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Abstract. This paper considers perturbations H = HQ + ε V of the Hamiltonian
operator H0 of a free scalar Boson field. V is a polynomial in the annihilation
creation operators. Terms of any order are allowed in V, but point interactions,
such as f : β(#)4 : dx, are not considered. Unnormalized solutions for the Schro-
dinger equation are found. For ε -> 0, these solutions have a partial asymptotic
expansion in powers of ε. The set of all possible pertubation terms V forms a Lie
algebra. General properties of this Lie algebra are investigated.

§ 1. Introduction

We consider Hamiltonian operators of the form

H=H0+V (1.1)

where HQ is the Hamiltonian for a free field and V is a polynomial in the
creation annihilation operators A^. By this we mean that V is a finite
sum of monomials Vlm of the form

Vlm = f A + f a ) . . . A+(kt)vlm(k, k')A~(k[) . . . A~(k'm)dk dk' . (1.2)

We require the kernel vlm to be smooth, for example to be in a Schwartz
space £f . This paper is partly directed toward studying the Lie algebra
formed by such H, and it is partly directed toward solving the Schrό-
dinger equation

ί~Ψ=HΨ . (1.3)

We solve (1.3) for quite general V of the above form. (See Theorems 7.3
and 9.1.) We find in § 7 a preliminary operator T which intertwines H
and HQ)

HT=THQ. (1.4)
Then
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is a solution of (1.3) with Cauchy data Ψ(0) = TΦ(0). We have not
been able to identify the formal expression for T~^ with an operator
on any reasonable function space, and so we cannot specify "arbitrary"
Cauchy data in (1.3). More serious defects in this T are the following:
(a) It seems that the associated scattering is trivial, (b) In perturbation
theory (where F is replaced by ε F), T contains powers of e"1 as well as
powers of ε. In fact, T is a sum of terms Tlm = Tlm(ε) such as (1.2)
and each

l m ε =

has a pole of order — J(l, m) depending on I and m.
Combining this type of T with familiar arguments from perturbation

theory, we find in § 9 new T's which have the property that Tlm (ε) is
analytic in ε if I < N. Here N is a finite number which can be chosen in
advance to be as large as desired. In order to do this we must make a
finite renormalization of H. The resulting scattering appears to be
nontrivial, and could probably be computed, using methods from [2].
This operator T leads to solutions Ψ — Ψ(t, ε) of the renormalized
Schrodinger equation for which

depend analytically on ε. Here ψj is the j particle component of Ψ.
The solution Ψ will presumably not be normalized, and will exist as an
element of a space larger than the Fock Hubert space. These results
should be compared to FRIEDRICHS' ideas [2]. In his terminology we
have considered the case of a totally smooth interaction.

In § 2 and § 3 we realize our operators (1.1) as bounded operators on
Frechet spaces, cf. [5]. In § 3 we prove that the Lie algebra of F's in
(1.1) has a trivial ideal theory. The only ideal in this Lie algebra is the
one dimensional ideal,

5 = {F:F=F0 0}

which is its center. The significance for us of this result is primarily
negative. Nontrivial ideals would simplify the search for our intertwint-
ing operator T. We will later find T as a product, T — T^T^ where in T1

(respectively T2) the creation (respectively annihilation) operators
dominate. Thus

(2^=0 if l<m (1.5)

(Γ2)Im = O i f l>m. (1.6)

The operators of the form
V=Σι>mVlm (1.7)

form a subalgebra which in a generalized sense is nilpotent. In this
algebra there are many ideals and the system of equations for the
(Ti)ιm can be solved successively.
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The algebra of all the F's is an algebra which, in a crude sense, is
similar to the reductive Lie algebra $l(n, C) of n x n complex matrices;
the T± and T2 correspond to the triangular matrices.

Since the Lie algebras we consider are infinite dimensional, it is not
clear which topologies should be placed on them. In § 4 we have some
results which show that one natural choice for a topology does not seem
to be suitable. In § 5 we choose a better topology. For a V of the form
(1.7) the exponential map converges to an element of the Lie algebra.
Thus we can identify the corresponding infinite dimensional Lie group
(Theorem 5.6). This group acts by inner automorphisms on the full Lie
algebra, and one of the group elements, namely Tlt puts H in ' 'triangular
form". These considerations lead to our first T in § 7. The results of
§2—7 do not depend very strongly on the class of function spaces
we have considered. We could replace spaces of type Sf by spaces of
rapidly decreasing continuous functions.

Sections 8 and 9 are devoted to the process of removing the poles
from T — T(ε), as mentioned above.

§ 2. The operators V and their domains

Let fy be a vector in Euclidean three space. (We never refer to the
components of k^) Let μ be a positive number and define

#0 - fA+(k)ω(k)A-(k)dk .

Here A+ and A" are the standard creation and annihilation operators
for a scalar Boson field. This choice of statistics does not appear to be
essential.

Let 5) be the set of sequences

Φ - {ψ*> <Pι> - -}

where φ0 is a complex number and φn, for n ^ 1, is a symmetric func-
tion of the variables Jcl9 . . . , kn and where

We give §) the product topology. Then a net Φ<n> converges if there is
convergence φ^ -> φ^ in each term. Let §>0 be the subset of §> consist-
ing of those sequences Φ for which ψn = 0 for all sufficiently large n. Let

®» = {φ: φί = Q if j > n} .

Then S>n is a finite direct sum of spaces of type ̂  and this defines a
topology in §>n. Also

19*
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We give.§>0 the inductive limit topology. A linear functional L or a
linear transformation T defined on §>0 is continuous if and only if the
restriction

L\®n

or
T\ ®n

is continuous for each n.
Let u be set of all formal sums

where Vlm is given by (1.2), vlm is in £f and vlm is symmetric in the
variables

and in the variables
]*' ]*' _ ΊffKI> ••> K"m~ κ

We give u the product topology. Let

u« = {7: V ζ u, Vlm = 0 if I + m > n}

u>o = vn Un .

The above equation defines a topology in U0 as an inductive limit of the
spaces ιιΛ.

Let L(X, Y) be the set of continuous linear transformations from a
vector space X to a vector space Y.

Theorem 2.1. We have the following inclusions:

U0 c£(S>o>®o) (2.1)
U0 C£(S>,S>) (2.2)
u cL(®0,ξ>). (2.3)

In each case the topology in U0 or in u is stronger than the corresponding
topology of uniform convergence on bounded sets.

Proof. A bounded set B is a set with the property that for any
neighborhood U of zero there corresponds a λ > 0 with

λB C U.

