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Abstract

In this paper we obtain results on existence of standing waves in Discrete Non-

linear Shrödinger equation (DNLS) with saturable nonlinearity on a two-dimensional

lattice. We consider two types of solutions: with periodic amplitude and vanishing at

infinity (localized solution). Sufficient conditions for the existence of such solutions

are obtained with the aid of Nehari manifold and periodic approximations.
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1 Introduction

Recently, considerable attention has been paid to models that are discrete in the spatial vari-

ables. Among the equations that describe such models, the most famous are the equations

of chains of oscillators, the Discrete Sine–Gordon equation, the Fermi–Pasta–Ulam system

and the Discrete Nonlinear Shrödinger equation.

Among the solutions of such systems, traveling waves deserve special attention. In pa-

pers [3], [15], [18], [19] traveling waves for infinite systems of linearly coupled oscillators

on 2D–lattice are studied, while [9] and [26] deal with periodic in time solutions for such
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systems. Papers [11], [13], [16] are devoted to the well-posedness of initial value prob-

lem for infinite systems of linearly coupled nonlinear oscillators on 2D–lattice. In [7] it

is obtained a result on the existence of subsonic periodic traveling waves for the system

of nonlinearly coupled nonlinear oscillators on 2D–lattice, while in [8] supersonic peri-

odic traveling waves for such systems are studied. Paper [5] is devoted to the existence of

solitary traveling waves for such systems.

In paper [1] it is obtained a result on the existence of heteroclinic traveling waves for the

discrete sine–Gordon equation with linear interaction on 2D–lattice. Paper [10] is devoted

to the existence of periodic traveling waves for the discrete sine–Gordon equation with

nonlinear interaction on 2D–lattice, while in [12] it is obtained a result on existence of

heteroclinic traveling waves for such equation.

The existence of periodic and solitary traveling waves in Fermi–Pasta–Ulam system on

2D–lattice is studied in [2], [14]. A survey of existing results on the classical 1D Fermi-

Pasta-Ulam lattice can be found in [21].

Another important class of solutions is standing waves. The existence of standing waves

in DNLS is studied in [4], [22], [23], [24], [28], while [6] and [20] deal with standing waves

for DNLS on 2D–lattice. In particular, in the paper [6] it is obtained a result on the existence

of standing waves for such equations with cubic nonlinearity, and in [20] two-dimensional

solitons in such systems are studied.

In the present paper we study the Discrete Nonlinear Shrödinger equation on a two-

dimensional lattice

iψ̇n,m(t)−a14(1)ψn,m(t)−a24(2)ψn,m(t)+θ f (ψn,m(t)) = 0, (n,m) ∈ Z
2, (1.1)

where ψn,m(t) is the wave function, a1 > 0,a2 > 0, f : C → C is a gauge invariant function,

that is,

f (eiωtz) = eiωt f (z)

for all real ω, and

(4(1)ψ)n,m = ψn+1,m +ψn−1,m −2ψn,m,

(4(2)ψ)n,m = ψn,m+1 +ψn,m−1 −2ψn,m

are the discrete Laplacians with respect to the variables n and m. If a1 = a2 = 1, then the

sum of these operators will be a two-dimensional discrete Laplacian

(4ψ)n,m = ψn+1,m +ψn−1,m +ψn,m+1 +ψn,m−1 −4ψn,m.

In addition, we assume that f (R) ⊂ R. We introduce the parameter θ = ±1 to distinguish

between self-focusing (θ = 1) and defocusing (θ = −1) cases.

In this paper we deal with saturable nonlinearities which means that at infinity f (z)

growth as const · |z|. Important examples of such nonlinearities are the following

f (u) =
ν|u|p

1+µ|u|p
u, µ > 0,ν > 0, p > 1, (1.2)

and
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f (u) = χ(1−exp(−a|u|p)u, χ > 0,a > 0, p > 0. (1.3)

Note that nonlinearity (1.2) with 1 < p ≤ 2, and nonlinearities (1.2), with p > 2, and (1.3)

have different nature with respect to our approach.

A standing wave solution of Eq. (1.1) is a solution of the form

ψn,m = un,m exp(−iωt), (1.4)

where un,m ∈R is called the amplitude of the standing wave and ω is the frequency of wave.

Sometimes such solutions are called breathers.

We consider two types of solutions to (1.1): with k-periodic amplitude (periodic solu-

tion)

un+k,m = un,m+k = un,m (1.5)

and vanishing at infinity (localized solution)

lim
n,m→±∞

un,m = 0. (1.6)

Making use of the standing wave Ansatz (1.4) for Eq. (1.1), we obtain the equation for

the amplitude

Lun,m −ωun,m = θ f (un,m), (1.7)

where

(Lu)n,m = −a14(1)un,m −a24(2)un,m.

Therefore, in this paper we are looking for nontrivial solutions of Eq. (1.7).

Now we introduce our basic assumptions. Let F(t) be the primitive function for f (t),

that is,

F(t) =

Z t

0
f (s)ds.

