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Abstract. The solutions of the Einstein field equations are studied under the
assumptions that (1) the source of the gravitational field is a perfect fluid, (2) the
divergence of the conformal (Weyl) tensor vanishes, and (3a) either an equation of
state exists such that p = p(w), p being the pressure and w the rest energy density,
or (3b) the rest particle density is conserved. Under assumptions (1), (2), and (3a)
it is shown that the space-time is conformally flat and the metric is a Robertson-
Walker metric. The flow is irrotational, shear-free, and geodesic. Under assumptions
(1), (2), and (3b) it is shown that either the line clement is static or the fluid has a
very special caloric equation of state. Conditions for a static solution to exist are
examined, and it is shown that the Schwarzschild interior solution satisfies these
conditions as does the Einstein universe. The Schwarzschild interior and the Einstein
universe are the only conformally flat, static solutions obeying (1), (2), and (3b).

1. Introduction

In this paper we shall discuss the space-times satisfying the Einstein
field equations when the source of the gravitational field is a perfect
fluid and which are such that the divergence of the conformal (Weyl)
tensor vanishes.

It is a consequence of the latter condition that the four-velocity of
the fluid has vanishing rotation and shear. In addition, the derivatives
of the rest energy density w in directions orthogonal to the four-velocity
vanish. If the fluid obeys an equation of state, that is, if the pressure is a
function of w alone, it then follows that the particle paths of the fluid
are geodesics. Thus the assumptions that the divergence of the conformal
tensor vanishes and that an equation of state holds imply that the flow
is geodesic, irrotational and shear free [1]. As is known, these conditions
in turn imply that the space-time is conformally flat, and that the metric
is of the Robertson-Walker type [2].

If the assumption that an equation of state holds is replaced by the
assumption that the particle density is conserved, it follows that either
the rest energy density of the fluid is constant, or the entropy is constant,
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or the fluid satisfies very special thermodynamic relations. In case the
entropy is constant, an equation of state holds, and the metric is a
Robertson-Walker metric. In case the rest energy density is constant,
the metric is a static one, and the three-space orthogonal to the four-
velocity is a restricted one. If the energy density is constant and the
space-time is conformally flat, then the metric tensor is that of the
Schwarzschild interior solution or of the Einstein universe.

We shall adopt the convention that the metric tensor g,
(e, p=0,1,2,3) have the signature (— + + +). The Riemann tensor
will have its sign determined so that the Ricci relation becomes

20,;18y) = Vo B%upy (1.1)
where we use the notation

Trep1 = —; (fap — f5a)
and

1
fap =5 (fap + fpa) -
We define the Ricci tensor as
Ryv = Ra,uav

and then the Einstein field equations become
1
R, — 59 B=4kT,, (1.2)

where k is Einstein’s gravitational constant. The stress-energy tensor is
assumed to be that of a perfect fluid and hence

T,,w = [Q(l + 8) + p] Uy Uy + Puv

(1.3)
= (w + p) Uy Uy + PGuv

with
w=g(l + ) (1.4)

where p is the rest particle density, p the pressure, and ¢ the internal
energy which is a function of p and p. For different fluids this function is
different. The vector u, is the matter four-velocity vector which is a
time-like unit vector and hence satisfies

wuy = —1. (1.5)
We have omitted the cosmological constant /A in the field equations. It
may be reintroduced by replacing p by p + A and w by w — A.
As is well known the contracted Bianchi identities

@z—%&m)=kwm=o

N4
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imply the equation of motion

(w+ p)A* = (w + p)u*,;u’ = — P, h°* (1.6)
where
huo: —_ go':x _}_ ws u* (17)

and also imply the equation

W+ p)0 = (w+ p)u’, = —w,,u’. (1.8)
The vector A* will be referred to as the acceleration vector, and the
scalar 0 will be called the dilitation.

In many physical problems Eq. (1.2), with the right hand side given
by Eq. (1.3), are insufficient to determine the space-time and the motion
of the matter in it. To obtain a complete description of the problem
these equations must be supplemented by an additional equation. It is
customary to use two forms of this additional restraint:

1. To require that the matter satisfy an equation of state. That is,
to require that

P = p(w) (L.9)
or

2. To require, as in classical hydrodynamics, that the rest particle
density be conserved [3]. That is, to require that

(ou’),; =0. (1.10)
It follows from Eq. (1.4) that
dw=dp(l + &)+ p de.

We may express de in terms of the temperature 7' and the change in
entropy S by using the relation [3]

TdS:daerd(—lg—).

