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Abstract. I t is proved that there exist free field operators which satisfy local
commutativity and which transform according to certain unitary representations
of the homogeneous Lorentz group. The fields satisfy axioms similar to the Wight-
man axioms, and give rise to local algebras of observables obeying postulates similar

to those suggested by HAAG. They describe a tower of particles with spins-^ , 1-^,

2 -g-, . . ., but commute at space-like separation, giving rise to Bose statistics for

the particles. This shows that the well-known theorem on spin and statistics cannot
be extended to general theories of local observables it also shows that the assump-
tions made in "$-matrix theory" do not hold for the $-matrix of a theory of inter-
acting infinite fields.

1. Introduction

There has been some interest lately [1] in theories of elementary
particles in which the particles fall into infinite sets which transform as a
unitary representation of a non-compact symmetry group. This naturally
led to the question of whether the theory can be described by a causal
quantized field which transforms in the same way. The work of FELD-

MAN and MATTHEWS shows that for such fields the spin-statistics theorem
of ordinary field theory is no longer valid; in particular, one can quantize

a system of particles with spins ^ - , 1 - ^ , 2^-, . . ., with Bose statistics,

and still describe them by a local field (in the more general sense).
On the other hand it has been conjectured that the spin-statistics

theorem can be proved within the more general framework of the theory
of localized observables [3, 4]. It is therefore worthwhile to give a proof
of the existence of a concrete counter-example to this conjecture, by
establishing some results similar to the work of [2] on a rigorous basis.
This paper is devoted to this end.

* The research reported in this document has been sponsored in part by the
Air Force Office of Scientific Research OAR through the European Office Aerospace
Research U.S. Air Force.
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The first problem is to construct a realization of the representation of
the Poincare group, 0*, in a space of functions that transform in a mani-
festly covariant way. This can be achieved for any representation of the
Poincare group with a specified mass by using a technique exploited by
Joos [5] and later by PURSEY [6] and WEINBERG [7]. We run through
this construction in the next section, for an infinite multiplet, all with the
same mass. For a finite dimensional representation of the Lorentz group
the co variant wave-functions are labelled ψoc{p)> ar*d transform as
ψa(p) -> SaβiΛ) ψβiΛ^p) under the action of the Lorentz group. It is
more convenient to define the wave-functions in a manner independent
of the basis, as follows: let K be a Hubert space carrying a unitary
representation W : A -> TF(/l) of the Lorentz group L^, let p be a typical
point on the mass-hyperboloid Mm\ p2Ξ=p0

2 — p2 = m2; p0 > 0. Then a
manifestly covariant wave-function is a map p-+σ(p) ζK which trans-
forms under the Lorentz group according to

We say a wave-function is normalizable if

where dΩv is the Lorentz-invariant measure f. We shall find it
2(m2 + p2)"2

convenient to regard a wave-function in its dual role namely, for each
p ζMm, σ determines a continuous linear functional σ(p) on K, thus:
<τP(Ψ) = (σ(p), Ψ). In other words, a wave function determines a map
K x Mm->C.

VSΛ

The normalizable wave-functions form a Hubert space K in which the
action of the Lorentz group is unitary. This representation can be ex-

ΛΛΛ

tended to a unitary representation U of & in the same space K by the
action

The space K is the space of one-particle states. In section 3 we define
creation and annihilation operators on the Fock space constructed from
K with Bose statistics, and from them construct a free quantized field
with the wrong connection between spin and statistics. By "quantized
field" we have in mind the following generalization of the Wightman
axioms: Let % {a, Λ) be a representation of 3P in a Hubert space h (the
space of the states of theory). Let W0(Λ) be a representation of L^_ in a
Hubert space Ko (the auxiliary space of [2]). Let 8 be the space of test-
functions on 1R4 of rapid decrease. Then a quantized field is a map A
from KQ x 8 to unbounded operators on h with the usual WIGHTMAN [8]
properties: there exists a unique vector ΨQ ζ h invariant under °U, and
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a dense domain D invariant under %, and under the action of the field
operators:

Λ(oc,f) DcD for all α f f 0 , f ζ8 and ψζD. Moreover, for each
Φ ζ D and Ψ ζ D the map Ko x 8 -> C given by

is separately continuous in α (in the strong topology of Ko) and / (in
the usual Schwartz topology). Co variance is expressed in the form

<mμ,Λ)A{0L, f) <V(a, /I)" 1 = A(WO(A) α, fa,Λ)

and causality takes the usual form
[A(oc,f),A(β,f)*] = 0 if the supports of / and g are space-like

separated. Moreover, <%(a, A) is not to possess any subrepresentations
with negative energy.

