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Abstract. We construct unitary and non-unitary representations of the complex
inhomogeneous Lorentz group, including all its unitary, irreducible representations.
We discuss the decomposition of these representations when they are restricted to
the real inhomogeneous Lorentz group. We also discuss the representations of the
Poincare group for which the translation subgroup transforms under a not necessarily
unitary representation. We summarize briefly the physical motivation for this
study.

I. Introduction

This is the first of (at least) two articles on the structure and possible
applications to scattering theory and particle physics of the complex
inhomogeneous Lorentz group, CILG. In this article we discuss the re-
presentations of the group. We do not restrict ourselves to unitary
representations. Although we say nothing about irreducibility or "com-
pleteness" of the non-unitary representations, we do find all the unitary,
irreducible representations of CILG.

In the next article we plan to discuss some possible applications and
the physical interpretation of CILG.

We begin in Section II with a series of definitions, for the purpose of
naming the various objects we will construct in later sections. We
believe that a comparison of the general structure with the particular
examples given, will clarify the constructions for the reader. We then
define the CILG and several of its important subgroups in Section III.
The method of induced representations, which we will use in finding the
representations of CILG, requires us to find the "sesquilinear system"
representations of certain subgroups of CILG: the "little" groups 3 and
SL(2C) (Sections IV and V), and the translation group, T (Section VI).
Finally, we put the results together to find the representations of CILG
in Section VII, and of its physical subgroup ̂ , (the Poincare group) in
Section VIII.

In Section V, which reviews the representation theory of SL(2C), we
derive the asymptotic form of a certain operator. In Section VIII, we
discuss how representations of & are contained in the representations
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238 E. H. BOEFMAN:

of CILG. In the final Section, IX, we indicate briefly how these results
are connected to the physical interpretation of CILG, and its application
to complex angular momentum.

II. Representations in topological spaces

For not necessarily unitary representations of non-com pact groups,
the machinery of finite dimensional vector spaces, which was appropriate
for irreducible, unitary representations of compact and abelian groups,
no longer suffices. Indeed, we now need to consider representations in
linear topological spaces which, if they are Hubert spaces at all, are
infinite dimensional. In general, they will not even be in Banach spaces1.

In order to have an invariant sesquilinear form, we consider pairs
consisting of a space D and its dual D', with the representation in Df

being the adjoint of the inverse representation in D.
We shall introduce these sesquilinear systems, then define induced

representations. The theory of induced representations, using sesqui-
linear systems, will be our main tool in constructing representations of
CILG.

Def. A sesquilinear system, SLS, is a pair of complex linear topo-
logical spaces Dλ and D2> and a sesquilinear (linear — antilinear) form

(Λ .D^Dt +C (2.1)
such that

(α !̂ + αafa, βιηι + β2η2) = ήίβl(ξl9 %) + α a ft(f a , %) + (2 2a)

+ άιfti(fι» η2) + δc2/92(f2, η2) ,

the definition of sesquilinearity, and

(ί,D2) = 0 iff |^0 (2.2 b)

(Dl9η) = Q iff q = 0
where

ξ, ξv ξ 2 6 D1 and η, ηl9 η2 ζ D2

αl> <*2> ft, ft 6 €

Def. Let D1 and D2 be the linear spaces of an SLS. Let El and E2

be the spaces of endomorphisms of Dλ into itself and D2 into itself,
respectively.

A homomorphism
G-^El® E2

g -> Γi (9) ® T, (g) (2.3)
1 A discussion of this point, as well as the most complete discussion of non-

unitary representations that exists, to my knowledge, in the mathematical literature,
is given in reference [1], See also references [2], [4], [5] and [6] for the material of
this section.
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of G into EI ® E2 is called an SLS representation if for all ξ ζ Dv η ζ Z)2,

gζG
(Tl(g)ξ,Tz(g)η) = ( ξ , r ) } , (2.4a)

or equivalently

There are fairly satisfactory notions of equivalence and irreducibility
for linear system representations, but they require much more detailed
topological and algebraic considerations than we wish to discuss here2.

Def. A G space is a triple, (G, X, Φ), consisting of a topological group
G and a topological space X , with a map Φ called the action,

Φ : G <8> X -> Z (2.5)

continuous in both 6? and JΓ, such that

xβ = x, x£X (2.6)

CfyΛ. ^ ̂ IΛ > ^ *Wa £ Z> ^i' ^ 2 6 ^ -
If the action of G on X is transitive, which means that for every

x, y ζ X there is a 0 ξ 0 such that

2/ = ^>

then J£ is called a transitive 6r-space, or a homogeneous space.