Hence
dw=i§‘(w+P)+9TdS (1.11)
and Eq. (1.8) becomes
(w+p) (0u);o + T8 ;u’=0. (1.12)
If particle rest mass is conserved, Eq. (1.8) is equivalent to
S,u’=0. (1.13)

The rotation and shear associated with the fluid motion are defined
as follows [4]: Write

Ug;p = Wap + Tup + %T Ohop — Agug (1.14)

where

Wyp = u[a;,]h"ah’ﬁ (115)
17+
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is called the rotation tensor, and
1
Tup = u(u;,)h”ah’ﬁ——gﬁhaﬁ (116)

is called the shear tensor.
The vorticity vector associated with the velocity vector u# is defined
as [3]:

_1 _1
2 2

vt = (-g) eIt WUy

where ¢ is the determinant of the metric tensor and &**°* is the com-
pletely antisymmetric tensor density with ¢%2% = 1. On multiplying this

Euvarua;ruv: (_g)

1
equation by (— g)2¢,.4, and summing, we obtain

1
(—9)% V" euapy = 2Uatipiy) + 2UpUEy;a) + 20Uy Uia;p) -
It then follows that

1 I
Wy = — 5 (—9)2 V" U Euapy -

The vanishing of v# implies the vanishing of wg, and conversely. Hence
if wyp = 0, u, is proportional to the gradient of a scalar.

The conformal (Weyl) tensor C#,, is defined in terms of the Riemann
tensor, the Ricci tensor, and the scalar curvature R by the equations [5]

R, (1.17)

Rzﬁot = O“ﬁar + 215[0:[06}9]1] + T

where j{“ﬂ is the traceless part of the Ricci tensor:

° 1
B = R% — 4 0% R (1.18)
and as usual,
0%y, = 6%,00, — 6%.0P, .
The conformal (or Weyl) tensor is traceless on any contraction:
%%, =10. (1.19)

The parts of the Riemann tensor are distinguished in the following
manner [6]: Let us define the “hook” operator by

1 1
Ruaﬂyé = 9 E’ydo't Raﬂat’ URaﬁy& = ?Eaﬁat Rdrvd (120)

where
1
Euﬁyé = g2 Eafyo - (1.21)

1 1
Note that we are using g2 and not (—g)2, so that E,z,, is a pure imagi-
nary tensor. Define 7%#,, and S*#,, by

o 1
Teb..=2R [“[Uéﬂ]ﬂ ’ S=b ., = Cfyr + 'iE‘R(saﬂar .
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Then:

USUocﬁyd = Szxﬁyd

UTUaﬂyd = T L afys -
Hence S,4,5 and T4, 5 are, respectively, the self-“dual” and anti-self-
“dual” parts of R, under the double hook operation. Cyp,s is the

traceless part of S,;, 5, and hence is distinguishable in an algebraic way
from the R term.

The three algebraically distinct parts of R*#7, as listed in Eq. (1.17),
could be arbitrarily specified in relation to one another were it not for
the fact that the Bianchi relations connect them differentially. This
conncction is expressed by noting that the Bianchi identities, which
are

Rdﬁgc;r + Raﬁo‘r;g + Raﬂrg;o =0 (122)
are equivalent to
VRVsr, (.

These equations may be written as
0 51 — 2(B 1,675+ 1 (ROy5)., = 0. (1.23)
Hence we may write the Bianchi relations as [7]
O30 = (B — 5 R %) 0 (1.24)

which is simply Eq. (1.21) rewritten. It is this last form of the Bianchi

equation which is most convenient when we insert the assumption that
C%%5.5 = 0.

2. Evaluation of the Conformal Divergence

When the Ricei tensor and the scalar curvature are evaluated from
the field equations, Eqs. (1.2) and (1.3), and the results substituted into
Eq. (1.24) one obtains

1
k[(w+p) u“u[y+*3‘w(3“[v] 01 = 0% 010 (2.1)

Next, one may use Egs. (1.6), (1.8), and (1.14) to write these equations
as [7]

1
k10500 = (W - p) w* @y + 5w, (%) + 3 W,oh7 (0% +

2.2)
+ (0 + p) (0 + 0%po) sy -
Contract this equation with u, and u” to obtain
%w,o hos = k= tu,u? C*%s g . (2.3)
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If Eq. (2.2) is contracted with «® we obtain