The bounded sets in §>0 are the sets which are bounded subsets of £>w,
for some n. In view of this and the definition of the topology in §>0,
we can replace the first and last inclusions to be proved by

U0C£(S>*,S>0) (2.4)

u c £(©*,§>), (2.5)

n = 1, 2, . . . Given a Φ in §>n, an integer / ^ 0 and a F in U0 or in u,

(FΦ), (2.6)
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depends continuously on φ0, . . . , φn and if V ζ \ik for some given Jc, then

VΦ

Thus the set theoretic inclusions (2.4) and (2.5) hold. The term (2.6)
depends only on the F lm with j — n g I ^ /, m ̂  n. Let a bounded set
B in §>n be given. (2.6) can be made small uniformly for Φ in B by
requiring that these F lm be sufficiently small. This proves (2.5). Let
OS be a neighborhood of zero in the Schwartz space for the variables
k . . . , k. The sets of the form

form a fundamental system of neighborhoods for ξ>0. Given such a
sequence U$ we can find a sequence Uϊm such that

Vlm 6 Ulm

and
ΦζB

imply

This proves (2.4).
Let F be given in uk for some k. Then (2.6) depends on ψn only when

n ^ j + k. This proves the set theoretic inclusion (2.2). As a bounded set
B in §> we can take a set of the form

where each Bj is a bounded set in .̂ Given a ?' and a neighborhood
of zero, we find a neighborhood Z7lw of zero such that

φk ζ Bk, Vlm ζ Ulm

imply

This is possible since (FΦ); depends on a product

Vlmψk

only for Z ^ j and k — j ^ m ^ k. This proves (2.2).

§ 3. The structure of ιι0 and u

Theorem 3.1. Let P, Q ζ u0 and let i? ζ u. Then

It follows from this theorem that U0 is an algebra and also a Lie
algebra with the bracket

[P, Q} =
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Furthermore, for R ζ u,

ad P(B) = [P, R] - PR - RP
is defined.

Definition, m is a closed ideal in u if ad A m C Πt f or each A in U0

and if m is a closed subset of u.
Let 5 = {F:Fζu 0 , V = F00}. One can see that 5 is a closed ideal in u,

that 5 is the center of tί0 and that the elements of j act as multiples of the
identity operator / on the domains §>0 and ®.

Theorem 3.2. j is the only nontrivial closed ideal in u.
Proof of Theorem 3.1. A product PjkQιm does not have the right form

to be in U0 since k annihilators from Pίk precede Z creators from Qlm.
However, by use of the commutator identity

[A-(k)9A+(k')] = d(ί-V)9 (3.1)

we can interchange the order of an A~ and an A+. Each such interchange
leads to a new term with the A+ and A~ replaced by a δ function. If
we perform the integration corresponding to the variables of the δ
function the result is an operator with a smooth kernel. Thus PQ ξ U0,
and more precisely we have proved

Lemma 3.3. For some choice of 8 and T in U0 we have

^l^m-c^^m^ ~ ̂ O^r^min{m1,Z2>^;1 + lz—r,ml + mz—r

1-^lj.m^ %2w2J ~^l^? ^ < / Z ι + l2—r,m1 + mz—r
where

J = max {minim!, Z2}, min{w2, Zx}} .

Let P ζ un for some n and let a j and a k be given. It follows from
Lemma 3.3 that (PElm)jk = 0= (RlmP)jk if l + m>j+Jc + n. Thus
(PR)jk and (EP)^k are finite sums of elements of U0 and so are in U0.
Hence PR and RP are in u.

Proof of Theorem 3.2. First we show that the closed ideal generated
by any

VQ1 = fv(k)A-(k)dk (vφ.O)

is all of li. If φ ζ £? then one can compute

[fA+(k)v(k)φ(k')A-(k)dkdk',vA-dk]= -\\v\\* f φA~-dk .

Thus / φA~dk is in the ideal generated by fvA~dk. Now let glm be a
kernel with finite rank and let

ffι+ι,m = SymSίφ(k1)g(k29 . . ., kl+1, k') .

If φ is suitably chosen then

where the G'a are the operators with kernels g. Thus the ideal contains
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all operators in U0 whose kernels have finite rank and since this is dense
in u, the ideal is all of u.

Similarly one proves that the closed ideal generated by fvA^dkisu.
Now let m be a closed ideal in u which is not contained in j. We will

prove that m contains an element of the form fvA±dk with v φ O .
This will prove the theorem. Let M be an element of m which is not in 3.
Let

N= fA+(k)δ(k- k')A-(k')dkdk' .

By a limiting procedure one proves that [N, m] C tn. Furthermore for
any polynomial p,

2>(adJV)m c m .
One computes that

[N)Mlm] = (l~m)Mlm.

If we choose p = pnt r so that

P(r) = 1

p(k) = Q if k ζ Z , & ψ r , \k\ g n ,
then

limnpnr(aάN)M = Σι-m = rMlm ζ m .

Thus we can suppose that M has the form Σι-m = r Mlm for some r.
Each operator aάfvA^dk applied to M removes an A^ (k) from each
term of M and replaces it with a T v(k). If products of the operators
aάfvA^dk are applied to M9 we can successively remove annihilation-
creation operators from M and for suitably chosen v9s we achieve the
following result. Either there is an M — Mlo =j= 0 in m (and so the proof
is finished) or there is an M in m of the form

Let φ be an element of SP with unit norm and let vlm be a kernel.
We can write vlm uniquely as a sum

«im = 2:«.%oSymfcSymfc^«®t;z.efm^^® , (3.2)

where vl_0ίfm_β is a kernel orthogonal to φ in the following sense:

and where φx® == φ® ® φ is an α fold tensor product. Let vf^ be the
α, β term in this sum and let F*4 ^e ̂ ne corresponding operator. Let

P(φ) = /4+φ Θ ^^-cZA; ίZF .
One can compute
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We choose φ proportional to m0, the kernel of MQl. We use the
Pn,-ι defined above. We have

Since MQl — M%\, we can suppose that M has the form

M = Σ Mff+il : ^01 Φ 0 .

We return to a general φ and we let

B = ad/9? <8> φA~Ά~~dk' aάfA+A+φ®φdk

C = SiάfφA'dk' aάfA+φdk .