Def. An SLS function space $J> oyer a space Z, is an SLS together
with a space K% of functions

k:X-^Dl^D2, k£K$. (2.7 a)

For every & in an SLS function space, there is another function Jc

ίc:X-> €
defined by

b (x) = fa (x), k2 (3)) εz fa, k2) (x) ^ ζ D1} Jc2ζD2. (2.7 b)

Suppose that the space X is a 6r-space with action Φ(g,x) — xg.
Then we define

k,(x) = &(xβ) . (2.8)
Corresponding] y,

kg(x) = k(xg). (2.9)

Def. If dμx is an invariant measure on a G-space X, and 5 is an SLS
function space, then the space of all functions k ξ K$ such that

/ k(x) dμx = f fa(x), k2(x)) dμx (2.10)
x

2 See reference [1], also reference [2].

17*
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exists and is finite, Λvith the representation

kg (2.11)

is called a functional representation space of G.

Obviously, then

f £ ( x ) dμ. = fk(xg}dμx = fίcg(x}dμx . (2.12)
X X X

Note that if the SLS is a Hubert space with its natural dual, and the
function space based on it consists of all integrable functions (for
some measure on X) from X into ffl Θ ffl , then the SLS function space
is a direct integral Hubert space.

Def. Let H be a closed subgroup of G. Let Rπ be an SLS representa-
tion of H based on the SLS D19 D2, ( , )D. Let 5 be a functional represen-
tation space of G, and suppose that K contains all functions such that

/ : G -> D1 <g> D2

satisfies
f 1 ( ξ g ) = T 1 ( ξ ) f 1 ( g )

ίι(ξg)=Tt(ξ)tt(g) (2.13)

ξ £ H , gζG, f ζ K y .

In each G/H coset we pick a representative k ζ G. Let Ψ be the set of all
ψ ζ K$ such that

/ Ψ(k)dμk exists and is finite,
GIH

where dμk is an invariant measure in G/H. Then Ψ is the space of an
induced SLS representation, in which the representation is defined by

T(g)Ψ=Ψa. (2.14)

Clearly, the sesquilinear form satisfies

fψ(k)dμt = fψβ(k)dμt (2.15)
for

/ (ψlt Ψ,) (k) dμk ̂  / (Ψ,, Ψ,) (kg)dμk (2.16a)

) Ψ,) (k')dμk (2.16b)

μv (2.1βc)

where ξ = kgk'"1 ζ PI and &r ζ (r is the representative of a coset in 6r/7L

III. The group CILG

We discuss the representation of the covering group of the connected
component of the complex inhomogeneous Lorentz group. We call this

group CILG.
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To define CILG precisely, we need both the additive and the multi-
plicative structure of two-by-two complex matrices. Hence, we define
GL(2C) to mean the ring of all two-by-two complex matrices and
SL(2C)cGL(2C) to mean the subring of elements which have unit
determinant.

We can realize an element of CILG by the triple

(Σ,Σ,A)

X£GL(2C) (3.1 a)

Σ,ΛζSL(2C),
with the multiplication law

(Σ', Σ', Λ') (X", Σ", Λ") = (Σ, Σ, Λ) , (3.1b)
where

X = X' + Σ'X"Λ'* (3.1 c)

Σ=Σ'Σ"

Λ^Λ'Λ" .

(* denotes Hermitian conjugation.)
An equivalent realization, which we need in Section VII, is obtained

by setting

Γ=ΣΛ* (32)
Π = Λ.

The multiplication becomes

(Σ1, Γ, ΓΓ] (X", Γ", Π") = (Σ, Γ, Π) (3.3 a)
where

X = Xf + Γ'Π'*-1X"Π'*

Γ = ΓΠ'*-1Γ"Π'* (3.3 b)

Π = ΠfΠ" .

The translations are the subgroup

Any X ζ GL(2C) can be written

X = χμa** = X0 — X cr . (3.5a)

This defines a one-to-one correspondence between X and Xμ. Given Xμί

we define X+ to be
V i V Λ "V /O K.T^\Λ~Q ~r A. ' flΓ = -A-f ^ΰ.O Dj

Xμ — ^^ + ί^ is a complex four-vector, and σ^ are the Hermitian
Pauli matrices.

The metric is

(3.6)
Ί V / X X ^

2
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The map
X -> ΣXΛ*

(3.7)
(or X-

leaves {{X})2 invariant. The pair (-Σ, —Λ) (respectively (Γ, — 77))
produces the same effect as the pair (Σ, Λ) (respectively (Γt +//")). If ( — )
denotes the equivalence of such pairs then

(27, Λ)l( — ) ~ connected component of the complex Lorentz group.