1 1
k=100 55000 = 5 w*w, % + 5 (w + p) (0% + 0%)

or
k™ 1hyyCehy. o ul = —;— (W + P) (Way + Ony) - (2.4)
Hence we have
Wop =2k~ (w + p) " ulhy [, Oy (2.5)
and
Gup = 271 (0 + D) 1uthy (0 s (2.6)

Equations (2.3), (2.4), (1.6), and (1.8) contain all the information in the
Bianchi identies. (Compare SZEKERES [8].) It is evident that the neces-
sary and sufficient condition for a space-time satisfying Fqs. (1.2) and
(1.3) to have a conformal tensor with vanishing divergence is that the
fluid motion be irrotational and shear-free and that

w, h°* =0 (2.7
hold. If, in addition, the fluid obeys an equation of state Where—g% + 0,
or if p = constant, it follows from Eq. (1.6) that the fluid particles move
along geodesics.

The two assumptions, vanishing divergence of the conformal tensor
and the existence of an equation of state, imply that

ua;ﬁzé Ohep - (2.8)

We shall show later that it is a consequence of this equation and the field
equations that the metric tensor is that of a Robertson-Walker cosmo-
logical space [9, 2].

The vanishing of the divergence of the conformal tensor implies that

Uasp = 5 Ohag + F, 15 (2.9)
where
F =log(w -+ p) (2.10)
and 0 is given by Eq. (1.8).
We close this section with the derivation of two equations we shall
find useful. The Bianchi identities, Egs. (1.22), imply

., Y0P = (R“y - %Ré“y) Bses 2.11)

;0¢
where E*f7v°® is given in Hq. (1.21). Make use of the Ricci identity and
the hook operator of Eq. (1.20) to write Eq. (2.11) as

—20VwobT, R, OV, (2.12)
For a fluid-filled model, Eq. (2.12) becomes
=210V 0BT = (w + p)uu, OV %P7 (2.13)
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The second equation of interest will be an expression for u,u,C*?f*.
To derive it, notice that for a perfect fluid

U U R g = u,u”C7%p + % (w+ 3p)h%s. (2.14)

By the Ricci identity
UgW RO g = (U715 — U po) U = (W* U7), 5 — W U5 — U g0 . (2.15)

Hence

I .
U 0% g + 3 (w+ 3p) A% = (W, u%),p — U U, g — u* g0 . (2.16)
We may substitute from Eq. (1.14) into these equations and thus express
the right hand sides in terms of w, o, 0, p, and w. If in the resulting

equation we set oo = f and sum, we obtain an equation which reduces
to the Raychaudhuri equation [10] when p = 0. It is:

1

5 k(W + 3p) = ugW R% = — (w + p)7 (p;o:h°" + p,,u70) +
+ W+ p)72 2P,op, 17T + p,ow,h7T) + (2.17)
+ w?—o?— —;— 0% — 0, ,u°

where w? = W Wy, 6% = 6°70,;-
When Eq. (2.17) is substituted into the expanded form of Eqs. (2.16)
we obtain

Uy, O%9F7 = (w + p)~1 (“P;o,h"“lﬁﬁ + %p;g,h‘”h“*" — p,(,u"a“ﬂ) +
0+ B)2 (D0, DT — g0, JTHI) +
200+ )2 (p,0B, BB — 5 pp ) £ (218)

1
+ 0% 0P — 5 P — 0%.0P"

1 2
+ 5 0P — 5 00%F — h*,hPo0 Lt

When the divergence of the conformal tensor vanishes, Eqs. (2.17)
and (2.18) reduce to
5 (W + 3p) = —F b [g 0+ 0,0+ 00| (219)
and
U O %y = — (th,8 _ %th,,) (2.20)
respectively, where
Foe=Fior—FoF = W+ p) Por— 2(w + p)°P,0P,x
using F as defined by Eq. (2.10).
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If, in addition, an equation of state obtains, then

F h*=0
and

1
FUThco:hrﬁ = — ‘?T O(UGF'U)haﬁ
Fo bt = —0@F ;).
Equations (2.19) and (2.20) reduce to
%k(w +3p)=— (% 02 + G,Uu") (2.21)
and
C% = u,u™C°%5 =0 (2.22)
respectively.