One can compute

[B, V«P] = 4 {- (α + 1) β FαH o c β ( β ~ o c - 2 ) fp«-M-ι +

+ α(α-

Here F = Flw has its kernel given by (3.2) and Wx~1^-1 and Zα~2^~2

have kernels

Also

[C, [O, F«"]] = a (a -

It follows that for some linear combination D of ad B, adO and
(adC1)2, we have

We write ,̂}+ι — Sym^gz>z®m01, for some kernels #M which are
orthogonal to m01. We choose an orthonormal base φQ, φ^ . . . of £f
consisting of Hermite functions. Without loss of generality m01 = φ0.
The kernels ql l can be written as an infinite series of tensor products of
the ψj with convergence in Sf, see [5, § 2] for example. Thus if we
choose an integer K = K (L) sufficiently large, we will have

= r ιι

where sl l is small in &*, each term of rl l contains at least one factor from
the set

{<Pι> . - . i t p K } ,

and where slt is independent of φ19 . . . , φκ (and of φ0 also).
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The expansion of the kernels leads to a corresponding expansion of
the -M?J+ i. Each such term is an eigenvector for &άP(ψj) with eigenvalue

{number of times φ^ occurs in the first I variables} —

— {number of times φ^ occurs in the last I + 1 variables} .

Since aάP(φj) Mol = 0, we can argue as above and eliminate those terms
for which the eigenvalue is not zero. We do this for 1 ̂  j g K.

We set φ = ψj in our definition of B ~ B^ and C = Cj. For a new
linear combination Ej of adJ^ , ad(7? and (ad(7? )

2 we have each term in
the expansion of the M^}+1 an eigenvector of Ej with eigenvalue

^ 1 if ψj occurs

= 0 if ψj does not occur .
As above

for 1 ̂  Z ^ L. Also pnt0(Ej)MQl = MQ1. It follows that M01 ζ m and
the proof is complete.

Our Hamiltonians H = #0 + F and jEΓ0 are not in u since the kernel
of HQ is singular. However the set

{λH0} + u = to (3.3)

is a Lie algebra since the bracket [H0, V] is defined and is in ti tl is thus
an ideal in tP. It can be seen that the algebra α of operators of the form

λHQ + FOO (3.4)

is a maximal abelian subalgebra of π>. We remark that Theorem 3.2
and its proof remain valid if we replace the requirement that the kernels
belong to Sf by the requirement that they belong to L2.

§ 4. Canonical transformations of u

The constructions of automorphisms and derivations which we shall
consider lead to operators in u which are not in U0, even if our perturba-
tion V is in U0. Thus U0 is too small to provide a satisfactory framework
for the theory. On the other hand ti is not a Lie algebra and we will show
in this section that an attempt to study derivations and automorphisms
of u leads to certain pathological phenomena.

We consider the following explicitly soluble problem . Let V ̂ =Σm > o F0 m

consist entirely of annihilation operators. Let ΓV = ΣΓVQm, where
ΓV0m has the kernel

-(Σω^vQm.

Then ΓV ζ u and ΓV is a solution of the equation
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also F and ΓV commute. Using this, it can be seen that

exp(ΓV)(H0+ F)exp(-ΓF)

= exp(ΓF)#0exp(-ΓF) + F

We let

= exp(-ΓF)αexp(ΓF) .

Since α is a maximal abelian subalgebra of tp, one might expect that av

would be maximal abelian also. However we will see that this is not the
case. We let

B+(k) = exp(ΓV)A+(k) exp(-ΓF)

= A+(k)+[ΓV,A+(k)]

exp(ΓV)A~(k) exp(-ΓF) = A-(k) .

One might hope that the map

obtained by substituting B± for A^ would be an automorphism of u.
Although exp(± ΓV) and J3± are defined (since F = Σ.m Fom)>
is not in general defined. By this we mean that formally

and that each kernel flm is expressed as an infinite sum of terms depend-
ing linearly on the kernels gVm>. Since there is no restriction in the rate
of growth of the g^^ as I', ra'-> oo, such a sum will not in general
converge.

Definition. Let g = g(kv . . ., k^) be a distribution of class «̂ *
which is symmetric in the variables kl9 . . ., kv. If vl+3),w = ^+a>,m
(Jfc15 . . ., kι+3>9k[9 . . ., k'm) is a kernel of the class we have considered
(§2), let

Theorem 4.1. Let g be given as above. If g Φ 0, then the range of
the map

is the set of all our kernels in the variables kv . . . , kt) k[, . . . , k'm.
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Proof. It is clear that (g,vl+p,my is a kernel of the right class. Let
φ be a function of one variable kl9 φ £ £P, such that

0 Φ /<7(&ι, . . ., &2>)<??(&ι) φik^dkί. . . dkv .

Let a kernel vlm be given. There are kernels u0m, . . ., ulm for which

Here qft® is the &-fold tensor product of φ (and {99, %? m) = 0). All tensor
products are taken to be symmetric in the first I variables. Any kernel
of the form

Ψl® Θ«om = const, <gr, φ« + PW <g> u^

is in the range of (4.1). We suppose by induction on J that for j < J we
have kernels of the form φV-ft® ® u^m in the range of (4.1). Then

+ (terms in the range of (4.1))

and so ^~J)Θ <g> ujm is in the range of (4.1). This completes the induc-
tion and the proof.

Suppose that φ has L2 norm equal to one. The ujm are given explicitly
by a formula

const. ujm - <<^-')Θ,*W>- Σΐ ~Xo const, ytf-0® ®^,m

where the constants are ratios of the factorials. It follows that the Ujm

depend in a linear continuous fashion on vlm. Thus vl+Φ)m can be chosen
to be a continuous linear function of vlm.

If g and vZ m are in the class £Λ of rapidly decreasing continuous
functions introduced in § 8, then φ can be chosen in this class also. The
u$m and vl+p belong to this class (this requires the use of formula (8.10)),
and vl+v can again be chosen to be a linear continuous function of vlm.
We need these facts in § 9.

Theorem 4.2. Let

for some r with r ^ 2. Suppose that F0r φ 0. There is a $ in u for which

[#, <?] = 0 ,

G Φ #00

Proo/. We write G = Σk>QGic> where Gk=Σι-m-kβι «• τhe kernel of

is (Σω)9im> where

The equation for 6r can be written as

[F0r, 6rfc] = terms depending on G1, . . . , Gk-.i (4.3)

for & = 1, 2, . . . We solve this by induction on &. For fixed k, (4.3) is
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equivalent to
[F0r, Gk]j + k_rj = known operator

or to

Uor, βj + *,Λ + *-r./ = known operator
(4.4)

+ terms depending on βkf 0, . . . , ̂  _ι + ̂  j^ ,

for j ^ 0, j ^ r — k. We solve this by induction on j. Then (4.4) is
equivalent to

(vQr) gj + fyj) = known kernel .

This can be solved by Theorem 4.1. Finally we observe that 6r10, for
example, can be chosen arbitrarily. Thus we can have G =f= Θ00.

