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Abstract. A spherically symmetric solution of the "already unified field theory"
of RAINICH (i.e. of the source-free Maxwell-Einstein equations) is presented which
represents a static massless charged particle. I t is not equivalent to the Reissner-
Nordstrom solution with zero mass, although both metrics repel uncharged test
particles.

§ 1. Introduction

In the absence of sources the Maxwell-Einstein equations are1 (see

[2])

fij Jc + fici j + f j k ; i = V ,

pj;i = 0 , and

1 l

where the electromagnetic field tensor / z ί is defined in terms of the

4-potential At by

/„ = Ai:i - Ai%i. (1.2)

It is well known [2], [3] that the system (1.1) is equivalent to the alge-

braic conditions

B = 0 , and ™

thereby giving rise to the so-called "already unified field theory" of

RAINICH. In fact, if we are given a metric satisfying (1.3) we can con-

struct the corresponding fi3- in the following manner (for details see [3]).

* On leave of absence from the Department of Mathematics, The University,
Bristol.

1 This note may in some respects be regarded as a continuation of [1] and we
shall retain the same notation.
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We solve the equation

t t — ~—E ~~(Ή ttrs\~2 E

where

for | ^ by setting (&',?') = (&, k) and taking the root of (1.4). We then
construct the dual of ξij defined by 2

γ - (i 5)

and evaluate the quantity α by solving

% l $ R*η • (1.6)

Then the electromagnetic field tensor j i i is given by

fa = ζio C 0 S ( * + *£ij s m < * (1-7)

In this note we present a spherically symmetric solution of the system
(1.3), and therefore (1.1), which corresponds to a massless charged
particle at rest at the origin. It is not equivalent to the Reissner-Nord-
strom solution with the mass term set equal to zero, although under this
condition both metrics repel uncharged test particles (but by different
amounts).

§ 2. The Metric and the Electromagnetic Field

In [1] the special line-element

ds2 = - ^ (c2 dt2 - dr2 - r2 dθ2 - r2 sin2θ dφ2) , (2.1)

where a is a constant, was discussed with particular reference to certain
weakened vacuum field equations which have been proposed as alter-
natives to the Einstein vacuum field equations. In this section we shall
attempt to answer the question which arises out of this, viz. to what
physical field would the metric (2.1) correspond in the orthodox theory
of General Relativity? As was pointed out in [1], (2.1) has a genuine
singularity at r = 0, which we interpret as a gravitational source (isolated
mass), where a is some quantity associated with the source. It is the
interpretation of a which is of interest.

In order to answer this question we recall some of the relations
derived in [1] which are satisfied by (2.1). If

x° = ct, x1 = r, x2 = fy, xs = φ ,
2 [ijhk] is the Levi Civita symbol. It changes sign on interchange of any two

adjacent indices and [0123] has the value unity.
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then
1

γ i 9

R = 0 , and (2.2)

By comparing (2.2) with (1.3) we see that the metric (2.1) is a solution of
the "already unified field theory" of RAINICH and thereby represents the
interaction of a gravitational field with a source-free Maxwell electro-
magnetic field. So that we may interpret a and see exactly what type of
electromagnetic field is represented by (2.1), we have to evaluate fij.
We first calculate fί3 from (1.4). It is easily seen that the only non-
vanishing ξtf are

£23= -£32 = αsin# , (2.3)

and the only non-zero duals of ξiό are

#£ _ %£ ^ /O A\

Substitution of (2.3) and (2.4) in (1.7) gives the array

0 0 \

0 0 (2.5)

0 a sin # cos α /

a sin § cos α 0 /

where α is a solution of (1.6). However, since (see [1], equation (2.10))

we find

We choose

so that (2.5) becomes

/ o 4 o o\
(2.6)

The components of the 4-potential Aj (which are not unique) are
easily derived from (2.6), one set being

(At) = ( - y , 0, 0, 0) . (2.7)

α =

α =

0

a

0

0

constant .

π/2,

r 2

0 0

0 0

0 0

°\
0

°/0 /
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This 4-potential obviously satisfies the Lorentz condition

- 4 ^ = 0 , (2.8)
as well as the condition

AίA
i = 1 . (2.9)

From (2.6) and (2.7) we thus interpret a as the charge. Consequently
(2.1) corresponds to a massless particle of charge a at rest at the origin for
all time. Furthermore, (2.1) is not the Reissner-Nordstrόm metric [3]

r2) \ (2.10)
— r2dθ2- r2ήn2θdφ*

in a different coordinate system even for the case m = 0, for in that case

Ri5Rij = 4e4/r8

?

whereas for (2.1)
Rί^Rij = 4/α4 = constant .

We can therefore conclude that there exists at least two distinct spheri-
cally symmetric metrics which correspond to a massless particle of charge a,
viz. (2.10) with m = 0 and e = a, and (2.1). Attempts have been made
to generalize Birkhoff's theorem [4] (according to which every spheri-
cally symmetric solution of the vacuum field equations

Bi} = 0

may be reduced, by a coordinate transformation, to the Schwarzschild
metric) to the Maxwell-Einstein equations (1.1). It has been shown
[5, 6, 7] that any spherically symmetric solution of the Maxwell-Ein-
stein equations must be static. However, the remarks made above show
that it is not true that every spherically symmetric solution of (1.1)
may be reduced, by a coordinate transformation, to the Reissner-Nord-
strom metric.

If, for the case (2.1), we consider the trajectories of (uncharged) test
particles we find that the equations of motion (for # = π/2, φ = 0) may
be written in the form (see [1], equation (4.9))

where a prime denotes differentiation with respect to t and & is a constant.
However, in the Reissner-Nordstrόm case (with m = 0), the correspond-
ing equations of motion are

r* = h-eηr2 , (2.12)

where a dot denotes differentiation with respect to s and h is a constant.
The formal similarity between (2.11) and (2.12) is striking, but it should
be stressed that the independent variables are t and s respectively.
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Nevertheless, both metrics predict t h a t a massless charged particle will

repel an uncharged test particle although by different amounts 3 .
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3 A theorem analogous to that proved in the Appendix of [1], may also be
proved for metrics of the form

ds2 = λc2 dt* — λ-1 dr2 — r*dθ2 — r2 sitfθdφ2,

where λ is a positive, strictly monotonically decreasing function of r alone.




