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Abstraet. Some general methods for analytically continuing group representa-
tions are presented. In favorable cases, this enables one to recognize the generaliza-
tion of the “principal”, “discrete” and ‘“‘supplementary’ series.

1. Introduection

In [4] we pointed out there is a natural way of “analytically con-
tinuing” certain types of unitary representations of non-compact semi-
simple Lie groups to finite dimensional representations, i.e. to unitary
representations of the compact real form of the group. This phenomenon
is quite well-known in case the group is SL(2, R), and is associated in
that case with the ‘“Regge pole” ideas of elementary particle physics.
Y. NE’EMAN has suggested that the extension of this idea to the other
Lie groups used to classify elementary particles (e.g. SU (3)) might have
physical applications. With these possibilities in the background, this
paper is devoted to the mathematical problems. In particular, we will
extend the method used in [4] for analytic continuation (which required
that the representation satisfied the ‘“Gell-Mann formula”) to consider-
ably more general and useful situations. On the other hand, in order to
make the methods understandable to a non-specialist, we have not tried
to push them to their natural limits.

Let G be a Lie algebra, and let H be a Hilbert space. Denote the ab-
stract typical elements of G by X, Y, etc. Suppose that X — X’ defines a
representation of G by skew-Hermitian operators on H. An analytic
continuation of this representation is a family G* of representations
X — X* of G by operators depending complex-analytically on the para-
meter A, reducing to the given one for A = 0. In this paper, we will con-
sider such continuations defined by ‘“‘infinitesimal multipliers”. These,
will be shown to be skew-Hermitian for pure imaginary values of 4,
which will define the analog of the “principal series” known for SL (2, R)
and other classical groups, [1, 2]. In [4] we showed that a special type
of such analytic continuations is reducible for a discrete set of real
values of 1. Here, we shall analyze the conditions for such behavior more
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precisely in terms of the creation-annihilation operator formalism
described in [5]. Further, we shall analyze the conditions that the
operators X can be made skew-Hermitian for certain other real values
of 4 by a modification of the inner product in H, leading to a generali-
zation of the “supplementary” and ‘“‘discrete’ series, as they are known
for SL(2, R).

2. Analytic continuation by means of multipliers

Let G be a Lie algebra and suppose that X — X’ defines a representa-
tion of G by skew-Hermitian operators on a Hilbert space H. Suppose
that to each X € G we assign another operator X'’ on H, and form the
operator X’ 4 X''. Let us find the conditions that the assignment
X - X' 4 X" also defines a representation of G. First, of course, we must
have:

X+Y)'=X"+7Y" for X,YEG. 2.1)

Also, [X’ + X, ¥’ + Y"] should be [X, Y] + [X, ¥]" i.e.
X, Y] =[X", Y1+ [X, Y]+ [X", Y] for X,YCG. (2.2

Such an assignment of operators to elements of G is called a system of
(infinitesimal ) multipliers for the original representation of G. If we
regard (2.2) as a system of equations for the operators X'/, note that they
are not necessarily linear. In fact, the condition that they be linear is:

[X”,Y"]=0 for X,Y€G. (2.3)
Then, (2.2) takes the form
X, Yy"=X",Y1+ X, Y"]. (2.4)

We shall mainly work with the multiplier systems satisfying (2.3), since
they seem to be the simplest and most interesting case.

Notice that if X— X' satisfies (2.3—4), so does X~ AX", where
A is any complex number. Thus, we can form the operators

XA= X'+ X" (2.5)

and obtain representations of G depending complex-analytically on the
parameter A. If X' is Hermitian, note that X* is skew-Hermitian if and
only if A is pure imaginary, so that we obtain in this way the ‘“‘principal
series”.

As a side point, let us inquire about the limit as A— oo (in the sense
explained in [3]) of the Lie algebra G* of operators spanned by the X*
Let K be the set of X € & such that X’ = 0. Notice that K is a sub-
algebra of &. Suppose we split up G as K @ P. Then, for X € P,
lim X*/A = X"'. Hence:

The limit as A- oo of the algebras G* is the algebra of operators
generated by X', for X € K, and the X", for X € P.
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3. Changing the inner produet to make representations unitary

The process described by the title of this section is a common way of
constructing unitary representations. For example, suppose that we
start off with the Hilbert space of square integrable functions f(z) of a
real variable x, with the inner product given by

flgy = [ 1@)* g(@) de.
Suppose that 4 is an operator given by a kernel K (z, '), i.e.

Afx)= [ K(x, ') f(2') dx’ .
Define a new inner product by the formula:

{ilg} = <1l4g) .
{lg} =/ [ K(z, @) [(x)* g(2') dw da’ .