§ 5. A Lie algebra between u0 and it

Let ulr be the set of Q in u which have the form

Q = Σl—m^rQlm

Ulr is a closed subset of u; we give it the relative topology from u. Let

ux = wr ulr ,

and let ux have the inductive limit topology.
Theorem 6.1. We have the following inclusion:

The topology of ux is stronger than the topology of uniform convergence
on bounded sets.

Theorem 5.2. ux is a subalgebra of L(®, §>) and the product PQ
of two elements of ux is jointly continuous in its two factors P and Q
provided one of the factors P or Q is required to remain in a bounded set.

The algebra ux gives an unsymmetrical preference to creation
operators. If we formed an analogous algebra but gave the preference
to annihilation operators instead, we could obtain the set of formal
adjoints uf5 to Uj. Here we have

uf c£(S> 0>®o).

Proof of Theorem 5.1. Let B be a bounded set in D. We can suppose
that B has the form

B^iΦ .φjζB,}

where each Bj is a bounded set in an £P space. For any given k and for
Q in ulr, the component (QΦ)k depends only on

Ψθ» ' •» <Pk+\r\

and on Qlm for I ^ k9m^ k+ \r\. Thus if these terms of Q are sufficiently
small in f? and if Φ ζ B, then (QΦ)k can be made as small as desired. In
view of the definition of the topology in Uj, this proves the theorem.
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Proof of Theorem 5.2. It is sufficient to prove separate continuity
and also joint continuity at zero. To prove separate continuity, it is
sufficient to consider the case P £u l r, for some fixed r. Then a term
(PQ)ίm depends only on

{Pίt:j<l,k^l+\r\}
and on

by Lemma 3.3. Thus PQ ζ u and the product is separately continuous.
By Lemma 3.3,

and so iij is a subalgebra of L(§>, §)). The bounded sets in Uj are just
the sets which are bounded subsets of vιlr for some r. Thus if P is in some
bounded set, the above argument shows the joint continuity at zero.

Now let B be a bounded set in some ulr and suppose that Q ζ B.
We can suppose that B has the form

{Q:Q^nlr)Qlm^Blm}

where the Blm are bounded subsets of <$? spaces. To give a neighborhood
U of zero in u^ we choose an integer &0. For each k ̂  kQ we choose an
integer l(k) ^ l(k — 1) and we choose neighborhoods Ulm. We define U
to be the set

{R:R£\il9Rltl+k£Ultl+k for k ̂  k0 and I ^ l(k)} .

These U form a basis for neighborhoods of zero in uv A term Pα>α+/3

contributes to a term (PQ)l)l+7c only when k fg β -f- r and α ^ L The
formulas

will be satisfied for k ̂  kQ provided each of the terms

{PΛ,Λ+β:β^ k0-r,κ^ l(β + r)}

is sufficiently small. These terms will be small if P is a suitable neigh-
borhood V of zero and this completes the proof of the theorem.

Let tD-L be the set of operators of the form H = λ H0 4- F, V £ î .
W1 is also a Lie algebra. Theorem 3.2 and its proof are valid for t^;
consequently Uj/j is simple. Each subspace tllr, 0 ̂  r, of ux is a sub-
algebra and a Lie subalgebra of ux. This is not the case for r < 0. If
0 g rx <£ r2, then ulra is an ideal in ulrι. The derived subalgebra of ulr is
contained in U12r for 0 !g r.

Theorem 5.3. If Q ζu l r and if 0 ̂  r, then the power series expQ
converges in the topology of u± to an element of / -f- ulr. The set

of partial sums is a bounded set.
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Theorem 5.4. If Q ζ ulr, if 1 ̂  r and if {α0, αl5 . . .} is any sequence
of numbers, then the power series

Σ^Qi

converges.

Proof of Theorem 5.4. Let Z and m be given and let Q and r be as in
the theorem. Then (Qn)lm = 0 if w > I - m.

Proof of Theorem 5.3. A product

y^W! Ql2m2

has a nonzero I m term only if

Z j ^ Z

Z2 ̂  Z2 + (Zx - raj ^ Z .

Hence

and so there are at most (2 l)n terms of the form

W^Wi Vlnmn)lm

which contribute to (Qn)ιm. Each of these terms is a sum

-ΣW ?!,...,?„ ̂ Z ( ' ' ( f txWx — ?— Ql2mz) — ?— •) — ?— Qlnmn)l
?1 ?2 7/1

Here — o— is defined by the formula
i

which differs slightly from the definition in [2]. There are ln summands
in (5.1) and so there are (2Z2)n terms in (Qn)ιm which have the form of a
summand in (5.1). Hence for any seminorm || || defined on the operators
Qlm we can find a constant K such that

The convergence of expφ and the boundedness of the partial sums
follow from this.

Let H £ u>! and let Q ζ u^ 0. The map

H-> exp(Q)#exp(-Q) (5.2)

is an automorphism of u^. This map is determined by its effect on the A ̂  .
Let

J5± = exp(Q)A± exp(-Q) . (5.3)
Then

exp(Q) F exp(-Q) = Σim f B+(^) . . . B+(kl) vlm(k, k') &-(k[) (5.4)

.. .B-(k'm)dkdk'.
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The conventional relation between automorphisms and derivations
holds for (5.2).

Theorem 5.5. Let H be in w1 and let Q be in U1)0. Then

« H .
w = l

The series converges in wv

Proof. We have

exp(Q) Hexp(-Q) = U

Because the partial sums <27? ̂ jO'!)~1(±Q) fc are bounded, we can write
this limit as

This proves the theorem.
In a similar fashion one proves

exp(sζ?) exp(£ Q) = exp((s + t) Q) .

The group I -f ula is the (infinite dimensional Lie) group correspond-
ing the to Lie algebra ulα. This group and its Lie algebra are in some
sense nilpotent, although they are not nilpotent if one uses the conven-
tional definitions [3]. The next theorem gives a property which they
have in common with nilpotent Lie groups and algebras.

Theorem 5.6. The mapping exp is a one- one map of ulα onto / + u l f l.
Proof. Let V be in u l f l and let

' r ~ 2^1— m = r ' Im

We must find a solution Q ζ u l t l of the equation

expQ-/+ V . (5.5)

This is equivalent to solving the sequence of equations

Qr-Vτ-Σn^n\-^(Q-)r (5.6)

for r = 1, 2, . . . . For a Q in uιa the operator

(Qn)r

depends only on Q19 . . ., Qr-n + 1 Thus the equations (5.6) can be solved
by induction, and the solution is unique. This proves the theorem.