It is in this sense that we construct a quantized field. The Wightman
functions satisfy the growth conditions discussed by BOUCHERS and
ZIMMERMANN [9] which is sufficient to show that the field is essentially
self-adjoint on D, and that a theory of localized observables can be set
up, according to the argument of ref. [9]. This demonstrates that the
hypotheses of references 3 and 4 are insufficient to prove a spin-statistics
theorem.

We can naturally define fields transforming according to infinite-
dimensional non-unitary representations of L^ by combining the unitary
representations with the usual finite-dimensional representations, and
reducing the tensor product to its irreducible components. The axioms
are easily adjusted to accommodate these. In this way, towers of spins
0, 1, 2, . . . can be quantized with Fermi-Dirac statistics. One can also
quantize these towers with the correct connection between spin and
statistics. In this case the concept of localization differs from the one
obtained by finite dimensional fields, which are not local relative to the
new fields. This shows that non-isomorphic theories of local observables
can give rise to the same ^-matrix (unity in this case).

2. Manifestly Covariant Form

In this section we recall the argument of FELDMAN and MATTHEWS,

at the same time fixing the notation.
Let [j, m] be the representation of the Poincare group with spin j and

mass m, and let Uo be the direct sum of the odd spin representations, all
with mass m that is

where each enters with infinite multiplicity. Let U be the direct sum of
Uo with itself,
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ΛΛΛ

We denote the carrier space of U by 34?, which may thus be written as the
direct sum of two isomorphic subspaces, each carrying the representa-
tion UQ. Vectors in the first space we call particles and vectors in the

ΛAΛ

second, anti-particles. The space Jf itself contains all possible states of
one particle or anti-particle.

For each p we define the little group HP to be the subgroup of L^
leaving p fixed. This group acts on space-time, the four-dimensional
translation group JΓ4, in the usual way; the semi-direct product Gv of Hv

with Tr

4 is called the inhomogeneous little group of p. If m2 > o, H^ is
isomorphic to 0 3. Let D* be the usual representation of O3 with spin j ,
and let F o be the direct sum of D} for odd 2j:

where each enters with infinite multiplicity. This is a two-valued repre-
sentation. Let V be the direct sum of F o with itself

V= F o © F o .

Let ffl be the carrier space of V. Then V can be extended to a representa-
tion of the inhomogeneous little group of p, in 34?, as follows:

where p2 = m2, ψ ζ 3f, R ζO3 = H9. It is known [10] that U is the
representation of 0* induced by this representation. This means that U
can be realized as follows. We consider functions on 1 = &l&p0 f° r

some p0. X is homogeneous with respect to GPo and can be identified
with Mmf the positive-energy branch of the mass hyperboloid. For each
p ζ X, choose the pure Lorentz transformation Lv such that Lv p — p0.
Let F be any Hilbert bundle with fibre ffl and base-space X. We identity

vectors in 2ft? with cross-sections of F; that is, an element of Jf7 is a map
Ψ from X to ffl. The Haar measure of 0* induces the natural invariant

\ΛΛ

measure dΩv in X; the scalar product in 34? is given by

(Φ,Ψ) = f(Φ(p),Ψ(p))dΩp.

The action of U in 34? is given by

(U(afΛ)ψ) (p) = ei**V(L0ΛLA-i) Ψ(Λ^p) .

I t is easily seen that L^ΛL^1 ζHPa. If p0 = (m, o, o, o) the space 3t
contains the "rest states" of MATTHEWS and FELDMAN, and V(LP) is the

"boost operator" giving the particles momentum p.
We now proceed to introduce the "auxiliary group", chosen to be

SL(2, C), and the "auxiliary space", as in ref. [2].
7*
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It is well-known [11] that there exist unitary representations of
8L(2, C) which, restricted to 8U2, are unitary equivalent to F. In the
next section we define such a representation, W, acting in a space K.
Corresponding to the reduction V — Fo Θ Fo, we may reduce W according
to W = Wo Θ Wo and K — Kλ® K2 where Wo is unitary equivalent to
Fo. Kx is the auxiliary space for the particles and K2 that for the anti-
particles, in the rest frame.

Let 0 be a Hubert bundle with base X and fibre K. Cross-sections

of G form a Hubert space K = / K(p) dΩp, and K carries a representa-
tion of ^ , called W(a, Λ), defined by

(W{a, Λ)σ) (p) = e^W(Λ) σiΛ'1) .

(Recall that a vector in K is a map a : X -> K such that

JdΩ2)(σ{p),σ(p))κ<oo.