We recognize that this is the type of inner product used to construct
the “supplementary series” of unitary representations of SL(2, R) [1].
It is also used in quantum field theory: For example, the solutions of a
Lorentz invariant differential equation (such as the Dirac equation)
should, for the purposes of second quantization, form a Hilbert space in
which the Poincaré group acts via unitary transformations. The usual
integration-type inner product is unsatisfactory because the Lorentz
group is non-compact and does not leave invariant a positive definite
inner product on the spinors. It must be modified by changing it with an
operator 4 as explained above.

Explicitly,

Let us work out the general formalities. Suppose that H is a Hilbert
space, with inner product {y/y’'). If 4 is an operator on H, let A* be its

adjoint, i.e.
Ay = (A*yly') .
Suppose that we define a new inner product by the rule:

{yly'} = (y/Ay') .

The condition that this also be an Hermitian inner product is:
{wlv'y = Wi}
WAy = (Y [Ap)* = (A*y'[y) = (pld*y'),

A is Hermitian, i.e. 4 = A*, (3.1)

Suppose now that G is a Lie algebra of operators on H. Let us look
for the condition that X ¢ G be skew-Hermitian with respect to the
{y/y}-inner product:

0={Xyly'} + {9/Xyp'} = (Xyldy) + (Y AXy'),

ie.

or
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or
X*44+AX =0 for X€G. (3.2)
Suppose, for example, that 4~ exists. Then, (3.2), takes the form
X=—A4"1X*4. (3.3)

Notice that X — — X* is also a representation of G. Hence, the existence
of a new Hermitian inner product with respect to which & is an algebra
of skew-Hermitian operators is associated with an equivalence between
this representation and its Hermitian adjoint.

4. Reducibility for analytically continued representations

Suppose that G is a Lie algebra, H a Hilbert space, and that for each
complex number 4 the operator assignment

X—- X'+ AX"

forms a representation of G, with X’ skew-Hermitian, and X'’ Hermitian.
We want to describe conditions that the representation be reducible for
certain real values of 4, following the pattern described in [4], using the
creation-annihilation operator formalism described in [5].

Suppose that H is the direct sum H® + H*' 4+ H-1+ H*4+ H-2+ . ..
of mutually orthogonal subspaces, and that each of the operators X', X"
applied to py € H", r =0, +1, ..., connects at most to H"+!, H™ and
H7-1, Thus, X’ and X" can be written in the following form:

X' =X+—-X-4+X'0
XII=XII++XII_+XIIO’
where X'+ and X'+ map H" into H7+1, X'~ and X"~ are their adjoints,
and X'% X"° map H" into H". This way of decomposing X’ and X"
makes the following result obvious.
Theorem 4.1. G* leaves invariant the subspace

Hev=Ho+ Hot' + -+ H' (a = b)

(4.1)

if and only if:

(X'++ AX"+He=0 (4.1a)
(X'~ + AX"-)H*=0, forall X¢G. (4.1b)
Now suppose that Ay, 4;, 4_q, 45, A_,, . . . is a sequence of real numbers

such that:
(X'++ 2, X" +) (H") =0 forallr,all XCG. (4.2a)

Then also:
X'+ AH'-)(H)=0 forallr,all X¢€G. (4.2b)

With the aid of (4.2a) and (4.2b), we can write down the condition that
G (H®?) C H%?. Namely, we have:
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Theorem 4.2. G* leaves H% ? invariant if and only if:
}. = lb = )'a—l .
If these conditions are satisfied, we have succeeded in analytically con-
tinuing the original representation X — X’ to a discrete set of reducible
representations.

Conditions (4.2a) and (4.2b) can also be used to look for the Her-
mitian operator 4* described in Section 3 for which:

X*4* + A2 X =0 forall XCG, (4.3)

i.e. can one find a new inner product {y/y'} = (y/A*y') such that each
of the operators X* is skew-Hermitian with respect to the new inner
product ¢ Requiring that this new inner product be positive definite will
give a restriction on the possible values of A.

In fact, we will look for 4% of the simplest possible form:

A*yp)=a,p forall pcH", r=0,1,.... 4.4)
By the definition of 4,,
X+y=—1X"+yp,

4.5
Xoy=—AX""y. )
Hence,
Xip= X"t (A= A) + X'~ (A+ deg) + X0+ 2X"(y)
Xtk =X"*(A4+ )+ X""(A— A _y) — X'0+ AX"(p)
XAy =a,(X"+A+ 4) + X"~ (A— A ) + X0+ AX" Oy
ArXry = (@, X" T (A— L) + @y X"~ (A+ A, ) +
+ X%+ a,AX"%)y.
Hence:
X4 4 42X =0 (4.6)
if and only if

a) a,(A+A)=a,,,4L—2), r=0,1,...

b) ¢, X"°H" =0, r=0,1,....

Condition b) is rather restrictive, since in general X''° will not be
zero. However, this probably reflects the fact that supplementary series-
type representations do not always exist. One might ask: Why choose 4%
of the simple form presented in (4.4) ¢ One might note that this choice is
forced if certain conditions are fulfilled. Suppose, for example, that Kis a
subalgebra of G such that:

a) X € K is skew-Hermitian
b) KH"C H", and K acts irreducibly in H" (4.7)
¢) Each irreducible representation of X occurs at most once
in H.
Condition a) then forces:
(4%, K]=0.
Commun, math, Phys., Vol. 2 18
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Condition b) then forces:
A*HrC Hr,

while ¢) forces 4% to be of form (4.4).