Let an r be given. There is a polynomial pr such that

This can be proved directly by induction on r. It also follows from the
Baker-Hausdorίf formula [3]. This formula exhibits pr explicitly and in
fact gives Q as a power series in V.
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Let H be an element of w± and let

CjΓ = {Q:Qζu 1, 1,[g,JBr] = 0}.

Theorem 5.7. <:# is a subalgebra of uιa and / + c# is a subgroup of
/ -f uιa. Also

1 + CH = exP ΪH

= {e:β6/+u l f l ,[ρ,f l r ] = 0}.

Proof. lίQ ζcH then [Qw, H] = 0 and φn ζ c#. Thus c# is an algebra,
/ -f C# is a group and

exp CH C I + c# .

The reverse inclusion follows from the fact that the Q in (5.5) is a limit
of polynomials (without constant terms) in F. The last equality is
obvious.

We remark that cπ and I -i- CH are closed in u.

§ 6. Canonical forms for certain elements of w±

In this section we consider elements H of wl of the form

H=λHQ + Σι-m>-r Vlm + F0r (6.1)

r > 0 , F0r φ 0 . (6.2)
The main result is

Theorem 6.1. If H is given by (6.1), (6.2) then there is a Q in u l f l for
which

exp(G) H exp(- Q) = λ H0 + VQr .

It can be seen that the equations

imply /^ = λ and $0r = T0r. Thus we regard

IΓ1 = λIΓβ+ F0r (6.3]

as a canonical form for H with respect to the inner automorphism group
exp (ulfl). In proving this theorem we do not assume λ Φ 0, and we regard
F0r rather than HQ as the dominant term in H.

Proof of Theorem 6.1. We write

Q = ΣT=oQ* (β.4)
where

Qs = Σι-m=sQιm, *>o
and
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and we let

Let a t ̂  0 be given. We suppose inductively that Q0, Qv . . ., Qt have
been chosen and that

ΣZ-oW^WQVpH^H! (modUl,_ rHhί+1).

The inductive hypothesis is true for t = 0; we use the hypothesis and
define Qt+. Let

ΣZ-oW^WQ^H^Hi + Σi-m—r+t+i Vlm(t) (modu^-H+j).

We choose Qt+ι as a solution of the equation

This equation is equivalent to the system of equations

We solve (6.5) by induction on ra. The equation for βm+ί+ l j T O then has
the form

= known function .

This equation has solutions, by Theorem 4.1. The induction starts
with m = max{0, r — t — 1}, and for 0 ̂  m < r — t — 1, Qm+t+ιtm

 can

be chosen arbitrarily.
However

(ad<3«>)» H E= (adQ(*+1>)w ̂  (modu1,_r+ί+2)

f or τ& > 1. Thus

and the induction on £ is complete. We define Q by (6.4). As above

(adρ<*>)» Jϊ = (ad<2)* H (moάu1^r+t+1) ,
and

£"- ofol)-1 (adQ)re ̂  ̂  ̂ i (modu1(_r+ί+1) .

This is true for t — 1, 2, . . . and this completes the proof.

§ 7. The transformation and solution of the Schrodinger equation

In this section we consider time dependent operators. We set

A±(k9t) = e*iωtA±(k,Q), (7.1)

where the A ± (k, 0) are the standard annihilation creation operators
introduced in § 2. We consider operators of the form

Vlm = fA+(k1,t)...A+(lcl,t)vlm(k,k')A-(kί,t)...A-(k'm,t)dkdk', (7.2)
Commun. math. Phys., Vol. 2 20
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and of the form

V = Σ Vlm (7.3}

Such operators are said not to depend explicitly on t. We see that the A ±

satisfy the differential equation

) ] . (7.4)

Let

be a solution of the free field Schrδdinger equation

ί — Φ^HoΦ. (7.5)

If Φ(0) ζ ξ>0 then Φ(0 6 ̂ o for a11 * and (3/90 Φ exists in tne topology
of §)0. A similar statement holds if Φ(0) ζ &. In either case

γ(t) = JA±(kίt)v(k)dkΦ(t)

is a solution of (7.5). [This follows formally from (7.4).] Thus A± (ft, 0
is an operator on the Cauchy data of Φ for the time t which creates or
annihilates a particle of momentum k at the time t — 0. Similarly
A ^ (k, t — s) acts on the same Cauchy data (at time t) and creates or
annihilates a particle at the time t = s.

We use the symbol tPl5 etc. to denote the class of operators (7.3)
which for each fixed t belong to the class u>1, etc. considered earlier.

Lemma 7.1. If H ζ IP (resp. tr>0, u>x) then (9/90 H exists in the topology
of IP (resp. u>0, ίPx) and

i^H=[H0,H]. (7.6)

If Φ(0) ζ £>0 (resp. §>0, §>) then HΦ(t) is a solution of (7.5) in © (resp.

S>o» «>)•

Proof. It is clear that the derivative exists and that it defines a
derivation of tP0 = {λ H0} -\- U0 which is continuous in the rt> topology.
The right member of (7.6) defines a derivation of tP0 with the same
properties. The exponential factors cancel in

HQ(t) - / A+(k, t) ω(k) A~(k, t) dk ,

so HQ(t) = HQ(0) and (7.6) holds for H = HQ. For H = F01 or H = F10,
(7.6) is equivalent to (7.4). For a general H, (7.6) follows from these two
cases and the derivation property. The last statement follows from (7.6).

Let Q be in ult 0 and define B± by (5.3). We regard the A ± as indepen-
dent variables and we regard an H in tPx as a function of these variables,
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We use (5.4) to define the operation of ί 'substituting" B± for A^, and
thus we define

H(B±) = exp(Q) H(A±) exp(- Q) . (7.7)

If the multiplications in the right member of (7.7) are performed, we
obtain a new function of the A ̂

exp(Q) #μ±) exp(-Q) =
and so

These considerations and Lemma 7.1 provide the proof for the following
theorem.

Theorem 7.2. Let Q be in U1>0 and let

H = exp(-Q)HQexp(Q)

Then

Since H(B±) = Z?0(^l:t) = #0, we see that (7.5) is equivalent to the
Schrodinger equation for a problem with interaction :

(7.8)

Let Φ ζ S) be a solution of (7.8) and let F ζiij. Then F (£=*=) =
with Γ 6 Up Thus

is a solution of (7.5) and (7.8).
Next we consider the Hamiltonian

HI = H0 + F0r .