The group ̂ , which is the covering group of the connected component
of the Poincare group, is the group of triples

(X\Λ,Λ) (3.8a)

in the first realization of CILG, and

(X\ΠΠ*,Π) (3.8b)

in the second realization of CILG. X1 is a Hermitian matrix. Clearly

IV. The group 3

We construct unitary and non-unitary representations of the group,
which we call g, which arises as a little group for "zero mass" in the
representation theory of CILG.

The general element ζ = [λ, z, w] of 3 may be written as a pair of
matrices

te A) .(Πi-w ••-]-< '«)
where λ, z, and w are complex numbers, and the multiplication law is

[λ', z', w'] [λ", z", w"] = [λ, z, w]

2 V VA — Λ A
(4.2)

z = λ"z' + λ'~lz"

w=λ"-ιw' + χw" .

Notice that

[1, z', ID'] [1, z", w"] = [1, z' + z", w' + w"} (4.3)

and that for any ζ = [λ, z',w']

ζ[l,z,w]ζ-ι= [I,λ-*z,λ*w]. (4.4)

The subgroup of all elements of the form [1, z, w] is an invariant,
abelian subgroup T, isomorphic to the two complex dimensional trans-
lation group.
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The irreducible representations of T are labelled by four complex
numbers Pi9 Q^ i = 1,2, and are defined by

TPiyQi (1, z, w) |P,, Q<> = eί{^ι+^ + «^ + ̂ } |P,, &> - (4.5)

This representation is unitary when Px = Ql and P2 — Q2.

We can define an action of the whole group on this space T of
irreducible representations of T by

TlPi,Qi]ζ(l, z, w) = TPi,Q([(ζ) (I, z, w) (f-i)]

= 2τP,.β <(l,λ->z,λ»u»). ( ' )

This can be interpreted as

T[PιP*QMζ = 2V2p l 5λ-2Qι,Λ2P2,;i2Q2 . (4.7)

The quantities

-~- = A, PjP^JS, and -%- = G A,B,Cζ€
1 1 •* 2

are invariants of this action. B is an invariant of an irreducible represen-
tation of g. A and (7 measure the strength of non-unitary representations.

We now use these results to construct the irreducible representations
of S, by the method of WIGNER and MACKEY.

A. Suppose Pt = Q{ = 0. The representation is given by T(ζ) = Tχ(λ)
where Tχ (λ) denotes an irreducible representation of the multiplicative
group of complex numbers. These are labelled by a pair of complex
numbers (nlt nz), (denoted collectively by χ) whose difference is an
integer n and whose sum is an arbitrary complex number ρ.

χ = K, »8) = - , = ^{ρ n). (4.8)

The representation is defined by

T(λ, z, w) \nv nzy = A^-1!̂ -1 \nv n2} = λ\e~2e{n^V ρ, n) . (4.9)

B. Suppose some Pi or Qi is not zero. Let it be Px. Identify P1 with
the multiplicative group of complex numbers, i.e. with the subgroup
Λ = {(λ, 0, 0)}.

Let / : S -> T have the property for all £ £ g, that

/[(I, 2, w)C] - ei{^i+^ + w^ + ^K}/(C) (4.10)

where Pα - 1, % - ^, P2 = B,QZ= BC and /(A, 0, 0) = ±/(-λ, 0, 0).

The representation is defined on a suitably restricted (in terms of
their integrability and asymptotic properties as λ -> oo) class of such
functions, and is given by

(4.Π)
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An irreducible representation is denoted by A, B, C and ±

We can make this into an SLS functional representation space of g
in the following way.

For every P^ Qt we define an SLS by

A = {α \Pi9 Qi}} where α 6 C (4.12 a)

Da = {j8 |β, P<» where β ζ C .

The sesquilinear form is defined by

(/S|ρ ί,P<>,α|P ί,ρ i» = α ^ . (4.12b)

We define an SLS representation of {(1, z, w)} by

T(z, 10) |P, 5 Q, > = e«<^ + ̂  + ̂  + <ra |Pί5 Q, > (4.13 a)

correspondingly

T(z, w) |Q4, P;> = eUQ^ + PΓϊ + Qito + P^) ]Q., P.) . (4.13b)

Clearly

(|β<P*>, |P<<2,» = (T(z, w) I^P,), Γ(z, tc) IP^,)) (4.14)

hence this is an SLS representation.