5. Remarks on the construction of multipliers

Our method for constructing analytic continuations of representa-
tions has been dependent on assuming that a representation and a
multiplier system for it is given. Now, in practice such multiplier systems
are often given automatically when the representations are given ‘“geo-
metrically” by letting the group act on spaces of functions on homo-
geneous spaces of the group: The multipliers usually appear as the
Jacobians of the transformations induced by the group elements. We
will not get involved in this paper in geometric approach. However, there
is a closely related algebraic formulation that we can investigate.

Suppose that G is a Lie algebra of operators on a Hilbert space H.
However, we will not suppose that an X € & is a skew-Hermitian opera-
tor. (Note a slight variation from our previous notations: Here X denotes
both an element of the abstract Lie algebra G and the operator on H cor-
responding to it.) In fact, the deviation from skew-Hermiticity will
provide us with the multipliers in favorable cases. In fact, let

X =5 (X + X¥), 1)

i.e. X" is the “Hermitian part” of X. Then, one might expect in certain
cases that the assignment X — X'’ provides a multiplier system satis-
fying (2.3—4) relative to the originally given representation X — X. In
this case, X— X' =X — X"’ is a skew-Hermitian representation for
which X — X’ again is a multiplier system, i.e. satisfies (2.3—4).

We will now provide a criterion that X - X" = —;—(X + X*) provide

a multiplier system in one important case. Suppose that G can be written
as K ® P, with:

X, K]CK; [K,P]CP; [P,P]CK. (6:2)
Suppose also that:
X is skew-Hermitian for X ¢ K. (5.3)

Then, for X’, Y ¢ P, [X, Y] € K, hence:
X, Y*=—[X, Y].
But, also,
X, YPF—[X'+ X", Y 4+ Y"]*
= (X', Y]+ [X", Y1+ [X', Y] + [X", T"])*
= [, X1— [¥, X"]— [¥", X'+ [¥", X"].
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Hence, it follows from (5.2) and (5.3) that:
X", Y14+ [X',Y"']=0 for X,YcEP. (5.4)
Also, for X c K, Y¢P,
[X, YJ* = [Y* X*] = —[T* X] = [X, ¥¥],

hence:
a) [X,Y]=[X,YY

b) [X,Y"]=[X,Y]’ for XcK,YcP.
Then, we have:

Theorem 5.1. Suppose (5.2) and (5.3) are satisfied. Then, X - X'

(~ (X — X")) is & representation of G if and only if

[X",Y']=0 for X,YcP. (5.6)

If this condition is satisfied, X - X'’ defines a multiplier system for the
representation X —~ X'.

Suppose that (5.6) is satisfied. We would like to have further condi-

tions that (4.2a) be satisfied. Suppose that the Hilbert space H is a direct
sum

(5.5)

HO 4+ H' - H-1 L H2+ H-24 .-
of mutually orthogonal subspaces such that
by XH"CHr—1+4 Hr 4+ Hr+1 for X¢P.
a) KH"CHr forall r.
For X ¢ P, define X'+, X'0, X'~ X"+ X"0 X'~ so that:
X'+, X"+ map H" into H"+1
X'—, X"~ are the adjoints of X'+, X"+
X'0, X'"® maps H7 into H".
X +X'+—X'~-4 X'0
X" =X"+4+ X"~ 4 X"0.

Now, X'+ and X"’ + both map H"— H"+1, and, as X varies over P, both
systems of maps have the same transformation properties under K.
Assume further that:

(5.7)

The representation of AAK in P is irreducible. 5.7
In the tensor product H™ ® H"+1% there is exactly one irreduc-

ible subspace that transforms under X like the representation (5.8)

of AdK in P. (H"+1* denotes the dual space to H"+1.)

Obviously, a relation of the form (4.2a) follows from these two
assumptions.

18*
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6. Construction of representations of SL(2, R)

The group SL(2, R) (or, SU(1,1), which has the same Lie algebra)
plays a key role in our work, since we are aiming to generalize to other
groups results and methods that have been developed, usually in a very
simple manner, for SL(2, R). It is then interesting to show conversely
how the general techniques apply to SL(2, R). We will do this now.

Consider the unit circle in the complex z-phase, parameterized by
the angle . SL(2, R) acts on this space. Let H be the Hilbert space of
square integrable periodic functions 6 — y(6), with the inner product:

2n
(ply'> = of p(0)* v (0) db .

Let H", r=0, +1, +2,... be the one-dimensional subspace spanned
by ei70. Let X be the operator on H given by:

] . .
Z=W+ in, m = integer .