As above and as in § 4 we define

£± =, exp(Γ F0rM± exp(-Γ F0r)
Then

B- = A~
B+^A++ [Γ F,

One can show directly that

Finally we consider the Hamiltonian H given by (6.1), (6.2) with
λ — 1. Let Q= Q(A±) be given by Theorem 6.1. In a formal sense

0± (ί) = exp(<2(5± (ί))) 5* (ί) exp(- Q(B± (ί))) (7.9)
20*
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is a solution of the equation

(7.10)
Although Q and exp(F0r) have meaning as operators on certain Foek
type spaces, the space for Q is different than the space for exp(F0r)
and the expression

Q(B±) = eXp(Γ V0r) Q exp(-Γ F0r)

appears not to have a meaning as an operator on the domains we have
considered. Consequently we have not found canonical annihilation
creation operators C^ (t) for particles H by the method of Theorem 7,2.

We continue to consider the same Hamiltonian H, but we now do
this in the Schrόdinger picture. We let A± denote time independent
annihilation creation operators, as in the previous sections.

Theorem 7.3. Let H and Q be as in Theorem 6.1. Let

T = exp(-Q)exp(-ΓVQr). (7.11)
Then T ζ u C L (§>0, ©) and

HT=TH0. (7.12)

If φ = φ(t) is a solution of the free Schrόdinger equation (7.5) and if
Φ(0) ζ§>0then

ψ(t)= TΦ(t)

is a solution of the interacting Schrόdinger equation

i~Ψ = Hψ. (7.13)

The Q of Theorem 6.1 is not unique. Let

exp (&)# exp (-&) = #!, t = 1, 2 .
Then

and by Theorem 5.7,
exp (-Qί) = exp (B) exp (- Q2)

where R ζ c#. Thus the T in (7.11) is determined up to multiplication
on the left by an element of / + c#. This nonuniqueness of T does not
affect the solubility of (7.13).

Proposition 7.4. Let ψ(t) be a differentiate function of t with values
in §> and let P be in / -f cπ. Then ψ is a solution of (7.13) if and only if
P ψ is.

Proof of Theorem 7.3. It is evident that the product T in (7.11)
exists and defines an element of u. If Φ (0) ζ Φ0 then Φ (t) ζ ξ>0 and
(dβt)Φ(t) exists in §>0. Thus T Φ = ψ is defined and (djdt) ψ exists in 5>.
Furthermore

= exp(-Q) H± exp(-Γ F0r)

and this implies that y is a solution of (7.12).
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We do not know what physical significance, if any, these solutions
have. In § 9 we find solutions which appear to correspond to the standard
formal solutions of perturbation theory.

§ 8. The operation Γ

The operator [H0, F lm] has a kernel

d>,-2>ί)»ι»(M') (8.1)
where

a)j = ω (kj) , ω'j = co (k'j) .

Thus any solution Γ Vlm of the equation

will in general have a singular kernel. In this section we derive some
properties of such singular operators, following the ideas of [2].

We let ΩJ denote the angular variables kjl\kj\ and we write

dkj = ω3 \kj da>j dΩj .
Let

φ(λ, Ω) = fe-iλ'ω ψ(k)dω

V(λ, λ', β, Ω') = / e-*(λ ω-λ'ω') v (jfc, Jfc') da) dθ>' .

Actually it is not these Fourier transforms which interest us, but rather
the transform in the next lemma.

Lemma 8.1. Let φ ζ £P. There is a constant M such that

|[/£(ω, fatfl* φ]*(λ)\ g M Πi(l + |A,|)-5/4 , (8.2)

and similarly for v.

Proof. (Cf. [4], p. 124.) It is sufficient to consider the case where
φ = φ^ depends on Ίc^ only. We write

- (cα - μγl* (ft) + μ)1/2 .
Then (8.2) is given by

I 7e-*λω(ft) - μ)1/* χ((ω ~ μΫ1*) dω\ = \2 f e~ίλτί τ3/2 χ(τ) dτ\ , (8.3)
μ 0

where χ(τ) - (r2 + μ)W(τ* + 2μ)W φ(r(τ* + 2μ)V*Ω) is in &. We con-
sider first the case χ1 = αexp(— τ2). If we substutite this in (8.3) and
deform the contour of integration in the complex plane, we obtain

2a /°°exp(- |1 + i λ\ τ2) τ3/2 dτ ^2a(I + |A|)~5/4 J e~τ* τ3/2 dτ . (8.4)
o o
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Next we consider the case χ2 = b τ exp (— τ2). As before we obtain in this
case the bound

26(1 + μ()-7/vVTV/2tfτ (8.5)
o

for (8.3). We set a = χ(0), 6 - χ'(0) and

#3 == % ~~ %1 ~~ %2

Then
= 2-ι £ (0) (ω -

has two derivatives in Llt Thus

I / e- ίΛω(ω - μγ /* χ9((ω - μ)1/2) dω\ ^ const. (1 +

The lemma follows from this, (8.4) and (8.5).

We now define

and similarly for v. Let A$ — i 9/9 λ3 , let v = vv . . ., vn be a multi-
index and let

If φ = 990, define ||9?||,,= |9?|. Now suppose 99= ^n(fc) where ^ has 3u
components. Let τ be a vector with r components (each a real number)
and with τ± = 0 and let j be a function,

?:{!, ...,^}-> {!,... ,r}. (8.6)
Define

λ + τ = A! + τ^d), . . ., λn + τ3 (n)

>= sup
Λ,Λ

| |y|μ=sup,||y||Λ,. (8.7)

Let LA be the completion of Sf in the set of seminorms (8.7). Each φ
in ZΛ is a rapidly decreasing continuous function. If σ is a real number
and λ -j- σ = λt + ff, . . ., λn + σ we define

y y = -^J^7-1 / F φ(λ + σ)dσ . (8.8)
σ ^ O

[We get this definition of λ + σ if j(i) = 2 = r in (8.6).] The inverse
Fourier transformation in (8.8) is taken in the sense of distributions.
These definitions apply also with kernels vlm replacing the function φn.
Let
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denote a vector with 3n components and let

<ψn, ψ^s = f Vn((k')n-s, (*).) V»((*")»-., (*),) dk <8'9)

if TO, m ϊg s and let (9? ,̂ ym)s = 0 otherwise.

Lemma 8.2. Let φn and y>m be in 1Λ Then

If 5 ̂  1 then

yγ^!,^* l9>«Uγ'ml. (8.12)
Proof. We use the Fourier transform to express the integration in

(8.9) as integrals with respect to λ and Ω. The operator Av does not
effect the proof and so we only consider the case v = 0. Let a function j
be given. If an integration occurs with respect to some variable ti which
affects φ but not ψy we have

f\φψ\dTi= \ψ\f\ψ\dτt.