The induced SLS representation is defined by equations of the form
(4.10) and (4.11), except the range of the functions is an SLS representa-
tion space, rather than simply the right or left hand DΓspace as in
(4.10).

V. SL (20)

In this section we review the representation theory of SL(2C)3.

The representation can be defined to act in various spaces. We can
choose the space on which the representation acts to have the following
properties:

1. There is a representation for each χ = (n^ n2), where nλ and n2

are complex numbers whose difference is an integer. Let the space of
functions on which Tχ acts be denoted by Dχ.

2. An element fχ of Dχ depends independently on z and z, it is single
valued on the complex (z, z) plane, and is infinitely differentiable in z
and z.

3. f(z)^zni~lzH2~2fl 1 is also infinitely differentiable in z and z,

and single valued.

4. Asymptotically, as z -> oo, / ( z ) -> znι ~~1 zUz~~l X (const.).

5. The topology of Dχ is given by the following:

3 See reference [2]. Reference [8] also has useful information.
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A sequence fm(z) is said to converge to zero in Dχ if in every finite
region of the (2, 2) plane and for all n, the sequences /^ (2) and fffl (z)
of the nth derivatives of fm(z) and fm(z) converge to zero.

6. Dγ is complete in this topology.
In this space, the representation is defined by

1 /
It is sometimes convenient to use the notation

χ = (ρ, n) instead of χ = (%, ra2)

where ρ = % -f n2 and n = nλ — w2. w by assumption is an integer, ρ is
an arbitrary complex number.

An "integer point" is a value of χ for which n± and n2 are integers of
the same sign, or ρ is an integer larger in magnitude than n. A "real
point" is a value of χ for which ρ is real, and an "imaginary point" one
for which ρ is purely imaginary.

We define χ as (n2ί nj or {ρ, — n) (because if / ζ Dx, then / £ D- with
this definition) and — χ as ( — nv — n2) or { — ρ, — n).

If χ is an integer point and ρ is positive then there is a finite dimen-
sional invariant subspace Eχ in Dχί which transforms according to a
spinor representation.

If χ is an integer point and ρ is negative then there is an infinite
dimensional invariant subspace Fχ in Dχί and DχjFx transforms according
to a spinor representation.

Two representations χ and χ' are equivalent if neither is an integer
point and either

x = x'
or

X ~ X '

If χ is a positive integer point, i.e. ρ > n > 0, then

^<β.»>/^<β.n> = D{n,βy - !><_„._„> - F^^ (5.2a)
and

^<ίtn> - Z><_ρ,_B)/ί'<_e,_Iί> . (5.2b)

The representation in the space Dx is unitary if χ is an imaginary
point (the primary series of representations) or if χ is a real point for
which |ρ| < 2 and n — 0 (supplementary series of representations).

If ρ = 2, n = 0, then the finite dimensional subspace ^2,0) trans-
forms according to the identity representation, which is unitary. The
identity representation is the only unitary representation which is
finite dimensional.
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One can also define the representation on a space Bχ of complex-
valued functions whose domain is $£7(2)4.

For every representation g -> Tx (g) on Bχ, there is another represen-
tation defined on B_

such that there is an invariant sesquilinear form S on this pair of spaces :

(5.3a)}
S:B,® B- -> C

namely,
8tf,ff) = f f M f f W d u (5.3 b)

where / ζ J5_^ k ζ Bχ, and du is Haar measure for $ £7(2) .
When we restrict ourselves to u ζ S U ( 2 ) cSL(2C) the representa-

tions
u -> Tχ (u) and u -> T_^ (u)

oί SU (2) are identical. Hence, $ is an invariant scalar product for the
representation of 8 U ( 2 ) contained in χ.

The functions5 D^n(u) are therefore bases for the spaces Bχ and
jB__- in the sense that

if DJ,lntB--X>
DXJ',m'm>iBX-

One can also define matrix elements

S. STBOM has studied these matrix elements for the case of a unitary
representation of the principal series6, (in this case — χ = χ , hence S is a
scalar product in the space Bχ).

A very important decomposition7 of elements of SL(2C) is the
decomposition into generalized Euler angles.

Let

(5.6)

where λί? c, s £ G and c2 — s2 = 1. Then almost every7 Σ ζ 8L(2C) can
4 Up to equivalence the representation depends only on %, not on the realization

of the representation.
5 By ΐ>J

m n (u) we mean the m, nth matrix element in the representation J of the
group S £7(2), viewed as a function of u £ /S £7(2). By D*ιm>n(u) we mean the func-
tion D^TO(^) viewed as an element of the space Bχ.