Thus the existence of an equation of state and the vanishing of the
divergence of the conformal tensor imply that Eq. (2.22) holds and that

C% = u,wCV°%; =0 (2.23)
as follows from Egs. (2.13). These two conditions in turn imply that
Cotg=0. (2.24)

That is, the space-time must be conformally flat. The proof that
Eq. (2.24) is a consequence of Eqgs. (2.22) and (2.23) rests on the following
identity
(ugug)zoaﬁvd = Re [ugur(aaﬂa,u -+ Eaﬂa,u) (5”1/6 + Ewy&) (CMV + 0”,,)]
= uU; [aaﬂau awyﬁ + E""%,LE“’V@]C!‘” + (2.25)
+ uu, [E“ﬂoua”yd + ‘yﬁauEwﬁ]Oﬂ”
which holds when u?u, + 0 and is a consequence of the fact that the

conformal tensor is self-dual under the double hook operation (compare
Hawxkixa [17).

3. The Field Equations when an Equation of State Holds
We now turn to a discussion of the field equations. We first discuss
the situation when S = constant or p = p(w), Z—Z =+ 0 and w is not a

constant throughout space-time. We shall of course assume that the
divergence of the conformal tensor vanishes. We have already seen that
these assumptions imply that the space-time is conformally flat and that
the four-velocity vector is irrotational, shear-free, and geodesic. Hence,
we have as a consequence of the geodesic character of the flow

1 1
Wap = o (ua;r - ut;a) b g = 9 (ua;ﬁ - U'ﬂ;a:) =0

and

1 1
ua;ﬂ=—3—0kw=——3—(w+p)*1 w,du"kaﬁ. (3.1)
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We may therefore choose a function ¢ so that
W, = _t,/t . (32)

The function ¢ will be the zero’th coordinate function. Other coordinates
¥t 1= 1,2, 3, may be chosen so that the metric components g,, are all

zero and ¢y = — 1 [5]. The components of the matter velocity have the
values

Uy = (—1,0,0,0); wu*=(L,0,0,0). (3.3)

And as we mentioned, w and p are functions of ¢ only.
In these coordinates Eq. (3.1) reads

1 . ..
(w+p)uz,j= ——3—wg“ (157: 132: 3)' (34)

However, the derivatives of u; are given in terms of the Christoffel
symbols by

1
Uy =19, = 5 Yij0-

Hence
(95)7 1955 = — —z—(w + p)~1w = func of ¢ only (3.5)
and the dot denotes the derivative with respect to ¢ = 2°. Consequently,
Gij = R oy

where the k;; arc functions only of the spatial coordinates yt.
The function R (t) has been defined so that

(0 + p)~io = —3R-1R . (3.6)

This equation is equivalent to Eq. (1.8).

To find k,;(y*) we must turn to the field equations. It is relatively
straightforward to show that the spatial components of the Ricei
tensor are

lez%ékkl]_k 29”{2101,‘{‘ 3R1:j (37)

where the quantity 3R, ; is the Ricci tensor formed from £, ;.
We make use of the field equations in the form

Ry — k(T“~%T°L,9%2kM) = k(w — p) 2k, (3.8)
to show
Ryy = koy (~ KK — 290 4 5 k(w0 — ) (3.9)
Since k;; and 3R;; are independent of {, we must have that
SR;; =2Ck;;, C = const. (3.10)

In other words, k,; is the metric of a space with constant curvature.
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In summary, ¢, has the form

Joo=—1, goi =0, gi5=R%%k;;(y’) (3.11)
where k,; is the metric of a space of constant curvature. The field equa-

tions of general relativity allow us to express w and p in terms of R and
C as follows [11]:

w =3k 1R-2(C + R?)
p=—kIR2RCRR 1+ R2 L 0). (3.12)

This metric is the Robertson-Walker cosmological metric [9, 2].

4. Field Equations when (gu°),, =0

In this section we examine the ficld equations under the assumptions
that the conformal tensor has zero divergence and the rest particle
density is conserved. Equation (1.11), in the light of Eq. (1.13), becomes:

ow,u’ = (W + p)o,su°
or:
00 = —p,,us. 4.1)
The vanishing of the divergence of the conformal tensor implies that
Eq. (2.9) holds. That is,
Ugsp= % Ohug 4 F W7 ug (4.2)

In particular, w,; = 0 and u, is proportional to the gradient of a scalar.
That is, functions « and ¢ exist such that

au, =@, . (4.3)
We may choose our coordinates so that ¢ = a® and such that
go;: = 0 [5]. In such a coordinate system

hij=gijs hoi=9oi=0, ho=0. (4.4)
The requirement that u, be a unit vector leads to the condition that
Joo = (9°) 1= —a?.
It is a consequence of Eq. (4.3) that
o, sh% = ol  h%; (4.5)
where, as in Eq. (2.10),
F = log(w + p)
and we have used
w, k% =0.