Then throughout the paper we will assume that the function f (t) satisfies the following

conditions:

(i) f (t) = o(t), t → 0;

(ii) lim
t→±∞

f (t)
t

= l < ∞;

(iii) f ∈ C1(R) and f (t)t < f ′(t)t2, t 6= 0;

Also we shall accept one of the following assumptions:

(iv) lim
t→±∞

( 1
2

f (t)t−F(t)) = ∞.

(v) the function g(t) = f (t)− lt is bounded.

The main result of the paper is the following theorem.

Theorem 1.1. Assume (i) – (iii) and either (iv) or (v). Furthermore, assume that ω < 0

and ω+ l > 0 if θ = 1, or ω > 4(a1 +a2) and ω− l < 4(a1 +a2) if θ = −1. Then Eq. (1.7)

has a nontrivial solution u ∈ l2. Moreover, if f is odd, then Eq. (1.7) has two nontrivial

solutions ±u ∈ l2, and one of them is nonnegative provided θ = 1.



Existence of Standing Waves in DNLS with Saturable Nonlinearity 21

The theorem is a consequence of Theorems 5.2, 6.4 and 6.7. Some additional results

can be found in the main body of the paper.

It is easily verified that nonlinearities (1.2) and (1.3) satisfy (i) – (iii). Furthemore, (1.2)

satisfies (iv) if 1 < p ≤ 2, and (v) if p > 2. Nonlinearity (1.3) satisfies (v). Therefore, we

have the folollowing.

Corollary 1.2. Assume that ω < 0 and ω + l > 0 if θ = 1, or ω > 4(a1 + a2) and ω− l <

4(a1+a2) if θ =−1. Then Eq. (1.7) with either nonlinearity (1.2) or (1.3) has two nontrivial

solutions ±u ∈ l2, and one of them is nonnegative provided θ = 1.

Notice that u ∈ l2 implies immediately boundary condition (1.6) at infinity.

Our approach to the existence of localized solutions is variational. More precisely,

we make use of Nehari manifold approach (references). First, we prove the existence of

spatially periodic solutions with arbitrarily large periods (wave lengths). Then we pass to

the limit as the period tends to infinity to obtain localized solutions. In the main body of the

paper we deal with the self-focusing case under assumption (iv). On the end of the paper

we indicate the changes needed to cover defocusing case and assumption (v).
The paper is organized as follows. In Section 2, we present some preliminaries, while

in Section 3 we introduce the Nehari manifolds. In Sections 4 and 5 we prove the exis-

tence of periodic and localized solutions respectively in the self-focusing case (θ = 1 under

assumption (iv). Section 6 is devoted to the case of assumption (v) and defocusing case

(θ = −1).

2 Preliminaries

Let k ≥ 2 be an integer. Then we denote by Ek the finite dimensional space of all k−periodic

sequences {un,m} (satisfying (1.5)) with the scalar product

(u,v)k = ∑
(n,m)∈Qk

un,mvn,m

and corresponding norm ‖u‖k = (u,u)
1
2

k , where

Qk := {(n,m)∈ Z
2|− [

k

2
]≤ n,m ≤ k− [

k

2
]−1},

[·] is the integer part.

We denote by E the space l2 = l2(Z2) of all sequences {un,m} (satisfying (1.6)) with the

scalar product

(u,v) = ∑
(n,m)∈Z2

un,mvn,m

and corresponding norm ‖u‖= (u,u)
1
2 .

Sometimes, we will consider the spaces l
p
k and lp with norms

‖u‖l
p

k
=

(

∑
(n,m)∈Qk

|un,m|
p

)
1
p

,1 ≤ p ≤ ∞,
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and

‖u‖l p =

(

∑
(n,m)∈Z2

|un,m|
p

)
1
p

,1 ≤ p ≤ ∞,

with well-known changes when p = ∞. Notice that ‖ · ‖l
p
k

is an equivalent norm on Ek but

not uniformly with respect to k. We note that

‖u‖l
q

k
≤ ‖u‖l

p

k
, ‖u‖lq ≤ ‖u‖l p, 1 ≤ p ≤ q ≤ ∞. (2.1)

Remark 2.1. The operator L is bounded and self-adjoint in both spaces Ek and E. Ele-

mentary Fourier analysis shows that the spectrum of L in E coincides with the interval

[0,4(a1 + a2)] and is absolutely continuous. In particular, L does not have eigenvectors in

E. Under assumptions (i) – (iii) the function
f (t)
|t| is strictly increasing, while the func-

tion 1
2

f (t)t −F(t) strictly increases for t ≥ 0, strictly decreases for t ≤ 0 and, hence, is

nonnegative.

On Ek and E, respectively, we consider the functionals

Jk(u) =
1

2
(Lku−ωu,u)k − ∑

(n,m)∈Qk

θF(un,m)

and

J(u) =
1

2
(Lu−ωu,u)− ∑

(n,m)∈Z2

θF(un,m),

where Lk is the operator L acting in the space Ek.
The following lemma can be obtained by a straightforward calculation.