6 See references [12], [13].
7 This decomposition is valid except on a subset of lower dimension. That is,

we do not use this form when c — 0 or s = 0 in equation (5.6).
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be written

—

It can be shown that for the subgroup Φ, the properties (2) and (4)
of the representation

( \ ί Q ~^~ ft Q — ftx

χ — (^ U2) — ^ £ > 2~

for any χ — not only those for which the representation is unitary —
together with the form of the functional 8 imply that, asymptotically as
c -> oo, for any / ζ Dχί g ζ D-χ

8(g, Tχ(Φ)f) > )c|-ρ-2Φ1 + |c +<?-2φ2 (5tg)
C —> oo

where Φ1 and Φ2 are bounded functions of c which depend on / and g.
A detailed discussion of this result will be given in the next paper8.

VI. Irreducible representations of the translation group in four complex
dimensions

The translation subgroup T of CILG has irreducible representations
labelled by two complex matrices P, Q ζGL(2C). The representation is
defined by

•a—TV r y p -i- y o i
Πfi (Ύ \ T) λ"~) \ 2 IP /^ \•̂  v-^j ^> V/ === e K > V/ /A i \

I0-1;

This becomes an SLS representation, DP,Q, if for each space
j[)l __ /(χ l jP ζ)\ jχ £ (0\ (β 2a)

we take as the dual space

jD^ = -ί/?i 0 P^>' β £• (Dl ί6 2b^
with the inner product

When P — Q, the representation is an irreducible unitary representa-
tion in one dimensional Hubert space.

VII. Unitary and non-unitary representations of the complex inhomo-
geneous Lorentz group

To construct induced SLS representations of CILG we must compute
the action of CILG on the space T of irreducible representations of the
(abelian, normal) subgroup of translations, find the orbits under this
action, and the stationary group of some point on each orbit.

8 The result is derived in reference [9]. We comment on the significance in
Section IX, as well as in references [9] and [10].
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(Given a point x on a 6r-space X, an orbit of x is the subspace of X
consisting of all points into which the point x can be mapped by the
action. It is obviously a homogeneous space. The stationary group of x
is the subgroup of G for which the action maps x into itself. On the space
T, the translations generate the identity mapping on the entire space.
Hence it is useful to define the little group of x to be the stationary group
of x modulo the subgroup of translations.)

The action Φ of CILG on T is defined by

Φ[(X, Σ,Λ), |P, Q)] = \Λ*PΣ,Λ*QΣ) (7.1)

(X, Σ, A) ζ CILG, |P, ρ > ζ T .

Observe that under this action the SLS representation DP,Q is
mapped into the SLS representation DΛ*PΣ,Λ*QΣ

The invariants of an orbit are

. (7.2)

We now tabulate the different types of orbits.

I. P = Q = 0.

II. P = 0, or g = 0, or P = λQ, λζC.

Let P Φ 0 (the other case is equivalent). Then there are two subtypes

(a) Mp = 0,

(b) Mp Φ 0.

III. P Φ 0, and Q Φ 0, and P Φ λQ,

(a) Mp φ 0, and MQ φ 0,

(b) Mp = 0.

Case I. P = Q = 0.
In this case the translations are represented by the identity operator,

so the representation of CILG reduces to the representation of the sub-
group of elements of the form

(0, Σ9 Λ) (0, Σ'9 Λ') = (0, ΣΣf

9 ΛΛ'} (7.3)

which is isomorphic to SL(2C) 0 8L(2C).
The irreducible representations are therefore given by the outer

product of two representations of 8L(2C).
Case II (a). The space TQ: P φ 0, Q = 0, MP = 0 or the equivalent

cases.
In this case the little group is the group Q. To see this we note that

the matrix

f.
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is a point of this space. The action of CILG on this point is

f, «H«(; jμ ,7.4,
The equation

ί1 Q}-Λ*(l °\o o; ~ /L \o
is satisfied when

._ r.(7 5)

Thus, an element of the little group 3 is a pair of matrices

KA 0\ /A-1 0\1 ,, x ,_ β v

* Λ - ι ) > U j)J = <*'*'"> ^6)

with the multiplication law (4.2).
The representation is defined on functions

/ : CILG -> D

where D is an SLS functional representation space of S%t τ C CILG, the
semidirect product of 3 and the translation group. With respect to the
translation group, D is precisely that representation whose stationary
group is Sg,τ That is, the functions / satisfy

f(ζ ξ)=T^ζ)f(ξ) (7.7 a)

where X is a translation, ξ £ CILG ζ £ 3

T0(X) f(ξ) = e ' I W / ^ f ) ® e ' K )Z] /2(f) (7.7b)

is an SLS representation of the translation group,

T B ( ζ ) f ( ξ ) = fζ(ξ)» (7.7 c)

is an SLS function space representation of 3 of the type discussed in IV.
The representation of CILG is defined by