(The condition #» = integer is required in order that exp (¢Z) map periodic
functions into periodic functions.)
Let X and Y be the following operators:

X = sinf v+ in sing .
Y = cosG—dd—6+ in cosl .

Then,
[Z,X]=7Y; [2, Y]=—X.

[X,Y]= [sinﬂ%,cosegdg]
+in ([si.nﬂ, cosf j‘%] + [sineidg ,eose])

= —(sin%0 + cos?0) 7;% + i1 (—cos?0 — sin20)

=—Z.
We see that X, Y and Z generate the Lie algebra of SL(2, R). Z is skew-
Hermitian, but X and Y are not:

X* =——j—0(si.n0—-in sinf = cosf — X .

Y* =sinf— 7%,

hence:
X =-;—(X + X*) = —%cose .
Y" =5 sinf.
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Note that [X", Y] = 0, hence they form a multiplier system for the
Lie algebra (X, Y, Z).

Let us compute 4, as given by (4.5):

1 . 1 ., .
F(eiT0) — o2 piO Ly e giO (gir0
X+ (e'0) = ir o €0+ in 5l (¢879)

= % (r + n) ei%(e?r0) .
X"+(e”9) — __i_eiﬁ(ez‘r(?)
Z+(eir0) = X+ — X'+ (ei"%) = weia(eirO)

=_g2_r.+in—+l)._4x”+(eir6), ie.
A=2r+2n+1, 6.1)
hence:
a, _2r4+2n+1—12

@ryr  A+2r+2n+1° (6-2)
Let us first check the conditions that aa' > 0 forall r.
r+1

Then, either:
(@) A>2r—2n—1 and A<2r+42n+1
or (b) A<—2r—2n—1 and A>2r+2n-+1.

Casel.2r4+2n+ 1= 0.

Inequalities (b) are incompatible: (a) holding for all r forces: —1 < A < 1.
Case 2. 2r 4+ 2n—1 < 0.

Similarly, —1 < A < 1 is forced.

Thus, s

Qr 41
supplementary series.

Now, let us look for the condition that aa’ > 0 for r > 0. Notice

that the subspace H* -+ H'4+ H2+ --- of H Hir; that spanned by the
boundary values on the unit circle of the functions that are complex
analytic inside the unit circle, see that values of 4 for which G* leaves
this subspace invariant should correspond to the ‘“‘discrete series”. First
then, we must have:

X*-H°=0.

> 0 for all r forces—1 < A < 1, which corresponds to the

Now,
X*~H= (X'~ + AX"")H®
= (Ao + 2) X7H,
or
A=A4=2n—1, (6.3)
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which is the condition that G*(H® + H' + -+ )CH*+ H' + - - -
a  2r+2n+1—2n+41 2r +2 r+1
Aryy 20— 1427+ 20 +1 4r + 2n 2r+n °

Putting r = 0 gives the condition:

n=1l. (6.5)
Then, for each positive integer # we obtain a skew-Hermitian representa-
tion G271 of the Lie algebra of SL(2, R) in the space of functions that
are complex analytic in the interior of the unit circle.

We can also look for the conditions that G* leaves invariant the sub-
space He 4 He+l 4 ... 4 HY with a <b. This would then give finite
dimensional representations. Then, we must have

0=X*Ho=(X'-+ X"-)He
= (A—Aq_y) X" ~H®,

(6.4)

or
A=Ay_q.
Also, 0= Xt+H = (X'+ + X"+) (HY)
= (A— Ay) X" +HY,
or
lzlb.
or
a=b+1. (6.6)

Finally, let us check the validity of the “Gell-Mann formula” [3, 4]
for these representations. In this sample case, the requirement is that:

[[Z% X"], [Z% X'']] is a multiple of Z .
Now, 23, X"1=Z[Z, X"+ [Z,X"Z
ZY" 4+ Y"Z
=[Z,Y"1+2Y"Z
=—X"+4+2Y"Z.

[2%, Y'\=Z[Z, Y"1+ [Z, Y"]Z
=—ZX"—X"7
=—[2,X"]1—2X"Z
=—Y"—-2X"7.

[[2% X"), [2%, Y]] = [-X" +2Y"Z,—Y" —2X"Z]
=2[X", X"Z1—2[Y"Z,Y'"|—4[Y"Z, X" 7]
=—2X"Y"+4+2Y"X" —4([Y"Z,X"1Z +
+ X"[Y"Z, 7))
=—4(Y'"?Z 4+ X'2Z) .
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Now, Y"2 4+ X'"'2is a Casimir operator of the Lie algebra generated
by Z, Y'" and X", hence is a scalar if the representation of this algebra is
irreducible. We have then proved:

Theorem 6.1. Let Z, X”’, Y”’ be elements of a Lie algebra satisfying:

[Z’ X/l] — YII; [Z’ Y//] —_ __X//; [XII, YII] — 0 .