Lemma 2.2. Under assumptions Jk and J are the C1-functionals on Ek and E, respectively,

and their derivatives are given by

〈J′k(u),h〉= (Lku,h)k − ∑
(n,m)∈Qk

θ f (un,m)hn,m, u,h ∈ Ek, (2.2)

〈J′(u),h〉= (Lu,h)− ∑
(n,m)∈Z2

θ f (un,m)hn,m, u,h ∈ E. (2.3)

Moreover, critical points of Jk and J are solutions of Eq. (1.7) satisfying (1.5) and (1.6),

respectively.

3 Nehari manifolds

In this section we assume that θ = 1 and assumptions (i)–(iii) hold.

For Jk and J we define the Nehari manifolds

Nk := {u ∈ Ek|〈J
′
k(u),u〉= 0,u 6= 0} ⊂ Ek

and

N := {u ∈ E|〈J′(u),u〉= 0,u 6= 0} ⊂ E,



Existence of Standing Waves in DNLS with Saturable Nonlinearity 23

respectively. An interesting, simply verified property of Nehari manifolds is that all non-

trivial solutions of Eq. 1.7 in Ek (respectively, in E) belong to Nk (respectively, Nk).

We introduce the notations Ik(u) := 〈J′k(u),u〉 and I(u) := 〈J′(u),u〉. These are the C1-

functionals and their derivatives are given by

〈I′k(u),h〉= 2(Lku,h)k − ∑
(n,m)∈Qk

[ f (un,m)+ f ′(un,m)un,m]hn,m, (3.1)

〈I′(u),h〉= 2(Lu,h)− ∑
(n,m)∈Z2

[ f (un,m)+ f ′(un,m)un,m]hn,m. (3.2)

Lemma 3.1. Assume (i) – (iii). Furthermore, assume that θ = 1, ω < 0 and ω+ l > 0. Then

the sets Nk and N are nonempty closed C1-submanifolds in Ek and in E, respectively. The

derivatives I′k and I′ are nonzero on Nk and N, respectively. Moreover, there exists β0 > 0

independent of k such that ‖u‖k ≥ β0,u ∈ Nk, and ‖u‖ ≥ β0,u ∈ N.

Proof. We consider the case of Nk, the case of N is similar. First we show that the manifold

Nk is nonempty. Let δ ∈ (−ω, l) and Eδ be the spectral subspace of Lk −ω in the space Ek

that corresponds to [0,δ]. Since −ω ∈ σ(Lk −ω), we have that Eδ 6= {0}. Let v ∈ Eδ \{0}.

Due to (i),

〈J′k(tv), tv〉= t2(Lkv−ωv,v)k − ∑
(n,m)∈Qk

f (tvn,m)tvn,m =

= t2(Lkv−ωv,v)k −o(t2) > 0,

as t > 0 small enough. But

〈J′k(tv), tv〉= t2(Lkv−ωv,v)k − ∑
(n,m)∈Qk

f (tvn,m)tvn,m =

≤ t2

(

δ‖v‖2
k − ∑

(n,m)∈Qk

f (tvn,m)v2
n,m

tvn,m

)

.

By assumption (ii), the sum above tends to l‖v‖2
k. This implies that 〈J′k(tv), tv〉< 0, as t > 0

large enough. Thus, there is t∗ > 0 such that 〈J′k(t
∗v), t∗〉 = 0 and t∗v ∈ Nk, i.e., Nk 6= ∅.

Let u ∈ Nk, then, by (2.2), (3.1) and the definition of Nk, we obtain

〈I′k(u),u〉= 〈I′k(u),u〉−2Ik(u) = ∑
(n,m)∈Qk

(

f (un,m)un,m − f ′(un,m)u2
n,m

)

.

Due to (iii), this quantity is negative. Therefore I′k(u) 6= 0, and, by the (infinite dimensional)

implicit function theorem (see, e.g., [17]), Nk is a C1-submanifold of Ek.

Now we prove the last statement of the lemma. We set φ(r) = sup
|t|≤r

f (t)
t

. This is an

increasing function of r ≥ 0, and, by (i), φ(r) → 0, as r → 0. Let u ∈ Nk. We note that

Lk −ω is the positive definite operator, and, by the definition of Nk and Eq. (2.1), we have

|ω|‖u‖2
k ≤ (Lku−ωu,u)k = ∑

(n,m)∈Qk

f (un,m)un,m ≤
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≤ φ(‖u‖l∞
k
) · ‖u‖2

k ≤ φ(‖u‖k) · ‖u‖2
k.

This implies that φ(‖u‖k) ≥ |ω|. Since function φ is an incresing, there exists β0 > 0 such

that ‖u‖k ≥ β0, u ∈ Nk.

It is obvious that the set Nk is closed.

From the proof of Lemma 3.1 we obtain the following statement.