In the coordinate system we are using Af; = §%;. Hence, we may
integrate Eq. (4.5) to give

logoe = F + k(x0)
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where £ is a function of x° alone. Thus

oo = — (@) (w + p)=*
and we may redefine the variable a° so that

Joo= — (W + p)~2 = —e72F, (4.6)
In this coordinate system we have
Uy = — (W + p)7t% = —e 1'%, (4.7)

U = (W + P) 6% = eF %, .
We now turn to Eq. (4.2). If cither o or f equals zero in these equa-

tions, the equations are satisfied as a consequence of Eqs. (4.6) and (4.7).
We are then left with the equations

1 . 1,
U= == 5 (W + p)gs; = — 5 007w+ p)gs;
where the dot denotes the derivative with respect to a9, as follows
from Egs. (4.1) to (4.7). Hence we must have

. 2 .
09ii = — 5 9:50
> gis = 0" ki; () (4.8)
where the k;; are functions of the variables a?, 22, 2% alone.

The solution of the field equations is thus reduced to a discussion of
the functions w(x?), o (x°, «*) and the tensor k;;(«*). Since the thermo-
dynamic variables w, g, and p may be considered as functions of two such
variables, we may treat all thermodynamic variables as functions of w,
the rest energy density, and S, the entropy. These are convenient
variables for our purposes, since in the coordinate system given above

w,; =0
S=0
as follows from Egs. (1.13) and (2.3).
Hence, for any thermodynamic variable such as p or p we have
f=twws fi=185 fi=fowS.w

where the subscript w or § denotes the partial derivative of f(w, S) with
respect to the indicated variable.

We now turn to a discussion of the field equations. It may be verified
that these equations may be written as

and

. 1. =
By = (w + p)2 [(w +p)w— 5w — Fijg”]
1 (4.9)
=g kw + p)~* (w+ 3p)
and

= 1 . . 1
Rij=3R;; +F;j— 5 [ww+p) —wg,;=5kw— p)g;; (410)
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where 3R,; is the three-dimensional Ricei tensor formed from the g;;,
Fiy=F;—F,F, (4.11)
I =log(w + p)
and the bar denotes the covariant derivative with respect to the metric g,;.
We may also rewrite Eqgs. (4.9) and (4.10) in terms of the metric &;;.
We obtain
o 1 .
Ry = (w + p)—2 [(w + p)w — 5 wz] —
1 X (4.12)
— ()2 [ Py e PEIE o, =g k(o )72 0 37)
and
Ryj=Ki; + 0y + 0,0, —2F,F ; + Ak
1 (4.13)
— 5 k(w — p)g~*Pky;
where K, is the Ricci tensor formed from k3,
o=F+ —é logo
Z—ﬁz‘j:FHiJ’—F;ipy]' .

The double bar denotes the covariant derivative with respect to k,;, and

A = %‘;_ [kz] ;Q_‘Ll)i__ iy le Qi Q*—2/3(w w -+ p — wz) — ‘*LF ]C“:'

We may write Eqs. (4.12) and (4.13) as, respectively:

1 . 1 .
5 kw+3p)=(w+pw—gw—(w+p* 03Pkt Sy 5+
(414

+ (w+ p)T S8, [(w + ) (’;sg" = Pss F 2pﬁ]
and
Ki;=Ak;; — BSy;;+ C8,;8,; - (4.15)
The quantities 4, B, and C are

A= kw—p)g P-4
=g [; W (w+p)— 1— w? + é— k(w— p)] — —;S”ijk”@‘lgs + (4.16)
+ g 018,08,k (~ 0us g 0207+ (w0 p)‘lgsps)
B=pw+p+ ~13~g s07 = [log 3w + P))s 4.7)
=~ %Q“I%s — (w4 p) s+ %9’293 +

(4.18)
2
+2(w + p)7 Pl — g o7 w - p) s Ps -
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The tensors K;; and k, ; and the function S which enter into Eqgs. (4.15)
depend only on the variables 2 (¢ = 1,2, 3). Hence the coefficients
A, B, and C must be restricted in their dependence on 2° We shall
now examine the nature of this restriction. We observe that by using
Eq. (4.14) to eliminate i, the quantity 4 may be expressed as a function
of w, the thermodynamic variables w and 8, and the quantities