The point of this construction is that W (a, A) is unitary equivalent to
the given representation of ^ , U (a, Λ). The proof is easy, and is omitted.

3. Creation and Annihilation Operators

The procedure known as second quantization of this representation
of & consists in finding operators a (σ, f) for each a £ K and / ζ 8, satis-
fying the canonical commutation relations

[α(or, /), α(ρ, ?)*] = (ρ, σ) fg(-p) f(p) δ(p* - m2) θ(p0)
We interpret a(σ} /)* as the creation operator for a state vector in K
consisting of particles if a £ Kx and anti-particles if σ ζK2. In fact,

AΛ

α(cr, /)* creates the vector Ψ in K given by the map X -> ϋΓ:

Since the creation and annihilation operators are unbounded operators,
these commutation relations must be discussed with the usual caution.
In fact, we shall define the Fock representation of these operators they
are defined on a common dense domain D invariant under the action of
the operators themselves, and on which they are essentially self-adjoint.
The commutation relations are then understood to hold on D.

We require that a (σ, /) transform under the Poincare group accord-
ing to

a(σ,f) *<^> , a(W(Λ)σ,fa,Λ)

where / -> fatΛ is the natural action of 3P on the test-function space.
It follows that α(σ, /)* transforms in the same way. This transformation
law holds in the Fock representation, defined in the usual way [12].
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Briefly, define the nth symmetrized power Kn of K to be the Hubert

space of symmetric functions from K x K . . . K to C, continuous in
each variable with the remaining held fixed. Then Fock space is the
direct sum

oo w

h = Σ ® κn

\ΛΛr

where K° is the one-dimensional Hubert space containing the vacuum
Ψo. Clearly, h carries a representation °lί of ^ , the direct sum of the

WN WV

identity on K° and the n'th product of W{a, A) with itself on Kn,
partially reduced by symmetry. For the domain D we may take the
linear span of the set of states with a total of n particles, represented by a

iΛΛ

vector in Kn of the special form a(σlf fj* . . . a{(yn, fn)*Ψo We define
the operator a (σ, /) as follows:

(a(σ, /))» (σlPl9 . . . σnPn) =
{P,(t',PlCFi, -

The action of & on h is given by

It is then easy to check that the transformation law and canonical com-
mutation relations hold for a(Λ, f) on D, and that <%(a, Λ) D cD

We wish to define a causal field, that is, a map A from Ko x S to
unbounded operators, with the properties given in Section 1. Experience
with finite-dimensional fields suggests that we should combine annihila-
tion operators of particles with creation operators of anti-particles. Let
Pj be the injection Ko-> K given by P1oc = (α, o), that is, P1oc ζ
and let P 2 be the injection Ko-+K given by P 2 α = (0, α) £
Then for any α £ Ko, a(P1oc, /)* is a creation operator for a particle, and
a(P2oc, /)* is the creation operator for an antiparticle (conventionally
written ό(α, /)*). Obviously we have

We wish the map 4̂ to be linear, and so we are led to introduce an anti-
linear map B: Ko-> Ko (its further properties are determined by the
requirements of causality and covariance). Then define the free field A
to be the map

4(α,/) = α(P 1 α,/) + α ( P a B α J ) * ; α ( Z 0 , fζS.

In order that <%{Λ) A (α, /) °U{AYX = A (Wooc, fΛ) it is necessary and
sufficient that B commute with W0(Λ). We see that A(oί,f) always
commutes with A(β, g) since

[a(PlX,f),a(P2Bβ,g)*]=(P2Bβ,P1oc)ff(p)g(-p)dΩ]1 = 0

and so forth.
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We find for A and A*

[A(X,f),A(β,g)*]
= [a(P1oc,f),a(P1β,g)*]+[a(P2Boc,fr,a(P2Bβ,g)]
= (P i α > PijS) / flf(-p) /(p) ί β , - (PzBβ, P2Ba) J g(p) f(-p)dΩP

= //(?) g{-V)Hί>2 - ™η [0(p») (α, j8) - *(-i>o) (5 0, Bα)]d*2>
This is causal if and only if (B β, Boc) — (α, /?) i.e. B is anti-unitary. In
the next section we show that for a certain unitary representation Wo of
L]^ such a J5 exists. Since the vacuum expectation values are obviously
distributions, we have constructed a field in the sense of section 1. Its
truncated functions are zero beyond the two-point functions which are

<A(α, /)• A(0, g)} = (α, β) f f(x) g{y) Δ+{x - y) d*x d*y .
In order to show that there exists a corresponding theory of local ob-
servables, it is sufficient to repeat the argument of BOUCHERS and
ZIMMERMANN [9], which goes through with virtually no change. This
completes the construction of the counter-example.

