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Abstract

By utilizing some scalar inequalities obtained via Hermite’s interpolating polynomial,
we will obtain lower and upper bounds for the difference in Jensen’s inequality and
in the Edmundson-Lah-Ribarič inequality in time scale calculus that hold for the class
of n-convex functions. Main results are then applied to generalized means, with a
particular emphasis to power means, and in that way some new reverse relations for
generalized and power means that correspond to n-convex functions are obtained.
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1 Introduction and preliminaries

1.1 On time scale calculus

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [14] in 1988
as a unification of the theory of difference equations with that of differential equations,
unifying integral and differential calculus with the calculus of finite differences, extending
to cases “in between” and offering a formalism for studying hybrid discrete-continuous
dynamic systems. It has applications in any field that requires simultaneous modelling of
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discrete and continuous time. Now, we briefly introduce the time scales calculus and refer
to [1, 15, 16] and the books [11, 12] for further details.

By a time scale T we mean any closed subset of R. The two most popular examples of
time scales are the real numbers R and the integers Z. Since the time scale T may or may
not be connected, we need the concept of jump operators.

For t ∈ T, we define the forward jump operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t}

and the backward jump operator by

ρ(t) = sup{s ∈ T : s < t}.

In this definition, the convention is inf ∅ = sup T (i.e., σ(t) = t if T has a maximum t) and
sup ∅ = inf T (i.e., ρ(t) = t if T has a minimum t). If σ(t) > t, then we say that t is right-
scattered, and if ρ(t) < t, then we say that t is left-scattered. Points that are right-scattered
and left-scattered at the same time are called isolated. Also, if σ(t) = t, then t is said to be
right-dense, and if ρ(t) = t, then t is said to be left-dense. Points that are simultaneously
right-dense and left-dense are called dense. The mapping µ : T→ [0,∞) defined by

µ(t) = σ(t)− t

is called the graininess function. If T has a left-scattered maximum M, then we define
Tκ = T \ {M}; otherwise Tκ = T. If f : T→ R is a function, then we define the function
fσ : T→ R by

fσ(t) = f (σ(t)) for all t ∈ T.

In the following considerations, T will denote a time scale, IT = I ∩T will denote a time
scale interval (for any open or closed interval I in R), and [0,∞)T will be used for the time
scale interval [0,∞)∩T.

Definition 1.1. Assume f :T→R is a function and let t ∈Tκ. Then we define f ∆(t) to be the
number (provided it exists) with the property that given any ε > 0, there is a neighborhood
U of t such that∣∣∣ f (σ(t))− f (s)− f ∆(t) (σ(t)− s)

∣∣∣ ≤ ε |σ(t)− s| for all s ∈ UT.

We call f ∆(t) the delta derivative of f at t. We say that f is delta differentiable on Tκ

provided f ∆(t) exists for all t ∈ Tκ.

Definition 1.2. A function f : T→ R is called rd-continuous if it is continuous at all right-
dense points in T and its left-sided limits are finite at all left-dense points in T. We denote
by Crd the set of all rd-continuous functions. We say that f is rd-continuously delta differ-
entiable (and write f ∈ C1

rd) if f ∆(t) exists for all t ∈ Tκ and f ∆ ∈ Crd.

Definition 1.3. A function F : T→R is called a delta antiderivative of f : T→R if F∆(t) =
f (t) for all t ∈ Tκ. Then we define the delta integral by∫ t

a
f (s)∆s = F(t)−F(a).

The importance of rd-continuous function is revealed by the following result.

Theorem 1.4. Every rd-continuous function has a delta antiderivative.
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1.2 On positive linear functionals and time scale integrals

First we recall the following definition from [21].

Definition 1.5. Let E be a nonempty set and L be a linear class of real-valued functions
f : E→ R having the following properties.

(L1) If f ,g ∈ L and α,β ∈ R, then (α f +βg) ∈ L.

(L2) If f (t) = 1 for all t ∈ E, then f ∈ L.

A positive linear functional is a functional A : L→ R having the following properties.

(A1) If f ,g ∈ L and α,β ∈ R, then A(α f +βg) = αA( f )+βA(g).

(A2) If f ∈ L and f (t) ≥ 0 for all t ∈ E, then A( f ) ≥ 0.