If Ti affects both variables we use the bound

/ \φ γ\ dτ, = (supτί \φ\) f \ψ\ dτ, . (8.13)
We find

^ (2π)r(fdΩ) supf\Fφ(λ' + r, λ)^^(λr/ + τ, λ)| ^r cZλ
We write

^ = ^i + £2

where gj is the part of τ which affects the variables of φ alone. Then

f \ F φ ( λ ' + T, λ)Fψ(λ" + T, λ)\ dr dλ

λ',λ

for some new function j#. Thus (8.10) holds with K — 2πfdΩl — Sπ2.

We now suppose s ^ 1 and let σ be a real number.

' + ρι + σ, λ + σ

We substitute ρx — σ for ρ1( which eliminates σ from the variables
affected by ρx and gives vis
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for some new function j%%. This proves (8.11). The proof of (8.12) is
similar but requires reversing the roles of φ and ψ in (8.13).

This lemma applies with φ and/or ψ replaced by kernels v{j and/or
vl m. Thus the v norm of any of the following products,

ViSVlm, [ΓVii9 Vlm\,Vlmφn

or
ΓVlmψn (provided m > 0) ,

is bounded in terms of a product

IK UKJ, or \vlm\\v\\φn\\v .

The restriction s > I in (8.11) and (8.12) interferes with the products

ΓVl.φn9(ΓVii)Vlm,:(ΓViS)Vlm:.

The next lemma yields some continuity for ΓVι0φn provided vlo ζ SP,
since it shows that in this case γvloζ£f C £Λ

Lemma 8.3. Let vlo and v0m be in Lλ, I φ 0 4= m. Then

Proof. Let 99 be in SP. Then for v = vlo,

(φ, γvy = const. (F φ,F γvy = —const, ί / F φ(λ}Fv(λ + σ)dλdσ,

σ ^ O
since the integrand is in J^. Thus

0

-N

0

= iim

<<P> (Σ'ω)-1^) - Iim / φ(Σω}-"Lei(Σ^N X
2V— >CX5

X vΠ^ω^dΩ dω1 . . . dωl-1d(Σ ' ω)

by the Riemann Lebesgue lemma.
We set ©0= S>0(^) and φ = ©(«$^). Let S>(LA) be defined as the

space of sequences

Φ = {^o. 9ι» •}

for which φ3- is a symmetric function of the variables kv . . . , k$ and
φs ζZA. Let S>o(^Λ) ^e ^ne subspace consisting of those Φ for which
qrjj. = 0 for all large j. We set ux = ^(y), etc. and we define ^(
etc. in a similar fashion.
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If V ζ lt(iΛ) and if V = Σ(i.m) + o.oVιm, we define

where ΓVιm is defined as an operator with kernel γvlrn. We define the
seminorms

(8.14)

JU Fζu 1 ) r (L A ). (8.15)
l<Ln

These seminorms define a topology in §>(LA), u1>r(Z/A) and

tDl

We give

the inductive limit topology.
Proposition 8.4. Let F1ζu1,_r(iλ) and F2ζu l t_,(£A). Suppose

(F = 0. Then

const.

I F! F,|,,n <; const. || F^.J F2||r,κ+r, r ̂  0

\\rvv vtιι,n < const. IFJ^JFJ,.^,^ ̂  o .
If (^,0=0 then

^ const.

The constant depends only on n, r and s.
Proof. This follows from Lemma 8.2 together with the observation

that the left hand sides of these inequalities depend only on certain low
order terms of Fl5 F2 and Φ. (Cf. Lemma 3.3.)

We consider the elements of tP1(ZΛ) as operators on §>(LA). tP^-Z^)
is a Lie algebra, ux (LA) is an algebra and

if F, ζU!(LA) and (F^o = 0. (If (V^ = 0 but (V^ Φ 0 for some I
then the commutator is formally an element of l^ (LA) but might not be
everywhere defined.)

Theorem 8.5. Let

be given with Qi ζtι l j 0(LA) and (Q2)zo = .̂ Then the power series for
exp P and exp (ad P) converge uniformly on bounded sets in ξ> (LA) and
in tPi (LA) respectively. If # £ t^ (LA) then

exp(P)^ exp(- P) = exp(adP)£T .

Proof. The inequalities in Proposition 8.4 show that there is uniform
convergence with respect to each seminorm.
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Theorem 8.6. Let F (j u^L*) and let vlo ζ & and F00 - 0. Then

[J7OJΓF]^ F. (8.16)
Proof. We have

J ffo φre = ί1 (£f= i ω,) φn = Σ Λ,F φn

and for some constant α = oc(l,m, n) we have

After integrating by parts and cancelling terms we find

F[H,,ΓVlm]Ψn

= -ίocSymf f [(Σ}-ι4 + ΣT=^')Fvlm(λ' + σ, λ" + σ)]

Fφn(λ",(λ)~-Jdσdλ"dΩ"
= αSym/ / (dldσ}F vlm(λ' + σ, λ" + σ)Fφn(λ", (λ)Λ.

a<^0

= FVlmφn.

% 9. Solutions oϊ the Schrϋdinger equation which have a partial per-

turbation expansion

We now consider a Hamiltonian of the form

Br = £r0+eF6«>1(^ (9.1)

V = Σι-m>-rVlm+Vtr (9.2)

where ε is a parameter, r > 0 and F0r =J= 0. Let

Hκn = H-E (9.3)

denote the renormalized Hamiltonian. E is a (finite) multiple of the
identity operator. In this section we find a T which intertwines #ren

and HQ,
HκnT=TH0, (9.4)

and the "low order" parts of T depend analytically on ε.
Theorem 9.1. Let F, ε and a positive integer n be given. There is a

renormalization constant E and a continuous transformation T from
D0(LΛ) into D(L*) which solve (9.4). If

ψ=TΦ=T{φQ9...,φj909...}

is in the range of T then the terms

^o, . . . , <ψn (9.5)
depend analytically on ε.

As a consequence of this theorem,

is a solution of the renormalized Schrόdinger equation

i — Ψ—H Ψdt ^ren^
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in the space ® (Z/A), and the low order terms (9.5) of Ψ depend analytically
on ε. We conjecture that these terms agree with standard perturbation
theory up to any desired finite order (for example, n — 1) if T is suitably
chosen.