A8 = KISy
and
A8 =Kk98 ;8 ;

which are functions of 2% (i = 1, 2, 3) alone. We have

A= g (bw - 5 0?) + 3 4,8 4,8 (G2 — 2 +
_ G _4 @s ?_,,,es_ Ps Pe 202
+3A18( 0 + + o (w+p) +(w+p) (w+p)2)

Hence we may write
4d=wd
where 4 is a function of the same quantities that enter in 4.
When Eq. (4.15) is differentiated with respect to 2° we obtain
Alky;— BSyi;+ C8,:8,;=0
since k;; and hence K;; are independent of a°. This equation may in
turn be written as
W(Ak;; — BySyis+ Cu8,:8,;) =0 (4.19)
since B and C are formed from matter variables.
It follows from Eq. (4.19) that either

w=0 (4.20)
and hence the metric tensor g,, is static, or else
BySyiz= Ak, + C0S,:8,; . (4.21)

We shall treat the static case in the next section. We now assume that
Eq. (4.21) holds. Then if

B,=0 (4.22)
we must also have
Co=A4A=0 (4.23)
since k;; must be non-singular. Now we may write
C=—B,— B*4 2p2(w+ p)~2%. (4.24)

Equation (4.22) implies that
@3 (w + p) = f(S) g(w) -
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The first of Eqs. (4.23) and (4.24) imply that
w+ p = f*(8) g* (w) (4.25)
hence
0 = [**(8) g**(w) . (4.26)
It then follows from the expression given above for 4 that we must
have
1.
kw — 5 w* = oug** (w)*3
where « is a constant. Thus the dependence of w on ¢ may be determined
once the function ¢g#* (w) is known.
If the caloric equation of state of the fluid is such that Eqgs. (4.25) and
(4.26) do not hold, B, = 0, and we may write Eq. (4¢.21) as
SHU = Bzv_IAkii + Bwﬁlows,is,i (4.27)
and Eq. (4.15) becomes
Kij= (A~ BB, '4) ky; — (BB, 0, — 0)8,,8,; . (4.28)
Again we may differentiate FEq. (4.28) with respect to 2° and find that the
coctficients of k,; and S, ,8,; must be functions of «* alone. In particular
we must have
BB, 1C,—C=£k(S).
Hence
C=4k(S)+¢(S)B (4.29)
where £ and £ may be arbitrary functions of the entropy S. In view of
Eq. (4.24), Eq. (4.29) may be regarded as a differential condition on B
and (w + p).
Equation (4.27) then becomes
Syig=oc(@) kyy + £8,,8,; (4.30)
where
A= uaB, (4.31)
and « is a function of 2% (¢ = 1, 2, 3) alone. The latter equation may be
regarded as a first order differential equation for w as a function of 2°
since it contains w and terms which depend on thermodynamic variables
as well as terms involving 4,8 and 4,8.

If the caloric equation of state of the fluid is such that Eq. (4.29) is
satisfied, Eq. (4.28) becomes

Kiy= (4 — Ba) by — £(8)8,,8,; . (4.32)

In order that Eqs. (4.30) and (4.32) admit solutions for the k,; and the
function S, the integrability conditions of Eq. (4.30) must be satisfied.
These come from [12]

1 1
Siitiny = 5 8,68 =8, K1 + 8, K'iikny + 5 K S, 11 Ry
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since the curvature tensor of a three-space is expressible in terms of the
Ricci tensor and the scalar curvature of such a space [5]. If we substitute
from Eq. (4.32) into this equation we obtain

1

When one computes the left hand side of this equation from Eq. (4.30)
one obtains the equation

1
[(“, u—fal, )+ ) (A~ Ba—k4,8)8, [:i] kryo=0.
Hence we must have

o a‘z_[%(A—B“)_%'éAIS_Ka] S.i=DS8,;.

s

Then it follows that the coefficient of S, ; must be a function of S alone
and hence « must be a function of S. Equations (4.30) and (4.31) may
be used to determine 4,8 as a function of 4,8 and thermodynamic
variables after w(x) is determined. The quantity 4,8 may be deter-
mined as a function of the thermodynamic variables alone from the
requirement that D is a function of S.

Thus we see that w = 0 and S,; & 0 can obtain only if there are
restrictions on the kind of matter present. The case for which B, = 4
= O\, = 0 is similar to the static case w = 0 which will be discussed in
the next section. In case B, # 0 and a general caloric equation of state
holds, so that Eq. (4.29) does not obtain, we must have

S,Z-:O.

That is, S is a constant. Hence the fluid obeys an equation of state of the
type discussed previously, and the metric tensor of space-time is of the
Robertson-Walker type.