In [3, 8, 5, 6], the authors presented a series of inequalities for the time scale integral and
showed that it is not necessary to prove such kind of inequalities "from scratch" in the time
scale setting as they can be obtained easily from well-known inequalities for positive linear
functionals since the time scale integral is in fact a positive linear functional. This method
is extensively studied in the monograph [4], which is the main monograph in the area of
Jensen-type inequalities on time scales. For some recent results concerning inequalities on
time scale, the reader is reffer to [13, 19].

Now we quote three theorems from [3] that we need in our research.

Theorem 1.6. Let T be a time scale. For a,b ∈ T with a < b, let

E = [a,b)∩T and L = Crd (E,R) .

Then (L1) and (L2) are satisfied. Moreover, the delta integral
b∫

a
f (t)∆t is a positive linear

functional which satisfies conditions (A1) and (A2).

Corresponding versions of Theorem 1.6 for nabla and α-diamond integrals are also
given in [3].

Multiple Riemann integration and multiple Lebesgue integration on time scale was in-
troduced in [9] and [10], respectively, and both integrals are also positive linear functionals.

Theorem 1.7. Let T1, . . . ,Tn be time scales. For ai,bi ∈ Ti with ai < bi, 1 ≤ i ≤ n, let

E ⊂ ([a1,b1)∩T1)× · · ·× ([an,bn)∩Tn)

be Lebesgue ∆-measurable and let L be the set of all ∆-measurable functions from E to R.
Then (L1) and (L2) are satisfied. Moreover, the multiple Lebesgue delta integral on time
scales

∫
E

f (t)∆t is a positive linear functional and satisfies conditions (A1) and (A2).

Theorem 1.8. Under the assumptions of Theorem 1.7, the delta integral

∫
E

h(t) f (t)∆t∫
E

h(t)∆t
, where

h : E→ R is nonnegative, ∆-integrable and
∫
E

h(t)∆t > 0, is also a positive linear functional

satisfying (A1), (A2) and A(1) = 1.
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1.3 On the Jensen and Edmundson-Lah-Ribarič inequalities

Using the known Jensen inequality for positive linear functionals ([21]) and Theorem 1.8,
M. Anwar, R. Bibi, M. Bohner and J. Pečarić proved in [3] the following generalization of
Jensen’s inequality on time scales.

Theorem 1.9. Assume φ ∈C(I,R) is convex, where I ⊂ R is an interval. Let E ⊂ Rn be as in
Theorem 1.7 and suppose f is ∆-integrable on E such that f (E) = I. Moreover, let h : E→R
be nonnegative, ∆-integrable such that

∫
E

h(t)∆t > 0. Then

φ


∫
E

h(t) f (t)∆t∫
E

h(t)∆t

 ≤
∫
E

h(t)φ( f (t))∆t∫
E

h(t)∆t
. (1.1)

The authors in [17] proved the converse of Jensen’s inequality for convex functions (see
also [20]). Beesack and Pečarić gave in [7] the generalization of Edmundson-Lah-Ribarič’s
inequality for positive linear functionals. Applying the fact that the multiple Lebesgue delta
time scale integral is a positive linear functional (Theorem 1.8) to Beesack-Pečarić’s result
from [7], the following theorem is proved in [3].

Theorem 1.10. Assume φ ∈ C(I,R) is convex, where I = [a,b] ⊂ R, with a < b. Let E ⊂ Rn

be as in Theorem 1.7 and suppose f is ∆-integrable on E such that f (E) = I. Moreover, let
h : E→ R be nonnegative, ∆-integrable such that

∫
E

h(t)∆t > 0. Then

∫
E

h(t)φ( f (t))∆t∫
E

h(t)∆t
≤

b−

∫
E

h(t) f (t)∆t∫
E

h(t)∆t

b−a
φ(a)+

∫
E

h(t) f (t)∆t∫
E

h(t)∆t
−a

b−a
φ(b). (1.2)

1.4 On n-convex functions

Definition of n-convex functions is characterized by n-th order divided differences. The n-th
order divided difference of a function f : [a,b]→ R at mutually distinct points t0, t1, ..., tn ∈
[a,b] is defined recursively by

f [ti] = f (ti), i = 0, ...,n,

f [t0, ..., tn] =
f [t1, ..., tn]− f [t0, ..., tn−1]

tn− t0
.