Lemma 9.2. There are polynomials

and

with coefficients

and

and there is a constant E and there is an H" in w1 (LΛ) for these operators
the relation

exp(Γ^) exp(Γρ)#ren exp(-ΓQ) exp(-ΓE) = H" (9.6)

is valid. Furthermore they can be chosen so that

(H" - HQ)lm = 0 , l-m<-r or Z=m = 0 (9.7)

(H" - H0)lm = eW& + - , - r ̂  I - m < 0 (9.8)

(£Γ" - H,}lm = ε2»+ι Tf(|f>)+ - , 0 ̂  Z - m, Z Φ 0 . (9.9)

The + signify higher order terms in a convergent series.

Proof. Let Q<°> = OandQ,- - Σogi£jε<iQ(i) We proceed by induction
and so we may suppose Qj defined for some j ^ 0. Let

*xp(ΓQ,)H exp(- ΓQt) = H' (j) . (9.10)
We suppose

(ff'tf) - £fβ)IO = ε^1 Ifo+1) + , Z > 0 (9.11)

and we suppose H'(j) ζ vo^y). Let

Then

(mods3'+2)

This proves (9.11) for 7+ 1. By the definition (9.12), Q<ί+1>
By Lemma 8.3, ΓQW +1) ζ uα («^) and by Theorem 5.5, H'(j+l)ζ % (
This completes the inductive definition of Q. Let H' = H(2n). Then

exp(ΓQ)# βxp(- ΓQ) = iΓ . (9.13)
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Let J5<°> = 0 and let Rl = Σθ£ί^jεiR® We use a similar induction;
let

exp(ΓΛ,)£P exp(-ΓΛy) = #"(?) .
Then

, Z ^ i M Φ O (9.14)

and (JET" (?) - #0)lo - ε2^1^ + υ + for I > 0. Let

W+l> = Σι*m>otfί ϊ l }

E = (H"(2n))00

H" = H"(2n)- E .
Then

exp(ΓR) (H' - E) exp(-ΓR) = H"

and this combined with (9.13) yields (9.6) and completes the proof.
Let W" be the sum of the terms occuring in (9.9) and let

#2 - H" - W" ,

#! = exp (- ΓR) exp (- ΓQ) H
2
 exp (ΓQ) exp (ΓR)

= #
ren
 - exp (- JPΛ) exp (- ΓQ) W" exp (ΓQ) exp (ΓJB)

and let

W
τ
 - - exp (- ΓΛ) exp (- ΓQ) W" exp (ΓQ) exp (ΓR) .

Then T^ζUi

Lemma 9.3. There is a P = P(e) in u l f l(LΛ) such that

exp(P)//ren exp(- P) == ̂  . (9.15)

If Z — m — μ then Pz m has an expansion

Pι« = εa«-"Pan-'l>+ (9.16)

which converges f or ε φ 0 (and for ε = 0 if μ ^ 2n).
Proof. First we discuss the equation

([Pl + r,m,*V0r])lm = Flm (9.17)

where Flm is given and Pz+f,m is the unknown. The proof of Theorem 4.1
gives us

Lemma 9.4. Let Flm 6u l j 0(LA) and let εφ 0. A solution Pι+r,m ̂
ux ι(I^) to (9.17) can be found which is a continuous linear function

< * £ , „ •
It follows that if

Flm^ε'F^+ (9.18;
then

Pι+r,»=e'-1PKjΓ&+ (9.19)
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and (9.19) converges if (9.18) does. We construct P by induction on μ.
If I — m < r set Pίm = 0. Suppose

Pμ = Σι-m<«Plm (9.20)
has been defined so that (9.16) holds and

(exp(Pμ)tfren exp(- Pμ))lm = (HJln (9.21)

if I — m ^ μ — r. (This is true if μ — r — I.) In order to achieve (9.21)
for μ + 1, we only need

— r, m

= {- exp (Pμ) Hκn exp (- Pμ) + HKΆ + Wλ- (9.22)

,2- ? = ll * w+μ + l — it m — jy ' O r J j w + μ + 1 — r,m

This is solved by induction on m, using Lemma 9.4.
To complete the induction on μ we must verify (9.16) for μ + 1.

The first two terms in the right member of (9.22) contribute a sum of
terms of the form

adPWl + Λ l t W l . . . adPw. + &.,w.(#renU0 + β,m.» (9 23)

where j ^ 1, 0 ̂  ̂  ̂  μ and

i;f=A + ρ = μ + ι - ί .
However, — ρ ̂  r and so

Σi- Lk = ̂  + 1 - (ρ + r) ̂  /ι + 1 . (9.24)

If ρ == — r then (^ren)m0 + ρ,m0 = βF0r if m0 = r and is zero otherwise.
Thus in this case #ren contributes a power of ε to (9.23). If ρ > — r then
the inequality prevails in (9.24). Combining these two cases and using
(9.16) we see that the minimum exponent of ε occuring in (9.23) is at
least 2jn — μ ^ 2n — μ. It follows that (9.16) is true for Pμ+1,0, and
by an induction on m, it is true for Pm+μ+lt m. This completes the induc-
tion on μ. (9.15) follows from (9.21) and the proof is complete.

Let
ZΊ - exp (- P) exp (- ΓQ) exp (- ΓB) .

We now have

-^ren^l = ^1^2 >

or in other words, #ren has been put in "triangular form".
Lemma 9.5. There is an operator

U = Σl<*Vlm <9'25)
such that

exp(ΓU)H2 exp(-Γϋ) - HQ . (9.26)
The terms

are analytic functions of ε with coefficients Ufy in tt
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We give

the inductive limit topology. Each subspace §>k(L*) of states with at

most k particles gets its topology from the seminorms (8.14), v = 1,2,...,

n — k. We realize expressions of the form (9.25) as operators on ®Q(LA).

We assert that the power series exp(.ΓC7) converges and that ΓU and

expΓU are continuous operators. It is sufficient to prove this on each

subspace ®k(LA). However on such a subspace at most k -f 1 terms of

the power series are nonzero. Thus the convergence is trivial and

continuity follows from Lemma 8.2 (or Proposition 8.4). Let

T = 2\exp(-Γί7).

Our lemmas show that (9.4) holds, and so Theorem 9.1 follows from

Lemma 9.5.

Proof of Lemma 9.5. Let

Uj — Σl-m = -jUlm

Let Uj — 0 for j g 0 and by induction on j choose U$ so that

exp (ΓΣl = i Ut) HZ exp (- ΓΣ\ = i Ut) - H0 (9.27)

only contains nonzero terms Wιm(j) for which I -f j -f 1 < m. We set

and check that (9.27) has the correct form. Thus U is defined and (9.26)

holds. The analyticity of U follows from that of H2 together with the

fact that each term Ulmoί U depends (in a continuous manner) on only

a finite number of the terms of H2 — H0.
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