Corollary 3.2. If Ik(v) < 0 (resp., I(v) < 0), then there exists a unique t∗ ∈ (0,1) such that

t∗v ∈ Nk (resp., t∗v ∈ N). Furthermore, there exists v ∈ Ek \ {0} (resp., v ∈ E \ {0}) such

that Jk(v) < 0 (resp., J(v) < 0).

From the definitions of Jk and Ik it follows that on Nk

Jk(u) = Jk(u)−
1

2
Ik(u) = ∑

(n,m)∈Qk

(

1

2
f (un,m)un,m−F(un,m)

)

. (3.3)

By (iii), Jk(u)≥ 0,u ∈ Nk. Similarly, from the definitions of J and I it follows that on N

J(u) = J(u)−
1

2
I(u) = ∑

(n,m)∈Z2

(

1

2
f (un,m)un,m −F(un,m)

)

, (3.4)

and J(u)≥ 0,u ∈ N.

Lemma 3.3. Assume (i) – (iii). Furthermore, assume that θ = 1, ω < 0 and ω + l > 0.
Then there exists α0 = α0(k) > 0 such that Jk(u) ≥ α0 for all u ∈ Nk.

Proof. Let u ∈ Nk, then

Jk(u) = Jk(u)−
1

2
Ik(u) = ∑

(n,m)∈Qk

(

1

2
f (un,m)un,m−F(un,m)

)

.

By Lemma 3.1, ‖u‖k ≥ β0 > 0. Therefore there exist (n0,m0) ∈ Qk (depending on u) and

δ0 = δ0(k,β0) > (independent of u), such that |un0,m0
| ≥ δ0. Then we set α0 = 1

2 f (δ0)δ0 −
F(δ0), and, by Remark 2.1, we obtain that Jk(u)≥ α0 for u ∈ Nk.

Now we introduce the following minimization problems.

mk = inf{Jk(u) : u ∈ Nk}, (3.5)

m = inf{J(u) : u ∈ N}. (3.6)

It turns that solutions of these problems are solutions of Eq. (1.7) as well.

Lemma 3.4. Assume that (i)–(iii) hold, θ = 1, ω < 0 and ω + l > 0. Then solutions of

problems (3.5) and (3.6) are solutions of Eq. (1.7) in the spaces Ek and E, respectively.
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Proof. We consider the case of problem (3.6), the other one being similar. Let u ∈ N be

a solution of minimization problem (3.6). By the Lagrange multiplier method (see, e.g.,

[17]), there exists λ ∈ R such that

J′(u)+λI′(u) = 0.

Since 〈J′(u),u〉= I(u) = 0, this and Eq. (3.2) imply that

0 = λ〈I′(u),u〉= λ ∑
(n,m)∈Z2

[

f (un,m)un,m− f ′(un,m)u2
n,m

]

.

By assumption (iii), the sum in the right-hand side is negative and, hence, λ = 0.

4 Periodic solutions

Lemma 4.1. Assume (i) – (iv). Furthermore, assume that θ = 1, ω < 0 and ω+ l > 0. Then

problem (3.5) has a solution.

Proof. Let {u j} ⊂ Nk be a minimizing sequence for the functional Jk, i.e., Jk(u j) → mk.
From Eq. (3.3) we obtain

Jk(u j) = ∑
(n,m)∈Qk

(

1

2
f (u j

n,m)u j
n,m−F(u j

n,m)

)

. (4.1)

Let us prove that the sequence {u j} is bounded in Ek. Assume the contrary. Since all lp-

norms on Ek are equivalent, passing to a subsequence we have that ‖u j‖l∞ → ∞. Then, for a

further subsequence still denoted by {u j}, there exists (n0,m0)∈ Qk such that u j(n0,m0)→

∞. By Eq. (4.1), this and assumption (iv) imply that Jk(u j) → ∞. This is a contradiction

because Jk(u j) → mk and, hence, is bounded.

Since Ek is a finite dimensional space and {u j} is bounded, we can assume, passing to a

subsequence, that u j → u ∈ Ek. Since the Nehari manifold Nk is closed and Jk is continuous,

we have that u ∈ Nk and Jk(u) = mk.

The main result of this section is the following.

Theorem 4.2. Assume (i) – (iv). Furthermore, assume that θ = 1, ω < 0 and ω + l > 0.
Then for every k ≥ 2 Eq. (1.7) has a nontrivial k-periodic solution u ∈ Ek. Moreover, if f is

odd, then Eq. (1.7) has two nontrivial solutions ±u ∈ Ek, and one of them is nonnegative.

Proof. The existence of nontrivial k-periodic solution u ∈ Ek follows from Lemma 4.1.

Let f is odd. Then F is even and it is obvious that Eq. (1.7) has two nontrivial solutions

±u ∈ Ek. It is easy to see that

(L|u|, |u|)k ≤ (Lu,u)k.