(The Lie algebra is then that of the group of rigid motions of the plane,
which is a contraction of the Lie algebra of SL (2, R)). Consider them as
operators on a Hilbert space with Z skew-Hermitian, X'’ and Y¥" Hermi-
tian, on which the Casimir operator 0 = Y"’2 + X'’2 has the value §% Let

! 1 (2 [ 1 r
X' = 5528 X", ¥ =55 (22, Y7,

Then, [X', Y']=—Z, ie., (Z, X', Y') generates the Lie algebra of
SL(2, R): The Gell-Mann formula holds, and enables one to pass from a
representation of the contracted non-semi-sinple group back to a re-
presentation of the semi-simple group.

There is another more abstract approach to this result that is inde-
pendent of representations. Consider the Lie algebra G'’ generated by
elements X", Y, Z, with

[2, X" = ¥"; [£,Y"]=—X; [X", 7"] = 0.

As mentioned in [4] in connection with the group-theoretic treatment
of the hydrogen atom, one can construct the ‘“‘complete’” universal
enveloping algebra consisting of all “functions” of the generators of G'.
(The universal enveloping algebra used in Lie algebra theory just in-
volves polynomials in the generators. The algebraic foundations of this
construction will be dealt with in a later paper.) In terms of this algebra
one can construct the generators of the Lie algebra of SL(2, R): Define

X =[2%X"]2(X"24 Y"2)2
Y =[Z% X"]/2 (X"2+ Y"2)\2
As above, one proves that:
(X, Y]=—Z; [£,X]=Y; [Z, X]=—7Y,

ie. (Z, X, Y) generate the Lie algebra of SG (2, R). One might conjecture
that there is a similar relation between any Lie algebra G and one of its
contractions G, i.e. one can define @& as a subalgebra of this complete
universal enveloping algebra of G'.

7. Another method for constructing hermitian multipliers

Suppose now that G is a Lie algebra, admitting a Cartan-type de-
composition:

G=KoP; K, KIcK; [K,P]CP; [P,P]CK.
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Suppose that G admits a representation X — X’ by skew-Hermitian
operators on a Hilbert space H. Assume that H admits a decomposition
HO+ H' - H1+- H2 L H-24 -+,
and that X’, for X ¢ P, can be decomposed as usual onto the form:
X+—X'-4+X'°,

and that KA"C H".
For X, YCP,
X, Y]=[X'+—X'-4+ X'0,Y'+—- Y1~ 4 Y'0]
= [X'%, Y]+ [X', ')
— (X Y= (X, Y+ X0, Y0
+ X0, ¥4 4 [X%, Y70
—[X'-, YO —[X'0, Y'].
This gives the following relations:
a) [X, Y]=—[X'*, Y'-]—[X'-, Y'+] + [X'°, Y'°].
b) 0=[X'+ Y'+]=[X"-Y""]

o) [X'0, ¥'+] 4 [X', ¥/ = 0 b
d) [X'—, Y1+ [X'0, Y'-]1=0.
Let «,, 7==0, -1, +2, ... be a sequence of real numbers.
For X ¢ P, define X" = X"+ + X"~ as follows:
a) X"ty =qa, X'ty for pcH". (1.2)

b) X'"-yp=o0,, X'~y for pcH".
It is readily seen that X'’ — is the adjoint of X"+, so that X" is
Hermitian. Further, for ¥ ¢ K,
[¥, X" +] = [, X]"~,
[Y, X"=] = [¥, X]'~,
hence
Y, Xx"1=17, X7".
Now, for X, Y € P, let us compute:
(X", Y] = [X"+, ¥"+] + [X'~, Y'~] + [X'+, ¥7-] + [X"-, Y+,
The first two terms are zero, from 7.1a) and b)
X'"+Y'-Hr=X"%ea, Y ~H =02 X' +*Y'~H".
Y'-X"+H' = YY"~ X' tH = o2Y'-X'+H",
or
X"+, Y'-1H = (2_{ X' Y ~—2Y' ~-X'*)H".
[X"=, Y'+H = —[Y"+, X""]
= (2 Y+ X' ~—2X'~Y'*)H".
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Thus, in order that [X", Y"'] = 0, we must have:

Z_ 4 (X'tY - —YtX' ) —2(Y-X'+—X'-Y*HH =0. (7.3)
Now,
XI+YI____ YI+XI_ — [XI+’ YI_]_ [YI+, XI_] + YI_XI+_XI_YI_ s
hence, using 7.2a),

(1 — o) (Y -X'+—X'-Y'+) +

+ o (—[X, Y]+ [X'° Y'O)H =0.

Notice the meaning of this condition: Assigning to X, Y € P, the opera-
tors [X'0, Y'0]—[X, Y] and Y'—-X'+— X'-Y'+ defines two bilinear
mappings of P x P to the skew-Hermitian operators on H ? Further,
these systems transform in the same way under the action of K. (7.4)
then requires a linear relation between them, which involves a generali-
zation of what the physicists call the ‘“Wigner-Eckart Theorem”.