T ( ξ ' ) f ( ξ ) = f ( ξ ξ ' ) . (7.8)

Case II (b). TM:Pφ 0, MP Φ 0, Q = 0 or the equivalent cases.
We use the second realization of CILG

(Xf, Γ;, 77') (X", Γ", 77") - (X, Γ, Π)

X = Xf + ΓΠ'*-1X"Π'*

77-
9 The subscript notation is defined in equation 2.8. The variable on which /

depends, as an element of the space D, has been suppressed.
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The action of CILG on the point

is (7.9)
l->77* 1Γ77*-1.

Hence the subgroup
{(0,1,77)}

is the little group. Denoting by 8 the subgroup

S={(X,1,Π)} (7.10)
we see that

CILG/S s (0, Γ, 1) s ΪM . (7.11)

We discuss in this case a few more details than we have before, since
this is the most important case (and because the fact that TM is iso-
morphic to a subgroup of CILG makes the description in this case very
economical, hence pedagogically useful as an example of induced
representations) .

Any element

can be factorized

(X, Γ, 77) - (X9 1, Π) (0, 77* I77*-1, 1) . (7.12)

Let Ds denote an SLS representation of 8. We make this into an
SLS function space representation of CILG.

Consider functions
/ : CILG -> DS

which have the property

f ( Σ , Γ, Π) = TMtX(X, I, Π ) f ( 0 , Π*ΓΠ*-\ I) (7.13a)
where

TUlX(X, I, Π) f = eί5?iτrje T_-X(Π) A ® eiMTΐΐtX Tx(Π)f2 (7.13b)

and Tχ(Π) is an irreducible representation of SL(2C).

For brevity we may write

/(0,Γ,1) = /(Γ) (7.14a)
and since

{(0, Γ, 1)} - Tu ,
we may also write

f(Γ) = f(P) (7.14b)

where P = MΓ. (Equation (7.14 b) defines /(P).)

The representation is defined by

ίT(ξ')f] (ξ) = f ( ξ ξ ' ) I, |'6 CILG. (7.15)
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Specifically, we have

T(Σ, Γ,Π) f(Γ) = /[(O, Γ, 1) (X, Γ,Π)]

= f[(ΓX, 1,77) (0,Π*Γ'ΓΠ*-\ I)] (7.16)

- T(Γ'X, \9Π)t(Π*Γ'ΓΠ*-*) .

Remark. This representation should be defined on a set of functions
f(Γ) which have suitable integrability and asymptotic properties, so that
it is closed under the action of the representation, and irreducible with
an appropriate definition of irreducibility.

We will not go into questions of this kind for non-unitary representa-
tions. For those representations of S in this case, and of S%,τ in Case II,
and 8L(2C) ® SL(2C) in Case I, which are unitary and irreducible, the
induced representation is unitary and irreducible if the function space
is chosen so as to be a direct integral Hubert space. Indeed, by running
through all unitary, irreducible representations of S, S%,τ, and 8L (2 C) <g>
® SL(2C), all the unitary, irreducible representations of CILG may be
obtained.

Case III (a). P =J= 0, M P φ 0, Q φ 0, MQ Φ 0, P Φ λQ.

We can set
P = gPΓ0

and (7.17a)
Q-ΠSggΠΓ1^

Λvhere

gPίGL(2C)=fff^ firQζG£(2C) = (;+

βf_J) α Φ ± β - (7.17b)

Notice that
Ml -α2-/?2

and (7.17c)

= MPoc

are invariants which fix QQ.
The action is

P->Π*PΓΠ*-1 (7.18a)

This can be represented as

Γ0->77*Γ0Γ/I*-1 (7.18b)

770->/70/7.

Remark. The analysis in this case is very similar to the solution of
the problem of reducing the Kronecker product of two representations.
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For that reduction we would proceed to "Fourier" analyze a function of
Γ0 and ΠQ with respect to 770 in the representations of SL(2C).

Equations (7.17) show that the little group in Case III (a) is the

diagonal subgroup A = 1 0 -Λ λ ζ C, discussed in Section II (a).