Besides, f (|t|)|t|= f (t)t and F(|t|) = F(t). This means that

Ik(|u|)≤ Ik(u) = 0.
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On the other hand,

∑
(n,m)∈Qk

(

1

2
f (|un,m|)|un,m|−F(|un,m|)

)

= ∑
(n,m)∈Qk

(

1

2
f (un,m)un,m −F(un,m)

)

= mk.

By Corollary 3.2, there is t∗ ∈ (0,1] such that u∗ = t∗|u| ∈ Nk. Then, by Remark 2.1 and

equation (3.3), we have that

Jk(u∗) ≤ ∑
(n,m)∈Qk

(

1

2
f (|un,m|)|un,m|−F(|un,m|)

)

= mk.

Thus, Jk(u∗) = mk and u∗ is a nonnegative solution, and we can assume that u = u∗. The

proof is complete.

Corollary 4.3. Assume that θ = 1, ω < 0 and ω + l > 0. Then Eq. (1.7) with either non-

linearity (1.2), where 1 < p ≤ 2, or (1.3), where any p > 0, has two nontrivial k-periodic

solutions ±u ∈ Ek, and one of them is nonnegative.

5 Long wave length limit and localized solutions

We note that it is difficult to prove a result similar to Lemma 4.1 for problem (3.6). There-

fore, in this case, critical points of J will be constructed in a different way, namely, by

passing to the limit as k → ∞ in the critical points of Jk. For this we need the following

lemma.

Lemma 5.1. Assume (i) – (iv). Furthermore, assume that θ = 1, ω < 0 and ω + l > 0.
Let uk be a k-periodic solution of problem (3.5), then the sequences {mk} = {Jk(uk)} and

{‖uk‖k} are bounded.

Proof. First we recall that the spectrum of L is absolutely continuous and coincides with

the interval [0,4(a1 + a2)]. Hence, for any δ ∈ (−ω, l) the spectral subspace of L−ω that

corresponds to [0,δ] is nonzero. Let w 6= 0 be any vector in that subspace. We have

I(tw) = 〈J′(tw), tw〉= t2(Lw−ωw,w)− ∑
(n,m)∈Z2

f (twn,m)twn,m

≤ t2

(

δ‖w‖2 − ∑
(n,m)∈Z2

f (twn,m)

twn,m
w2

n,m

)

.

(5.1)

By assumptions (i) and (ii), there is a constant C > 0 independent of m, n and t, and such

that
∣

∣

∣

∣

f (twn,m)

twn,m

∣

∣

∣

∣

≤C

for all t ∈ R and (n,m)∈ Z2. Hence, the series in the right-hand side of Eq. (5.1) converges

uniformly with respect to t ∈ R. Therefore, by assumption (ii), the sum of this series

converges to l‖w‖2, and Eq. (5.1) implies that I(tw) < 0 for all t > 0 large enough. Fix

any t with that property. By the density of finitely supported sequences in the space E,
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there exists a finitely supported vector w̃ sufficiently close to tw with the property that

I(w̃). Corollary 3.2 implies that there exists t∗ ∈ (0,1) such that I(v) = 0, with v = t∗w̃.

Since v is finitely supported, its support is contained in Qk for all k large enough. For any

such k, we define vk ∈ Ek as a unique element such that vk
n,m = vn,m for (n,m) ∈ Qk. Then

Ik(vk) = I(v) = 0 and mk ≤ Jk(vk) = J(v). Thus, {mk} is bounded.

Now, we will prove that {‖uk‖k} is bounded. Assume the contrary. Then, along a sub-

sequence, ‖uk‖k → ∞. Letting vk = uk

‖uk‖k
, we have that ‖vk‖k = 1 and one of the following

properties holds:

(vi) Vanishing: the sequence {vk} satisfies the condition ‖vk‖l∞
k

= ‖vk‖l∞ → 0 as k → ∞,

or

(vii) Non-vanishing: there exist δ > 0 and (xk,yk) ∈ Z2 such that |vk
xk,yk

| ≥ δ for all k.

Consider the first case. Since the operator L is nonnegative and

0 =
1

‖uk‖2
k

Ik(uk) = (Lkvk −ωvk,vk)k − ∑
(n,m)∈Qk

f (uk
n,m)

uk
n,m

(vk
n,m)2,

we have

|ω|= |ω|‖vk‖2
k ≤ (Lkvk −ωvk ,vk)k = ∑

(n,m)∈Qk

f (uk
n,m)

uk
n,m

(vk
n,m)2. (5.2)

By assumption (i), there exists t0 > 0 such that
f (t)
t

≤
|ω|
2 for |t|< t0. Let

Ak = {(n,m)∈ Qk : |uk
n,m| < t0},

Bk = {(n,m)∈ Qk : |uk
n,m| ≥ t0}.

Then

∑
(n,m)∈Ak

f (uk
n,m)

uk
n,m

(vk
n,m)2 ≤

|ω|

2
∑

(n,m)∈Ak

(vk
n,m)2 ≤

|ω|

2
‖vk‖2

k =
|ω|

2
.