4. Proof of Existence of B for Certain Unitary Representations

Consider the representation WQ of 8L(2, C) that is induced [13] from

the representation 2* = Qj of SU2cSL(2, C). We denote by Jί the
two dimensional carrier space of 3f. We may identify the carrier space
of Wo with the space of functions ψ : SL(2, C) -> ̂ #, square integrable
with respect to Haar measure, that also satisfy the left-covariance
condition

ψΛ(UA) = $(ϋ)aβιpβ(A) for all ϋ £SU2, A ζSL{2,C) .
Call this space Ko. Now Q) is unitary equivalent to its complex conjugate
representation, so there exists a unitary operator F in ~# such that

where we have written 2 in 2 x 2 matrix form. Define the anti-linear
map B: Ko -» KQ by

(Bψ)Λ(A)=
This is well defined. For if ψ is left covariant then

( B ψ ) x ( U A ) = V ^ U U

= @(U)xβVβγy)γ(A) = ®(U)aβ{BΨ)β{A) .

Thus Bψ also satisfies the left-covariance condition.
We easily check that B is anti-unitary it commutes with the action

of SL(2, C) on KQ, which is by right multiplication:
(W0(A1)ψ)(A) = ψ(AA1).

It is known that WQ, restricted to S U2, is equivalent to the representa-
tion Vo of S U2 introduced earlier. This completes the proof.
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The representation U of L^_ chosen here is highly reducible, and so
differs from that discussed in [2]. A similar discussion could have been
given in their case.

Our representation W0 happens to have the following property. Let

\m, y be the representation of 0* with positive mass, energy and spin

y . Then WQ is the restriction of U&,y *° t n e Lorentz group. To see

this, note that for each p, ^ 2 can be extended (in the same space) to the

representation eiί>a@& of the inhomogeneous little group of p, 8U2 x T4.
The resulting representation of 0>, induced from SU2x TA, is the same
as the representation of L£ induced from 8U2\ this can be checked by
explicit computation1.

Because of this, the representation W in K can be extended to a

representation of 0* with mass m0 (arbitrary) and spin y . Thus the states

oc ζK can be labelled according to the Wigner canonical form namely,
to each α £ K is given a wave-function α^(q), * = 1, 2, with scalar
product

and transforming according to

(WWoήt (q) = ®u(
We replace α^(q) by a manifestly covariant wave function ^(y), where

&Λq) = δ{q*-ml) θ(q0) Dϋ(LAQ) α,(q)

*i(y)= I etgyZ(q)d*q.

One may then define a bi-local field in terms of the field A (α, /). Any
real test function h(γ) ζS(i23) determines a unique real solution
of the Klein-Gordon equation, for each y0, by the conditions

This solution has a unique positive energy part. The bilocal field
A^(h, yo;x) is then equal to A{(x.i{h)ix), where α̂  (Λ) ζ ^ is the wave
function with oc(h) as its ^th component. The bilocal field transforms
according to °ll(a,Λ) A^y.x) °t£-x{a,A) = D(Λ)is A3{Λy, Λx + a) where
D is the two-dimensional representation of L^ (two-valued).

Bi-local fields were introduced heuristically by YUKAWA [14], and
can be given [15] an axiomatic treatment similar to that of WIGHTMAN.

The field Ai{y, x) constructed here is the spin -̂  version of the "free

fields of infinite spin", defined in [16]. The present synthetic method
1 I am indebted to M. FROISSART for this remark.
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has the advantage of showing clearly the reduction of U(a, Λ) into
irreducibles, that is, what multiplicity the various spins possess.

We may remark that a spin-statistics theorem can be proved in
$-matrix theory [17]. It follows that the ̂ -matrix of an interacting
field satisfying the properties of our section 1, will not possess all the
properties attributed to the ^-matrix in [17].

The usual $-matrix axioms must contain information equivalent to
the finiteness of the interpolating field. This is probably contained in
the form assumed for crossing symmetry. Naturally, it is not obvious
that the particles associated with an interacting field of the type dis-
cussed in this paper necessarily fall into an infinite multiplet all of the
same mass. The field could have no particles associated with it, linearly.
The particles, for example, might be created by bilinear combinations
of the field, and be either finite in number or non-degenerate in mass.

It is interesting to speculate that the free fields defined here, as well as
the "free fields of infinite spin" defined earlier [15] by the author,
violate the compactness condition suggested by HAAG and SWIECA [18].
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