This gives one of the necessary conditions that X — X'’ define a
multiplier system. The other is:

(X", Y]+ [X,Y']=0. (7.5)

(7.4)

Now,
[XII, YI] —_ [XII+ —I" XII_’ YI+__ YI...]

—_ [XII +’ Y/ +] _— [XII_, YI _] + [XII .._’ Y/ +] —_ [XII +, YI_] .
Hence,

[XII’ Y/] + [X!, YII] — [XII’ YI]_ [Y//, XI]
= [X", ¥+ — (X7, Y]+ (X0, Y] —
— X7, Y] — [, X4 4 [Y7, X] —

— [, X [P X0
Hence, (7.5) requires:

a) [X"=, ¥'=] = [¥"~, X'-]
b) [Y7+ X'+] = [X"+ ¥'+] (7.6)
) [X'-, Y H]—[X'"+, Y ]=[Y'-, X' +]—[Y"+, X'].
We will now check these identities:
X"+Y'tH' = o, X' *Y'+H"
Y +X"+Hr = o, Y'+ X'+ H"
Y'+X'+H = o, ., Y+ X'+H"
X'+Y'+H" = o, X' tY'+H".

(7.6b) then follows from (7.2b). (7.6a) follows from b) after taking the
adjoint.
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Now, let us proceed to c).
X"-Y'+*H = o, X'-Y'*H"
Y+X'"-Hr =o, Y *X'-H".
(X" Y+ —[Y' -, X' *)H™= o, (X'~ Y'+— Y - X'")H" —
— o, (Y'+ X' -—X'*Y'-)H".
X"+Y'-H =o,_, X' +tY ~H".
Y-X'"*H = o, Y -X'+H",
hence:

(X%, ¥'=]— (Y7, XY Hr= oy (XY= — Y+ X ) Y
+ o (Y -X't— XY H" .

We see then that (7.6¢), hence also (7.5), is automatically satisfied, with
no special conditions on «,. (7.4) then is the only restrictive assumption
on o, We will leave these calculations at this point: The qualitative
point we have made can be described as follows:

Theorem 7.1. Suppose that in the linear space of bilinear mappings
P x P— (skew Hermitian operators on HT) there is just one subspace
transforming under K as the one described by: (X, Y)— [X'0, Y'0]—
— [X’, Y']. Then, there is as Hermitian multiplier system for the
representation, which connects H” with H"-! and H"+!, and hence the
representation can be analytically continued. Further, two such multi-
plier systems which are normalized to be equal on H° can only differ by
a change of sign on each of the other subspaces H".

8. Remarks on the relations between finite and infinite dimensional
representations of non-compact semi-simple groups

Let G be a non-compact semi-simple Lie group with finite center, and
let K be its maximal compact subgroup. There is a general theorem in
representation theory [6] asserting that the number of times a given
irreducible representation of K appears in an irreducible unitary re-
presentation of G is majorized by the maximal number of times this
representation of K may appear in the finite dimensional irreducible
representations of (. This result no doubt has a close relation to analytic
continuation: Certainly, it is obvious without further proof that the
simple types of analytic continuation considered in this paper satisfy this
condition, since the whole Hilbert space is built up from finite dimensional
representations.

It is also possible and useful to use analytical continuation to obtain
information about the finite dimensional representation in terms of
facts that are known about the infinite dimensional one. We will look
at one such typical situation.
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Suppose that we ask: How does one construct finite dimensional
representations of G that have the property that each irreducible re-
presentation of K appears at most once when the representation of ¢
is reduced with respect to K ¢? For example, such a question plays an
important foundational role in the choice of S U (3) to classify elementary
particles: For the eight spin 1/2 baryons for example, the exact sym-
metry of the Hamiltonian is SU(2) x U(1l) (“isospin” and “hyper-
charge”). One reason that the group SU(3) containing them is a good
choice for use in physics in constructing multiplies is the fact that in
each irreducible representation of S U (3) the representations of SU (2) x
x U(l) appear at most once. B. KosTanT has proved (unpublished)
that the only pairs (G, K) of a compact group G and a subgroup K with
this property are the choices:

G=8U(m), K=8SUn—1)x UQ1)
G=80@n), K=80(n—1).

Now, it is quite easy to quote many examples of unitary representa-
tions of G which have this property (see [3]): A theorem proved by
E. CarraN suggests looking for them by examining the symmetric
spaces K/L on which the action of K can be extended to give an action
of @. Similarly, one may hope to link together the finite and infinite
dimensional representations of ¢ in which K has a one-dimensional
invariant subspace (which could be taken as H°) by analytic continuation.

9. Relations between SL(2, R) and the Heisenberg group

In Section 6, we pointed out the relations between &, the Lie algebra
of SL(2, R), and one of its contractions, the Lie algebra of the group of
rigid motions of the plane. In this section we will consider another of
its contractions, the Heisenberg algebra, and discuss the corresponding
limits of representations.