By (5.2), this implies that

liminf
k→∞

∑
(n,m)∈Bk

f (uk
n,m)

uk
n,m

(vk
n,m)2 ≥

|ω|

2
. (5.3)

On the other hand, | f (t)| ≤ C0|u| with a constant C0 > 0. By the Hölder’s inequality, we

have

∑
(n,m)∈Bk

f (uk
n,m)

uk
n,m

(vk
n,m)2 ≤ C0|Bk|

p−2
p ‖vk‖

2
p

l
p

k

(5.4)

for all p > 2, where |Bk| is a number of the elements in Bk. Since ‖vk‖l∞
k
→ 0, inequalities

(5.3) and (5.4), and the following simple inequality

‖w‖l
p
k
≤ ‖w‖

p−2
p

l∞
k

‖w‖
2
p

k (5.5)
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imply that |Bk| → ∞.

By Eq. (3.4) and Remark 2.1, we obtain

mk = ∑
(n,m)∈Qk

(

1

2
f (un,m)un,m −F(un,m)

)

≥ ∑
(n,m)∈Bk

(

1

2
f (un,m)un,m−F(un,m)

)

≥

≥ α0|Bk| → ∞,

where

α0 = min

{

1

2
f (±t0)(±t0)−F(±t0)

}

.

This is a contradiction.

Now we consider the second case (condition (vii)). By discrete translation invariance,

we can assume that (xk,yk) = (0,0). Since ‖vk‖k = 1, we can assume that there exists

v = (vn,m) such that vk
n,m → vn,m for all (n,m) ∈ Z

2 (passing to a subsequence if needed).

Besides, it is obvious that v ∈ E, ‖v‖ ≤ 1 and |v0,0| ≥ δ. Thus, v 6= 0.

Since uk ∈ Ek is a solution of Eq. (1.7), we have

Lvk
n,m − (ω+ l)vk

n,m =
g(uk

n,m)

‖uk‖k

, (5.6)

where g(t) = f (t)− lt. By assumption (i), lim
t→±∞

g(t)
t

= 0. If vn,m 6= 0 for some (n,m) ∈ Z
2,

then |uk
n,m| → ∞. Passing to the limit in Eq. (5.6), we have that

Lvn,m − (ω+ l)vn,m = 0.

This implies that v ∈E is a nonzero eigenvector of the operator L, with the eigenvalue ω+ l.
However, by Remark 2.1, the spectrum of L in E is absolutely continuous in E and, hence,

all eigenvectors are tirvial. Again we have got a contradiction. Hence, {‖uk‖k} is bounded.

This completes the proof.

The main result of the section is the following.

Theorem 5.2. Assume (i) – (iv). Furthermore, assume that θ = 1, ω < 0 and ω + l > 0.
Then Eq. (1.7) has a nontrivial solution u ∈ E. Moreover, if f is odd, then Eq. (1.7) has two

nontrivial solutions±u ∈ E, and one of them is nonnegative.

Proof. Let uk ∈ Ek be a solution of Eq. (1.7). Then, by Lemma 5.1, the sequence {‖uk‖k} is

bounded and {uk} satisfies (vi) or (vii). In case (vi) inequality (5.5) implies that ‖uk‖l
p

k
→ 0

as k → ∞ for all p > 2. By assumption (i), for every ε > 0 there exists Cε > 0 such that

| f (t)| ≤ ε|t|+Cε|t|
p−1.

Since uk ∈ Ek is a solution of Eq. (1.7), we obtain that

|ω|‖uk‖2
k ≤ (Lkuk −ωuk,uk)k = ∑

(n,m)∈Qk

f (uk
n,m)uk

n,m ≤ ε‖uk‖2
k +Cε‖uk‖

p

l
p

k

.
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Taking ε =
|ω|
2 , we have that

|ω|

2
‖uk‖2

k ≤ Cε‖uk‖
p

l
p

k

→ 0

as k → ∞. But this contradicts to Lemma 3.1. Thus, condition (vi) is not possible. Hence,

the sequence {uk} satisfies (vii). Passing to a subsequence and using the discrete translation

invariance, we can assume that |uk
0,0| ≥ δ for some δ > 0. Making use of passage to a further

subsequence, we also can assume that there is an u = {un,m} ∈ E such that uk
n,m → un,m for

every (n,m)∈ Z2. Obviously, u ∈ E \{0}. Since point-wise limits preserve Eq. (1.7), u is a

nontrivial solution of problem (3.6).

To prove the last part of the theorem, it is enough to take as uk nonnegative periodic

solutions that exist due to Theorem 4.2. Then the limit solution u is nonnegative.

The proof is complete.

We complement Theorem 5.2 with the following result.

Theorem 5.3. Under the assumptions of Theorem 5.2, mk → m. Furthermore, the solution

u ∈ E obtained in that theorem is a minimizer for problem (3.6), i.e., J(u) = m.