We define

<x, π, ry = (Σ, i, Π) (o, r, i) = (Σ, π^rπ*, Π) (7.19)
and recall that Π has a canonical decomposition given by equation 5.7

where Λ1 and Λ2 are diagonal matrices and Φ is of the form

Then the representation is defined by

T(ξ) /(!') = f(ξξ')
where

/ : CILG -> Ds

is defined by

f((Σ,Π, Γy) = Tβ.x(Σ,Λ,
and

Tt,x(Σ,Λ, I)/ = e

(here χ denotes an irreducible representation of the multiplicative group
of complex numbers).

Notice that

T(Σ, I, 1) /«0,77, Γ» = iUfl -iΓZΠ*, 1, 1) <0,7J, Γ>]

which induces the correct action on P and Q.
Case III (b). P Φ 0, Q Φ 0, P Φ ΛQ, JfP = 0.
We will not dicuss these cases in detail. There are two cases :

In the first case, the little group is the additive group of complex numbers.
In the second case it is the multiplicative group of complex numbers.
The reader should have no difficulty verifying this and constructing the
representations .

VIII. The Poineare group

In this section we will not discuss the construction of representations
as the procedure is essentially the same as in the preceding sections. We
will, however, list the different types of representations that occur.
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We first observe that the representations of the real translation sub-
group have the form

T(Z!)|P, ρ> = e^Tr(χlp + Jϊ^ P,Q> P,Q£GL(2C) (8.1)

X1 Hermitian .

Since X1 is Hermitian, the argument of the trace can be put in the form

ΣL(P1 + iP2) PI, P2 Hermitian ,
where

/l^2~ *a Qa

where h and a denote the Hermitian and anti-Hermitian parts respec-
tively.

Under the action
P! + < P2 -> A* (PI + i P2)Λ , (8.2)

P1 and P2 transform separately. Hence the invariants are

We now list the different cases and the little group for each case.

Extra conditions Little Group

1. > 0 > 0

2. > 0 = 0
or v.v.

3. > 0 < 0
or v.v.

4. = 0 - 0

SU(2)

all cases equivalent

Pj = P2 = 0

PI Φ 0, P2 = 0
or v.v.

PI =h 0, P2 φ 0

5. <0 = 0
or v.v.

6. < 0 < 0

18 Commun. math. Phys., Vol. 4

0
>0

>o

0
0

>0

<

Sϋ(2)

£7(1)

SL(2C)
Euclidean group

of the plane

Euclidean group
of the plane

£7(1)

££(2^)
Additive group

of real numbers
ϋ(l)

SL(2R)

Additive group
of real numbers
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We now discuss the question of how an irreducible representation of
CILG decomposes under the Poincare group.

The Poincare group has the form

(X, Λ, A) (Xf, Λ', A'} = (Z + ΛX'Λ*, ΛΛ', ΛA'} (8.3 a)
or

(X,ΛA*,Λ)(X',A'Λ'*,Λ') = (X + AX'A*,AA'(ΛA')*,AA) (8.3b)

where X is Hermitian, and A ζSL(2C).

Recall the form of the states of a representation. There is a subgroup
H, consisting of the translations and the little group, an SLS DH, and a
representation

of H on DH.

The space of representations of CILG consists of functions

/ : CILG -> DH

which satisfy
t(hξ) = Tn(h)f(ξ) h£H, ξ ζ CILG.

Let K — CΪLGJH. Let K be a subset of CILG consisting of suitably
chosen representations of cosets. K = K C CILG. Let X ζ £P be a trans-
lation.

Then for each k ξ ./£, a representation of X is defined by

Z->T(Z, l , l )/( i ) = T ι r(AZ)/(A) (8.4)

TH being the representation in DH.

Let ί̂  # denote the space of all such representations for given K and
H.

Then & induces an action on the space Tχt # given by

T(p)f(k) = f(kp) = Ta(kpV-1)f(V) (8.5)
i.e. k ~> k'.

Each H, & double coset in H\CILG/έP remains invariant under this
action. (An Hv H2 double coset, where H± and H2 are subgroups of a
group 6r, is the set of all elements of the form ^1gQh2 where gQ is a fixed
element of G and ̂  and h2 run through ̂  and H2 respectively. The
space of H^ H2 double cosets is denoted H^G/H^).