The value f [t0, ..., tn] is independent of the order of the points t0, ..., tn.
Definition of divided differences can be extended to include the cases in which some or

all the points coincide (see e.g. [2], [21]):

f [a, ...,a︸︷︷︸
n times

] =
1

(n−1)!
f (n−1)(a), n ∈ N.
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A function f : [a,b]→ R is said to be n-convex (n ≥ 0) if and only if for all choices of
(n+1) distinct points t0, t1, ..., tn ∈ [a,b], we have f [t0, ..., tn] ≥ 0.

Recently, in the paper [18], R. Mikić Ð. Pečarić and J. Pečarić proved some repre-
sentations of the left side in the scalar Edmundson-Lah-Ribarič inequality via Hermite’s
interpolating polynomials in terms of divided differences. Now, we quote their results.

Lemma 1.11. Let a,b be real numbers such that a < b. For a function φ ∈ Cn([a,b]), n ≥ 3
the following identities hold:

φ(t)−
b− t
b−a

φ(a)−
t−a
b−a

φ(b) =
n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

](t−a)(t−b)k−1+R1(t) (1.3)

φ(t)−
b− t
b−a

φ(a)−
t−a
b−a

φ(b) = φ[a,a;b](t−a)(t−b)

+

n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

](t−a)2(t−b)k−1+R2(t), (1.4)

where

Rm(t) =(t−a)m(t−b)n−mφ[t;a, ...,a︸︷︷︸
m times

; b,b, ...,b︸   ︷︷   ︸
(n−m) times

]. (1.5)

In addition, if n > m ≥ 3, then we have

φ(t)−
b− t
b−a

φ(a)−
t−a
b−a

φ(b) = (t−a) (φ[a,a]−φ[a,b])+
m−1∑
k=2

φ(k)(a)
k!

(t−a)k

+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

](t−a)m(t−b)k−1+Rm(t). (1.6)

Lemma 1.12. Let a,b be real numbers such that a < b. For a function φ ∈ Cn([a,b]), n ≥ 3,
the following identities hold:

φ(t)−
b− t
b−a

φ(a)−
t−a
b−a

φ(b) =
n−1∑
k=2

φ[b;a, ...,a︸︷︷︸
k times

](t−b)(t−a)k−1+R∗1(t) (1.7)

φ(t)−
b− t
b−a

φ(a)−
t−a
b−a

φ(b) = φ[b,b;a](t−b)(t−a)

+

n−2∑
k=2

φ[b,b;a, ...,a︸︷︷︸
k times

](t−b)2(t−a)k−1+R∗2(t), (1.8)

where

R∗m(t) = φ[t;b, ...,b︸︷︷︸
m times

; a,a, ...,a︸   ︷︷   ︸
(n−m) times

](t−b)m(t−a)n−m. (1.9)
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If n > m ≥ 3, then additionally we have

φ(t)−
b− t
b−a

φ(a)−
t−a
b−a

φ(b) = (b− t) (φ[a,b]−φ[b,b])+
m−1∑
k=2

φ(k)(b)
k!

(t−b)k

+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

](t−b)m(t−a)k−1+R∗m(t). (1.10)

The rest of this paper is organized as follows: in Section 2 we will obtain various lower
and upper bounds for the difference in the Edmundson-Lah-Ribarič inequality in time scale
calculus that hold for the class of n-convex functions; in Section 3 we will utilize our results
from Section 2 in order to get different lower and upper bounds for the difference in the
Jensen inequality in the same settings, and finally in Section 4 we will apply all of the
results to generalized means, with a particular emphasis to power means, and in that way
we will get some new reverse relations for generalized and power means that correspond to
the class of n-convex functions.

2 Inequalities of the Edmundson-Lah-Ribarič type on time scales

For simplicity, we introduce the notations

L∆( f ) =
∫
E

f (t)∆t and L∆( f ,h) =

∫
E

f (t)h(t)∆t∫
E

h(t)∆t
,

where f : E → R is ∆-integrable and h : E → R is nonnegative ∆-integrable such that∫
E

h(t)∆t > 0.
Throughout this paper, whenever mentioning the interval [a,b], we assume that a,b are

finite real numbers such that a < b. We can write the Edmundson-Lah-Ribarič inequality
(1.2) in the form

αφL∆( f ,h)+βφ−L∆(φ( f ),h) ≥ 0 (2.1)

with standard notation

αφ =
φ(b)−φ(a)

b−a
and βφ =

bφ(a)−aφ(b)
b−a

.