Proof. Let k j → ∞ be a sequence of positive integers, and let uk j ∈ Ek j
be a solution of

problem (3.5) with k = k j. From the proof of Theorem 5.2 it follows that, passing to a

subsequence and making appropriate translations, we can assume that uk j → u 6= 0 point-

wise, where u ∈ E is a solution of Eq. (1.7).

Let (N,M)∈ Z
2
+. Then, due to Remark 2.1, we obtain

liminf
j→∞

Jk j
(uk j) = liminf

j→∞
∑

(n,m)∈Qk j

(

1

2
f (u

k j
n,m)u

k j
n,m −F(u

k j
n,m)

)

≥

≥ liminf
j→∞

N

∑
n=−N

M

∑
m=−M

(

1

2
f (u

k j
n,m)u

k j
n,m−F(u

k j
n,m)

)

=

=
N

∑
n=−N

M

∑
m=−M

(

1

2
f (un,m)un,m −F(un,m)

)

.

In the limit N → ∞ and M → ∞, this implies that

liminf
j→∞

Jk j
(uk j) ≥ J(u) ≥ m.

Therefore,

liminf
k→∞

mk ≥ J(u)≥ m. (5.7)

On the other hand, given ε > 0, let w ∈ N be such that

J(w) = ∑
(n,m)∈Z2

(

1

2
f (wn,m)wn,m −F(wn,m)

)

< m+ε.
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Choose t1 > 1 sufficiently close to 1 and such that

∑
(n,m)∈Z2

(

1

2
f (t1wn,m)t1wn,m −F(t1wn,m)

)

< m+ε.

Notice that I(t1w) < 0. Since finitely supported sequences are dense in E, there exists a

finitely supported sequence v = {vn,m} sufficiently close to t1w in E, and such that I(v) < 0

and

∑
(n,m)∈Z2

(

1

2
f (vn,m)vn,m −F(vn,m)

)

< m+ε.

Then there is t2 ∈ (0,1) such that I(t2v) = 0, and, by Remark 2.1, we have

J(t2v) = ∑
(n,m)∈Z2

(

1

2
f (t2vn,m)t2vn,m −F(t2vn,m)

)

≤

≤ ∑
(n,m)∈Z2

(

1

2
f (vn,m)vn,m −F(vn,m)

)

< m+ε.

Define vk ∈ Ek vk = v as Qk. Then for all sufficiently large k,

Ik(t2vk) = I(t2v) = 0

and

Jk(t2vk) = J(t2v) < m+ε.

Thus, we have

limsup
k→∞

mk ≤ J(u) ≤ m. (5.8)

Now from (5.7) and (5.8) we obtain the required. The proof is complete.

6 Assumption (v) and defocusing case

In this section we replace assumption (iv) by (v).

Let σk be the spectrum of the operator Lk in the space Ek that consists of eigenvalues

4(a1 sin2 π j

k
+a2 sin2 πl

k
),

where j, l = 0,1, ...,k− 1. It is easily seen that ∪kσk is a countable, dense subset of the

spectrum σ(L) = [0,4(a1 +a2)] of L in E. Then σ(L)\∪kσk is dense in σ(L) as well.

We need the following lemma.

Lemma 6.1. Assume (i) – (iii) and (v). Furthermore, assume that θ = 1, ω < 0, ω+ l > 0

and ω + l /∈ σk. Then the functional Jk satisfies the Palais–Smale condition, i.e., every se-

quence {u j} ⊂ Ek such that {Jk(u j)} is bounded and J′k(u j)→ 0 (a Palais–Smale sequence)

contains a convergent subsequence.
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Proof. To prove of the lemma it is enough to show that every Palais–Smale sequence {u j}⊂
Ek is bounded, because the space Ek is finite dimensional.

Let E+
k and E−

k be spectral subspaces of the operator Lk −ω that correspond to eigenval-

ues λ > l and λ < l, respectively. Since ω+ l is not an eigenvalue of Lk, l is not eigenvalue

of Lk −ω and we have the orthogonal sum Ek = E+
k ⊕E−

k . Any u ∈ Ek has a unique decom-

position u = u+ +u−, where u± ∈ E±
k . Accordingly, the Palais–Smale sequence {u j} splits

as u j = u j+ +u j−. We have

〈J′k(u),v〉= ((Lk −ω− l)u,v)k − ∑
(n,m)∈Qk

g(un,m)vn,m.

Taking u = u j and v = u j+, we obtain, due to the orthogonality of E+
k

and E−
k

,

〈J′k(u j),u j+〉 =
(

(Lk −ω− l)u j,u j+
)

k
− ∑

(n,m)∈Qk

g(u j
n,m)u j+

n,m =

=
(

(Lk −ω− l)u j+,u j+
)

k
− ∑

(n,m)∈Qk

g(u j
n,m)u j+

n,m.