Let a denote a double coset representative. Then σpcK, where p
runs through ,̂ is the orbit of a under 8P. Suppose that JfaC.& is the
stationary subgroup of & with respect to the representation (8.4) of X,
with k = a. That is, suppose that

X -> TH(σX) ^X->TE (σηX) (8.6)
for all η
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The representation of CILG is now completely decomposed by
summing over the H, & double cosets, σ, and for each σ summing over
the irreducible representations of Na contained in the representation of
CILG.

As an example, consider the representations

/[(Z, 1, π) (0, Γ, 1)] = e

iM2TΐX f(Γ) (8.7a)
and

, 1, π) (0, Γ, I)] = e

iM^lX f(Γ) (8.7b)

T ( A ) f ( Λ * Γ Λ ) (8.8a)

T(Σ',ΛΛ*,Λ')f(Γ)=
' Tx(Λ)i(Λ*ΓΛ) (8.8b)

Under the action, /"->/!* ΓΛ, the invariants are

<x, β, γ label the cosets10.
Given a particular coset, C, in case (a) each ̂  + ίΓ2 belonging to

that coset gives rise to a different representation of the translation sub-
group. In case (b), every Γ% + ίΓ2, for fixed Γ%, gives rise to the same
representation.

Hence, given a particular coset, in case (a) pick a particular
FI + iΓ® in that coset. Find the little group L of this vector. Suppose
I ζ L. It is represented by

f(Γ)-+Tx(l)f(l*Γl).
Restricted to the coset (7, the representation of 0* reduces according to
how the representation χ of SL(2C) contains irreducible representations
λoί LcSL(2C).

In case (b), given a particular coset, 0, each Γ± + ίΓ2 gives rise to a
representation distinguished only by the value of ΓΓ Hence we pick a
jΓJ ξ C. Let LΓ* denote the little group of this element.

It is represented by

Under LΓ\ a representative Γ\ + i Γ2 of the coset C transforms by

jΓO + ir2->l*(r<i + ίΓ2)l = Γ? + «*Γ2Z .

Hence, the reduction of the representation, in a particular coset,
depends in general upon the reduction of / as a function of jΓ2 as well as
on the reduction of the representation χ of 8L(2C) to LζSL(2C).

Of course, if Γ2 is parallel to Γ% (as it is for the case Γ2 = 0), then the
reduction depends only on how the representation χ reduces (/(. . . jΓ2)
transforms as a constant).

10 There are other invariants, such as the sign of the zero-th component of a
time-like vector.
18*
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IX. Physical significance

CILG is a natural object to study in connection with the 8- matrix as a
function of the invariants, for all complex values of the invariants. We
give a number of reasons :

(a) One can construct an ^-matrix which is invariant under CILG
as well as the Poincare group. Restricted to physical values (for a given
channel) of the invariants, the $-matrix is invariant under the restriction
of CILG to its physical subgroup, the Poincare group.

(b) One can perform a "partial wave analysis" on the $-matrix. This
is performed on the $-matrix as a function of all complex values of the
invariants (not just on 8 as a function of the invariants in a physical
region for a particular channel). The reduced $-matrix is interpreted as
the matrix element of the 8- operator restricted to the space of an irre-
ducible representation of CILG. We write

S~fsχ(S)Dχ (cosh ~)dχ (9.1)

(
/Ί \

cosh -g- 1 is a matrix element of the operator

(cosh — sinh -Λ
Δ Δ

• I , 0 τ. Q

smh - cosh ΎJ

in the SLS of the representation χ of SL(2C) (and coshθ as a function of
8, and T, the Mandelstam variables, is just the scattering angle).

(c) Each term in 9.1 has a well defined asymptotic behavior as

cosh - oo. This behavior is determined by χ.

(d) The representations of CILG generalize the representations of
&. They allow unitary and non-unitary representations with "complex
mass," (and perhaps illuminate some of the structure of the non-unitary
representations of ̂  with complex mass). They also allow both unitary
and non-unitary representations of the little group, which (according to
(b) and (c)) play part of the role of complex angular momentum for the
$-matrix, and every such representation has a natural interpretation as
a reducible representation of the Poincare group.

(e) The analysis of the $-matrix, by means of CILG is a generalization
of the method introduced by SERTOBIO and TOLLER n. The fact that
non-unitary representations arise naturally for CILG (as long as the
Poincare subgroup is represented unitarily) as well as the fact that the
representations of CILG have an immediate physical interpretation in
the direct channel, are the most important reasons for considering CILG
rather than the three dimensional Lorentz group.

11 See references [11], [14], and [15].
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We believe that the CILG mil prove to be of value in studying the
$-matrix. We plan to give a detailed discussion in another article, of the
physical interpretation and some applications of CILG.
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