A generalization of the Edmundson-Lah-Ribarič inequality (1.2) obtained from Lemma
1.11 is given in the following theorem.

Theorem 2.1. Let φ ∈ Cn([a,b]) be an n-convex function. Assume E is as in Theorem 1.7
and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E → R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. If n > m ≥ 3 are of different parity, then

L∆(φ( f ),h)−αφL∆( f ,h)−βφ (2.2)

≤(L∆( f ,h)−a)
(
φ′(a)−φ[a,b]

)
+

m−1∑
k=2

φ(k)(a)
k!

L∆
(
( f −a1)k,h

)
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+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

]L∆
(
( f −a1)m( f −b1)k−1,h

)
.

Inequality (2.2) also holds when the function φ is n-concave and n and m are of equal
parity. In case when the function φ is n-convex and n and m are of equal parity, or when
the function φ is n-concave and n and m are of different parity, the inequality sign in (2.2)
is reversed.

Proof. Since f (E) = [a,b] by the assumptions, we have a ≤ f (t) ≤ b, so we can replace t
with f (t) in (1.6) and obtain:

φ( f (t))−αφ f (t)−βφ = ( f (t)−a)
(
φ′(a)−φ[a,b]

)
+

m−1∑
k=2

φ(k)(a)
k!

( f (t)−a)k

+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

]( f (t)−a)m( f (t)−b)k−1+Rm( f (t)).

Since the multiple Lebesgue delta time scale integral is a positive linear functional,
multiplying the previous inequality by h(t)∫

E

h(t)∆t
and then integrating the resulting inequality

yields

L∆(φ( f ),h)−αφL∆( f ,h)−βφ (2.3)

=(L∆( f ,h)−a)
(
φ′(a)−φ[a,b]

)
+

m−1∑
k=2

φ(k)(a)
k!
·

∫
E

( f (t)−a)kh(t)∆t∫
E

h(t)∆t

+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

]

∫
E

( f (t)−a)m( f (t)−b)k−1h(t)∆t∫
E

h(t)∆t
+

∫
E

Rm( f (t))h(t)∆t∫
E

h(t)∆t
.

Now we set our focus on positivity and negativity of the term∫
E

Rm( f (t))h(t)∆t∫
E

h(t)∆t
.

Because multiple Lebesgue delta time scale integral takes nonnegative values for posi-
tive functions, it is enough to study positivity and negativity of:

Rm( f (t)) = ( f (t)−a)m ( f (t)−b)n−mφ[ f (t);a, ...,a︸︷︷︸
m times

; b,b, ...,b︸   ︷︷   ︸
(n−m) times

].

Since by assumptions we have a ≤ f (t) ≤ b, we have ( f (t)−a)m ≥ 0 for any choice of m.
For the same reason we have ( f (t)−b) ≤ 0. Trivially it follows that ( f (t)−b)n−m ≤ 0 when
n and m are of different parity, and ( f (t)−b)n−m ≥ 0 when n and m are of equal parity.

If the function φ is n-convex, then φ[ f (t);a, ...,a︸︷︷︸
m times

; b,b, ...,b︸   ︷︷   ︸
(n−m) times

] ≥ 0, and if the function φ is

n-concave, then φ[ f (t);a, ...,a︸︷︷︸
m times

; b,b, ...,b︸   ︷︷   ︸
(n−m) times

] ≤ 0 for any t ∈ [a,b]. Inequality (2.2) now easily

follows from (2.3). �
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Next result is another generalization of the Edmundson-Lah-Ribarič inequality in terms
of divided differences, obtained from Lemma 1.12 that also holds for the class of n-convex
functions.

