.52) can be expressed in terms of z-functions by
using the reduction formula

([ 8T (e ... 2), Af (k)] -« - A (Ra)1Do
=1ate(ky) ... e(ky) Qr)/2 [ et @T+EIE) F(pp, ... p, kg .. Ky)
On the other hand (5.51) yields!3
(B(&) + 7(8) (B* — m?) E(ppy - - - ik - . - )
= AH(Eppy ... ppikey .. hyt) —
—A(@(8) + o(EP) T(pPy - - - Driky . Ky + (5.55)

r
+ iy(é).Z'lé(p+ DTy Diy Diwr e Dby Eyt) +
j=

(5.54)

+p(Eppr. - Py )
where
HEppy ...k ... k)

=72}17 [t ... a1, 82— p) it x (5.56)

X Bl . . oy oo Ry Ry

Putting the momenta %; on the mass shell (with appropriate signs of 4f)
and taking the Fourier transform with respect to z; we obtain

21 w(kxz,...x,)

E—>0 P&+ v

12 Din and Doyt denote the free field domains for the incoming and outgoing
fields as defined in ref. [18]. It is understood that the tested field operators A (f)
are defined on a domain D with the properties D C Din, D € Doyt and A(f) D C D.

13 For r = 0 the third term on the rigth hand side is missing, for » =1 it is

(B @+ p)T(:ky. .. ).

— (O + m?) v(w; . .. %) = (5.57)
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with
v(zwy .. .w,,) ={[..[ST(@@a,...x), Af (k)] ... A} (k)]Do (6.58)
w(éxw, .. =([. . [SN(¢x, . ..%,), Af (k)] . . . AF (k)]0 '

(for the definition of N see equ. (3.24)). Working out the multiple com-
mutators and folding by test functions # and G one finally obtains (3.24)
for matrix elements (5.52). The field equation (1.2) of the field operator
A (x) is the special case of (2.24) with r = 0,

g(&) = B(&) + »(&)
and spacelike limit & - 0.

I am grateful to Drs. DeLr’AnTONIO, DYsoN, Hepp, LEHMANN, STEINMANN,
Symanzik, WicaTMAN, K. Wirson, and T. T. Wu for interesting and helpful
discussions.
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