Let G be the three-dimensional Lie algebra generated by X, ¥, Z, and
commutation relations:

X,Yl=—Z

Z,X1=Y,[Z, Y]=—X.
The Heisenberg algebra G’ is isomorphic as a vector space to G, i.e., is
generated by three elements X', Y, Z’, with the commutation relations:
[Z,X'1=0=[Z', Y]
X, Y)=—Z.
(Usually, of course, Z’ is labelled 7, ¥ labelled p, X’ labelled ¢, so that

[p, g] = ¢, which is the familiar Heisenberg relation.) This algebra can be
obtained by the contraction process [3] from G.

(9.1)
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For ¢ > 0, define «, : G— G as follows:
% (Z)=¢Z
% (X)=VeX; a(Y)=)eY.

Let [, ] be the Lie algebra structure resulting from the contraction
process relative to the one-parameter family ¢ — o,. As definition:

[Z, XY = lim o[, (8), o, (X)]
= lim [/~ ¢, VeX1=0.

9.2)

Similarly, [Z, Y] = 0.
[X, YT = lim o7 o, (X), (V)]
=—7Z.
We see that this contracted Lie algebra is isomorphic to the Heisenberg
algebra.
Now we can see that the discrete series of representations of SL (2, R)

described in Section 6 goes over in the limit as #n— oo to a representation
of the Heisenberg algebra. Recall that:

d .
Z, = W‘l' .
X, = sin0 -+ insing — 2D o0 9.3)
Y, = cosedio—l- in cosf +~(-2ﬁ§_———£sin0 .

At first sight it looks like the limiting operators are trivial, since
%—, X.[n, Y,[n all go over, as n— oo, to abelian operators. However
there is a new feature here: The inner product on the Hilbert space is
also changing with n. The Hilbert space itself must be changed by a
linear transformation in order to compare the limit as n— oco.
Recall that the Hilbert space is the sum H® 4 H’ + - - -. The inner
product (y[y’D, at the n-th stage is
o {yly'y, for w4y cH",

with

@y yy 2r +n

a, =7 F1
Let 4, be the Hermitian operator that sends ¢ € H" into a,y. The n-th
stage inner product is then .

YA > = <YIYn -
Let B, be a linear map of the Hilbert space into itself that effects an
isomorphism between the original Hilbert space and the n-th one.

(Bu '/)/ B, 'P) = <'/)/An 'P> .
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Thus, B, can be taken as:

B,y = Vd:q) for ypc H".
Then the operators

B,X,B,*, B,Y,B,, B,Z, B;*

are skew-Hermitian with respect to the original Hilbert space structure
{ply’y, and satisfy the commutation relations (8.1).
Notice first that:
BnZn Br? 1= Zn s
hence
B,Z B
n

B,X,B;1(ei"%) = oc;‘llz B, X, (ei"9)

—1 as m—> oo .

. . . 2n—1 .
= a2 B, [sm@(we”" + inetrd) — n2 cos()e”"]

2n—1

| .
— ocr_llz B, [_2_ (eFr+1)0_gi(r=1)0 (p | ) —

— o2 [a3g1 ez'(r+1)e(’ tn_ 2n—1 ) -

(8 r+10 4 gitr=1) e)]

2 4
_“}-/21 ei(r—l)ﬂ(r—;n + 2n;—1)
- (_"‘Lﬂ)m gt 27t (a,_l)m yitr-1y0 27+ 4n—1
%r 4 %y 4
:(2r+n)1lz Y 2r 4+ 1 __( r )1/2 gi (r=1)0 2r +4n—1 )
r+1 4 2r—2+n 4
Then,
1 ( pird
B,.X,.jli‘ € (272— D i1 — f2eitr-16 a5 nos co.

This one-parameter family of representations of SL (2, R) then con-
tracts, as predicted by (9.2), into a representation of the Heisenberg
group, whereas the principal series of representations of SL(2, R) con-
tracts into a representation of the other contracted algebra, that of the
group of rigid motions in the plane. One also obtains in this way asymp-
totic relations for the matrix elements of the corresponding representa-
tions of the group. Obviously this procedure can be applied to much more
general groups than SL (2, R). This will be done in more detail in a later
paper.

10. The SU(6) quark model as a representation of SU(3,2)

One of the minor mysteries of the S U (6)-theory of GUrRsEY, RADA-
cATI and SAKITA is the fact that the baryons fit into the 56 dimensional
representation of SU(6), i.e. the symmetric tensor representation,
instead of in the 20, i.e. the skew-symmetric tensors, as one would expect
of fermions. This is analogous to the also-unexplained question why the
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physically relevant representations of SU(3) are those in which the
center Z, is represented as the identity.