Theorem 2.2. Let φ ∈ Cn([a,b]) be an n-convex function. Assume E is as in Theorem 1.7
and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E → R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. For an odd number m ≥ 3 such that m < n

we have

L∆(φ( f ),h)−αφL∆( f ,h)−βφ (2.4)

≤(b−L∆( f ,h))
(
φ[a,b]−φ′(b)

)
+

m−1∑
k=2

φ(k)(b)
k!

L∆
(
( f −b1)k,h

)
+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

]L∆
(
( f −b1)m( f −a1)k−1,h

)
.

Inequality (2.4) also holds when the function φ is n-concave and m is even. In case when
the function φ is n-convex and m is even, or when the function φ is n-concave and m is odd,
the inequality sign in (2.4) is reversed.

Proof. In a similar manner as in the proof of the previous theorem, we can replace t with
f (t) in (1.10), multiply the obtained inequality by h(t)∫

E

h(t)∆t
and then integrate the resulting

inequality. In that way we get

L∆(φ( f ),h)−αφL∆( f ,h)−βφ (2.5)

=(b−L∆( f ,h))
(
φ[a,b]−φ′(b)

)
+

m−1∑
k=2

φ(k)(b)
k!
·

∫
E

( f (t)−b)kh(t)∆t∫
E

h(t)∆t

+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

]

∫
E

( f (t)−b)m( f (t)−a)k−1h(t)∆t∫
E

h(t)∆t
+

∫
E

R∗m( f (t))h(t)∆t∫
E

h(t)∆t
.

Next, we study positivity and negativity of the term∫
E

R∗m( f (t))h(t)∆t∫
E

h(t)∆t
.

Again, it is enough to study positivity and negativity of the function:

R∗m( f (t)) = ( f (t)−b)m( f (t)−a)n−mφ[ f (t);b, ...,b︸︷︷︸
m times

; a,a, ...,a︸   ︷︷   ︸
(n−m) times

].

Since f (t) ∈ [a,b], we have ( f (t)−a)n−m ≥ 0 for every t and any choice of m. For the same
reason we have ( f (t)− b) ≤ 0. Trivially it follows that ( f (t)− b)m ≤ 0 when m is odd, and
( f (t)− b)m ≥ 0 when m is even. If the function φ is n-convex, then its n-th order divided
differences are greater of equal to zero, and if the function φ is n-concave, then its n-th order
divided differences are less or equal to zero. Now (2.4) easily follows from (2.5). �
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The following corollary is a direct consequence of the previous two theorems, and it
provides us with a lower and an upper bound for the difference in the Edmundson-Lah-
Ribarič inequality for time scales.

Corollary 2.3. Let φ ∈ Cn([a,b]) be an n-convex function. Assume E is as in Theorem 1.7
and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E → R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. If m ≥ 3 is odd and m < n, then

(L∆( f ,h)−a)
(
φ′(a)−φ[a,b]

)
+

m−1∑
k=2

φ(k)(a)
k!

L∆(( f −a1)k,h)

+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)m( f −b1)k−1,h)

≤L∆(φ( f ),h)−αφL∆( f ,h)−βφ (2.6)

≤(b−L∆( f ,h))
(
φ[a,b]−φ′(b)

)
+

m−1∑
k=2

φ(k)(b)
k!

L∆(( f −b1)k,h)

+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

]L∆(( f −b1)m( f −a1)k−1,h).

Inequality (2.6) also holds when the function φ is n-concave and m is even. In case when
the function φ is n-convex and m is even, or when the function φ is n-concave and m is odd,
the inequality signs in (2.6) are reversed.

In our next result we establish another set of bounds for the difference in the Edmundson-
Lah-Ribarič inequality. It is obtained from Lemma 1.11.

Theorem 2.4. Let φ ∈ Cn([a,b]) be an n-convex function. Assume E is as in Theorem 1.7
and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E → R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. If n ≥ 3 is odd, then

n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)( f −b1)k−1,h)

≤L∆(φ( f ),h)−αφL∆( f ,h)−βφ ≤ φ[a,a;b]L∆(( f −a1)( f −b1),h) (2.7)

+

n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)2( f −b1)k−1,h).

Inequalities (2.7) also hold when the function φ is n-concave and n is even. In case when
the function φ is n-convex and n is even, or when the function φ is n-concave and n is odd,
the inequality signs in (2.7) are reversed.