On E+
k

((Lk −ω− l)v,v)k ≥ α‖v‖2
k,

where α > 0. Since ‖J′k(u j)‖ ≤ 1 for all sufficiently large j, and since all norms on a finite

dimensional space are equivalent, assumption (v) implies

α‖u j+‖2
k ≤ |〈J′k(u j),u j+〉|+ | ∑

(n,m)∈Qk

g(u j
n,m)u j+

n,m| ≤ ‖u j+‖k +c‖u j+‖k.

As consequence, {u j+} is bounded.

Similarly, making use of the inequality

((Lk −ω− l)v,v)k ≤ −α‖v‖2
k, v ∈ E−

k ,

where α > 0, we obtain

α‖u j−‖2
k ≤ ‖u j−‖k +c‖u j+‖k.

Since u j+ is bounded, {u j−} is bounded as well. Therefore, {u j} is bounded, the lemma is

proved.

Making use of the mountain pass theorem, we shall prove the following analogue of

Theorem 4.2.

Theorem 6.2. Assume (i) – (iii) and (v). Furthermore, assume that θ = 1, ω < 0, ω+ l > 0

and ω+ l /∈ σk. Then for every k ≥ 2 Eq. (1.7) has a nontrivial k-periodic solution u ∈ Ek.
Moreover, if f is odd, then Eq. (1.7) has two nontrivial solutions ±u ∈ Ek, and one of them

is nonnegative.

Proof. Let

Γ = {γ ∈C([0,1];Ek) : γ(0) = 0,Jk(γ(1)) < 0}
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and

bk = inf
γ∈Γk

max
t∈[0,1]

Jk(γ(t)).

As in the proof of Lemma 3.3, we have that Jk(u) ≥ α0 > 0 on the sphere ‖u‖k = β0 > 0

(here we only need assumption (i)). On the other hand, by Corollary 3.2, there exists

v ∈ Ek \ {0} such that Jk(v) < 0. This implies that the functional Jk possess the mountain

pass geometry. By Lemma 6.1, Jk satisfies Palais–Smale condition. Thus, the functional

Jk satisfies all the assumptions of mountain pass theorem (see, e.g., [25] and [27]). Hence,

bk > 0 is a critical value of Jk and there exists a critical point uk ∈ Ek \ {0} of Jk with

Jk(uk) = bk. By Lemma 2.2, uk is a solution of Eq. (1.7).

The same arguments as in the proof of Theorem 4.2 prove the remaining part of the

theorem.

Corollary 6.3. Assume that θ = 1, ω < 0, ω + l > 0 and ω + l /∈ σk. Then Eq. (1.7) with

either nonlinearity (1.2), where p > 2, or (1.3), where p > 0, has two nontrivial solutions

±u ∈ Ek.

Theorem 6.4. Assume (i) – (iii) and (v). Furthermore, assume that θ = 1, ω < 0 and

ω + l > 0. Then Eq. (1.7) has a nontrivial solution u ∈ E. Moreover, if f is odd, then Eq.

(1.7) has two nontrivial solutions±u ∈ E.

Proof. For every k there exists ωk such that ωk → ω and ωk + l /∈σk. Then, by Theorem 6.2,

there exists a periodic solution uk ∈ Ek of Eq. (1.7), with ω replaced by ωk. Now we can use

the same arguments as in the proofs of Lemma 5.1 Theorem 5.2 to obtain the boundedness

of ‖uk‖k and then pass to the limit as k → ∞.

In the proofs given above we consider the case θ = 1 only. The case θ = −1 is similar

with the functionals J and Jk replaced by −J and −Jk. In this case conditions ω < 0 and

ω + l > 0 are replaced by ω > 4(a1 + a2) and ω− l < 4(a1 + a2), respectively. Making

use of essentially the same arguments as in the self-focusing case, we obtain the following

results in the defocusing case.

Theorem 6.5. Assume (i) – (iii) and either (iv) or (v) holds, and θ = −1, ω > 4(a1 + a2)
and ω− l < 4(a1 +a2). Furthermore, in the case of assumption (v) assume that ω− l 6∈ σk.

Then Eq. (1.7) has a nontrivial k-periodic solution u ∈ Ek. Moreover, if f is odd, then Eq.

(1.7) has two nontrivial solutions±u ∈ Ek.

Corollary 6.6. Under assumptions (i) – (iii) and either (iv) or (v), assume that θ = −1,

ω > 4(a1 + a2) and ω− l < 4(a1 + a2). In addition, assume that ω − l 6∈ σk in case of

assumption (v). Then Eq. (1.7) with nonlinearities (1.2) and (1.3) has two nontrivial k-

periodic solutions±u ∈ Ek.

Theorem 6.7. Assume (i) – (iii) and either (iv) or (v). Furthermore, assume that θ = −1,
ω > 4(a1 + a2) and ω− l < 4(a1 + a2). Then Eq. (1.7) has a nontrivial solution u ∈ E.

Moreover, if f is odd, then Eq. (1.7) has two nontrivial solutions±u ∈ E.
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