‘We shall not discuss the restricted fluids any further but shall turn
to a discussion of the static case.

5. The Static Case
We have seen that this case is characterized by the condition
w=0
for in this case all thermodynamic variables are independent of ?: They
depend on ° only insofar as they depend on w. Hence, w + p and p are
independent of x° and it follows from our previous work that g,, = 0 in
the coordinate system used above.

It is most convenient to work with the field equations in the form
given by Egs. (4.9) and (4.10). These equations become

1 L
s k(w+3p)=—Fy—F, . F;)g" (5.1)
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and
1
S kw—p)g;; =R+ F;;—FF; (5.2)

where the bar denotes the covariant derivative with respect to the g,;
and
F =log(w + p) . (5.3)
It follows from these equations that
SRij=— ;= F ;) — gi;[g° (F g0 — F,F ) + 2kp]  (54)
and
R = —dgii(F;;— FF;) — 6kp=2kw. (5.5)
Since w = constant, the scalar curvature ®R is constant.

It follows from Eq. (5.4) alone that the contracted Bianchi identities
become

(oRYy =5 0 R) = B, Th(w + 3p) + 2" (Fiy, — FL F, )] = 0.
Hence Eqgs. (5.4) imply (5.1) and (5.2) when F,; 4 0. The case F' ;=0
corresponds to the Einstein universe, a special Robertson-Walker
metric [13].

Equations (5.4) may be written as

1 1
3Ri5"13R9u=—(Flij*‘F,iF,f)“‘z‘kpgn- (5.6)

Look on Eq. (5.6) as a differential equation for F. The integrability con-
ditions for the function F are

1
(3Rz‘[j - Z3Rgz‘[j) SR;pin)

D (5.7)
= _F’s[2és“ 3Rk]i + aRs[igk]i + 3R63[kga']i]
since 3R is a constant.
The nine Eqs. (5.7) contain only five equations independent of the
condition
SR =0 (5.8)
for they may be written as
Zij=2Z;;="R;p\mE*"; = 2F , °R; E,)*™ (5.9)
where
Biik — g_% giik

and &% is the completely antisymmetric tensor density with £2 = 1;
g is the determinant of g,;. We must also have

as a consequence of the symmetry of 3R;;. That Z,; is symmetric follows
from Eq. (5.8).
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Thus, in order that Eq. (5.9) admit a solution for F ,, we must in
general have two equations satisfied by the coefficients of F,, in these
equations and the Z;;. These equations may be written as

SRUZ,; =3RV3R,  E* ;=0 (6.11)

and
SRE SRSIZ,; = SRYBRSI3R, ., B*; = 0. (5.12)

The remaining three equations in Eqs. (5.9) may be written as
A, =—F 8, (5.13)
where
Ay = (CRiuyy — *Byjpu) *BY
and

Su,,, — (3R2 _ 23R8t SRts) 6“1} + 33Rus3R8v - 23Ru7) 3R .

Equations (5.11), (5.12), and (5.13) are equivalent to Egs. (5.9). From
Eq. (5.13) it follows that if 4, = 0 the rank of S¥, must be less than
three. It may be shown that this implies that 3R?; have at least two
equal proper values; that is, that the three-space with the metric g,;
have two equal principal curvatures. Note that if g,; is the metric of a
space of constant curvature, so that 3R¢; has three equal proper values,
then Eq. (5.9) is satisfied for arbitrary F ;.

The three-space with metric tensor g,; must therefore have (a) a
constant scalar curvature and (b) a Ricci tensor which has zero diver-
gence and which satisfies Egs. (5.11), (5.12), and (5.13) in order that it
be the space 2° = constant in a static space-time with vanishing diver-
gence of the conformal tensor with a fluid present. We shall not discuss
these three-spaces further, but will consider the special case for which
the static space-time is conformally flat.

It then follows from Eq. (2.20) that

NS (5.14)

where
FGIZF;UT—F,UF,T

and the semi-colon denotes the covariant derivative with respect to g,,.
In view of the fact that ¥, , = 0 and the line element is static, Eq. (5.14)
becomes

1
Fioj—FF =5 Fs—FF) g,
Equations (5.1) and (5.2), the field equations, become
1
Flyj—F,F, ;= ——k(w+ 3p)g;; (5.15)
and

Ry; = o lwgs, (5.16)

18 Commun. math, Phys., Vol. 5
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Thus the three-space with metric tensor g,; is a space of constant cur-
vature. In this case, Egs. (5.9), the integrability conditions for Eq. (5.15),
are identically satisfied. That is, Eqs. (5.9) introduce no restrictions on
the F ..