One might ask whether there is some relation of this to a group-
theoretical property that might provide a clue to the physical explana-
tion. Now, there is one such obvious explanation for the S U (3)-property :
SU (3) is the maximal compact subgroup of SL(3, (), and the most
obvious family of irreducible unitary representations of SL(3, C) (the
‘“‘principal degenerate series’’) has the property that the representations
of SU(3) appearing in its decomposition form a ‘ladder” for which the
8,10 and 27 dimensional representations of SU (3) form the first few
“rungs”’, with each representation of S U (3)/Z; appearing exactly once.
In turn, this is connected with the geometric action of S U (3) modulo
its center on P?(C), two dimensional complex projective space.

The S U (6) theory seems more complicated from a group-theoretical
point of view. I know of no non-compact group containing S U (6) that
seems suitable for explaining in a strictly analogous way the pattern
of representations of SU (6) that seem physically useful. (Except of
course for SU (6, 6), but this has a different flavor since it incorporates
the Lorentz group, and seems therby to lead to severe difficulties in
physical interpretation.) We will now show that consideration of
SU (3, 2) leads in a very natural way to many of the attractive features
of classification of particles by SU (6), although at first sight it has
nothing to do with SU (6).

I would like to thank S.GrasHow and E. STEIN, who suggested
studying SU (3, 2).

Let G = 8U (3, 2), i.e. the group of 5 X 5 complex matrices leaving
invariant a Hermitian form with 3 plus and 2 minus signs. Then K, the
maximal compact subgroup of @, is SU3) x SU(2) x U(1). For pur-
poses of classifying elementary particles, we intend to identify the
S8 U (3) subgroup with unitary spin, S U (2) with the spin associated with
the Lorentz group, and U (1) with baryon number. We will consider an
irreducible representation of G by skew-Hermitian operators on a
Hilbert space H such the K has an invariant vector y,. Let G =K & P
be the Cartan decomposition. Let P, = P + ¢P be the complexification
of P. Following a suggestion by E. THIELEKER [5] H can be built up by
applying operators of P, to y,. Consider such a product:

X,...X,p,, with X,,..., X,¢P,.

Since [P, K ,JCK,, [P, P,JCK, one sees that only the symmetric
product of the X’s matters, i.e. H reduces under K into subspaces which
are obtained by reducing the symmetric tensor products of the adjoint
representation of K in P,.
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For ¢ =8U(3,2), it is readily seen that AdK acting in P, is not
irreducible (since K has a non-discrete center, namely U (1)). In fact, P,
splits up into the direct sum of subspaces P+ @ P, in each of which
AdK acts irreducibly, with P— the complex conjugate of P+, and such
that U (1) acts in P+ by multiplication by exp (¢6/3), in P~ by exp (—10/3).
(The factor 1/3 is just a normalization, suggested by the physics, since
U (1) is to represent baryon number.)

Let us denote a typical element of P+ by X, a typical element of
P- by X. We can consider y, as the “vacuum state”, the vectors X P 38
the “quarks”, the vectors X g, as the “antiquarks”, to which we assign
baryon number 1/3 and —1/3. It is readily seen that the representation
of SU(3) x SU (2) on P+ is the tensor product of the 3 and 2 dimensional
representation of SU (3) and S U (2), respectively, which we denote by:
3 x 2. Then, the representation in P~ is 3 x 2 (since 2 = 2). Now,
dimP+ = 6, hence it can be considered as the space of the basic represen-
tation of SU (6), with SU (3) x S8U (2) appearing as a subgroup of SU (6)
in a manner identical to that in the Gursey-Radicati-Sakita theory.

According to the general theory of [5] all of H can be built up as
symmetric products of the quarks and antiquarks, exactly as the elemen-
tary particles are built up in the SU(6) quark model. For example,
consider vectors of the form

XX, .

They form the 35 dimensional representation of S U (6), which is identified
with the mesons. Note that baryon number and spin is correct under this
assignment: U(l) leaves these vectors invariant, and the center of
S U (2) acts as the identity, i.e. these vectors have integral spin.

The vectors of the form
XXXy,

form the 56 dimensional representation of S U (6), which is identified
with the baryons. Note again the assighment of baryon number and spin
are correct: U (1) acts by multiplication by exp(i0), which we identify
with baryon number 1, and the center of SU(2) acts as minus the
identity, i.e. the S U (2)-content is that of half-integer spin.

The new feature that is possibly attractive from the physical point
of views is that the operators of P tie together the various multiples built
up out of quarks. Further, SU(Z) x SU(3) x U(1) is a symmetric sub-
group of SU(3,2), hence from a group theoretic point of view the
construction is closer to that by which one passes from SU(2) x U(1)
(isospin X hypercharge) to S U (3) than the standard way of considering
S U (6) directly.

Finally, we may mention that the geometric method may be used
to give essentially the same results [4], [6]. G can be made to act on P+
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via linear fractional transformations; hence G acts on the polynomial
functions of P+. Complex coordinates (z,, . . ., 2g) can be introduced for
P+ so that K acts via unitary matrices. Polynomials of P+ are then
combinations of products of the z’'s and z’s.
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