Since F = log(w + p)
we may write Eq. (5.15) as
1

Yiy=4k3—2wY)y, (5.17)

where
Y=e¢F=(w+ p)?t. (56.18)
In order to solve Eq. (5.17) for Y, we introduce a coordinate system
at=r, a? = 0, 2® = ¢ in the three-space such that
gu=R¥R*— 1)1, o =(13=0s =0,

5.19
Goo = 7%, and ggg = 12 sin20 ( )

where
kwR?*=3. (5.20)
The solution of Eq. (5.17) is straightforward. The result is that Y is a
function only of r and is given by:
1
Y — 5 kB — AR — 1)
where 4 is a constant. The four-dimensional metric is then given by
Eq. (5.19) and
J0:i=0 (7’= 1,2,3)
1 172 (5.21)
Goo= V2 =[5 kB — (AR? -y
This is the form that TorLman gives for the Schwarzschild interior
solution [13].
If the constant 4 is taken to be zero, we have
w+3p=0

and the solution given above reduces to the Einstein universe [13].

6. Discussion and Conelusion

Modern methods of treating gravitational radiation rely heavily on
algebraic statements concerning the conformal tensor. In a vacuum
region, a conformal tensor satisfying an algebraic condition

HOB,s, gur) = O (6.1)
has many properties in analogy with electromagnetic radiation [14]. For
example, a pure radiation field is expected to obey

Oaﬁar 0611/0‘ =

which is characteristic of a Petrov type Null space-time.
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The final identification of algebraically special conformal tensors with
gravitational radiation has not been made, however, since the effect
of matter on algebraic type is not well known. With this qualification in
mind, the following very interesting question may none-the-less be asked :
Which algebraic types of conformal tensor are compatible with which
types of stress-energy tensor ¢ In other words, if a conformal tensor is
desired which satisfies an equation such as Eq. (6.1), is it possible at
the same time to find a 7,, which satisfies some equation such as

h(Toc,B7 g,uv) = 02 (62)

Since T, and C*# s are algebraically distinct, there is no difficulty
in satifying both Egs. (6.1) and (6.2) at a point. The Bianchi identities,
however, link these two tensors by a differential relation. Hence there
is difficulty in satisfying algebraic conditions on the stress-energy tensor
and the conformal tensor over a region as may be seen from a theorem
due to SzerErES [8]: A type Null conformal tensor (non-zero) is im-
possible in a dust-filled model. Note that a dust-filled model is equivalent
to the algebraic statement [3]

T4, (1%, + 947,) = 0 (6.3)
where g is positive.

The theorems in this paper show that, in contrast to the type Null
case, a zero conformal tensor is compatible with a fluid. A zero con-
formal tensor, however, greatly restricts the dependence of the fluid
variables on spatial and on time variables.

In fact, we started not with the vanishing of C*#,,, but with the
vanishing of the conformal divergence:

C*%yps = 0. (6.4)

That Eq. (6.4) restricts the stress-energy tensor has been shown before
|15]. Here we have shown that Eq. (6.4) in the presence of a perfect
fluid satisfying either an equation of state or conservation of mass
requires either that the space-time be static or that it be a Robertson-
Walker metric — or that the special thermodynamic relations discussed
in Section 4 hold.

If, in addition to Eq. (6.4), the space-time is conformally flat, then,
in the absence of the special caloric relations of Section 4, there are two
cases: First, the non-static case consists of the Robertson-Walker
solutions. Second, the static case consists of the Schwarzschild interior
solutions. Other conformally flat models, in which the conservation of
rest particle density does not necessarily hold, are being studied by
PrLEBANSKT [16].

In conclusion, let us repeat our postulates. (1) The algebraic postulate
of vanishing conformal divergence, Eq. (6.4), was made. (2) We postulated
18*
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that the material in the model be a perfect fluid, an algebraic postulate.
(3) We postulated that either (3a) an equation of state, p = p(w), hold,
or else (3b) the rest particle density p be conserved, (pu°).; = 0.

The postulates were used to give the form of the metric coefficients.

If case (3a) holds, or if case (3b) is supplemented with the postulate of
conformal flatness, it was shown that the results are models more
familiarly derived from isotropy postulates. These models are the
Robertson-Walker metrics and the Schwarzschild interior solutions

respectively.
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