Proof. Again, we can replace t with f (t) in (1.3) and (1.4), multiply the obtained inequality
by h(t)∫

E

h(t)∆t
and then integrate the resulting inequality. In that way we get

L∆(φ( f ),h)−αφL∆( f ,h)−βφ (2.8)
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=

n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

]

∫
E

h(t)( f (t)−a)( f (t)−b)k−1∆t∫
E

h(t)∆t
+

∫
E

h(t)R1( f (t))∆t∫
E

h(t)∆t

and

L∆(φ( f ),h)−αφL∆( f ,h)−βφ = φ[a,a;b]

∫
E

h(t)( f (t)−a)( f (t)−b)∆t∫
E

h(t)∆t

+

n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

]

∫
E

h(t)( f (t)−a)2( f (t)−b)k−1∆t∫
E

h(t)∆t
+

∫
E

h(t)R2( f (t))∆t∫
E

h(t)∆t
. (2.9)

From the discussion about positivity and negativity of the term

L∆(Rm( f ),h) =

∫
E

h(t)Rm( f (t))∆t∫
E

h(t)∆t
,

that is, about positivity and negativity of the function Rm( f (t)) in the proof of Theorem 2.1,
for m = 1 it follows that

∗ L∆(R1( f ),h)≥ 0 when the function φ is n-convex and n is odd, or when φ is n-concave
and n even;

∗ L∆(R1( f ),h)≤ 0 when the function φ is n-concave and n is odd, or when φ is n-convex
and n even.

Now the relation (2.8) becomes inequality

L∆(φ( f ),h)−αφL∆( f ,h)−βφ ≥
n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)( f −b1)k−1,h)

that holds for L∆(R1( f ),h) ≥ 0, and in case L∆(R1( f ),h) ≤ 0 the inequality sign is reversed.
In the same manner, for m = 2 it follows that

∗ L∆(R2( f ),h)≤ 0 when the function φ is n-convex and n is odd, or when φ is n-concave
and n even;

∗ L∆(R2( f ),h)≥ 0 when the function φ is n-concave and n is odd, or when φ is n-convex
and n even.

In this case the relation (2.9) for L∆(R2( f ),h) ≤ 0 gives us

L∆(φ( f ),h)−αφL∆( f ,h)−βφ ≤ φ[a,a;b]L∆(( f −a1)( f −b1),h)
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+

n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)2( f −b1)k−1,h),

and when L∆(R2( f ),h) ≥ 0 the inequality sign is reversed.
When we combine the two inequalities obtained above, we get exactly (2.7). �

By utilizing Lemma 1.12 we can get a similar lower and upper bound for the difference
in the Edmundson-Lah-Ribarič inequality that holds for all n ∈ N, not only the odd ones.

Theorem 2.5. Let φ ∈ Cn([a,b]) be an n-convex function, n ≥ 3. Assume E is as in Theorem
1.7 and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E→ R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. Then we have

φ[b,b;a]L∆(( f −b1)( f −a1),h)+
n−2∑
k=2

φ[b,b;a, ...,a︸︷︷︸
k times

]L∆(( f −b1)2( f −a1)k−1,h)

≤L∆(φ( f ),h)−αφL∆( f ,h)−βφ ≤
n−1∑
k=2

φ[b;a, ...,a︸︷︷︸
k times

]L∆(( f −b1)( f −a1)k−1,h) (2.10)

If the function φ is n-concave, the inequality signs in (2.10) are reversed.

Proof. We follow the lines from the proof of Theorem 2.4, with the difference that we start
with equalities (1.7) and (1.8) from Lemma 1.12, and then we return to the discussion about
positivity and negativity of the term L∆(R∗m( f ),h) from the proof of Theorem 2.2 for m = 1
and m = 2. �

3 Inequalities of the Jensen type on time scales

In this section we will utilize the results from the previous section, as well Lemma 1.11
and Lemma 1.12, in order to obtain some Jensen-type inequalities that hold for n-convex
functions.

Our first result is a consequence of Corollary 2.3, and it provides us with a lower and
an upper bound for the difference in the Jensen inequality for time scales (1.1).

Theorem 3.1. Let φ ∈ Cn([a,b]) be an n-convex function. Assume E is as in Theorem 1.7
and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E → R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. If m ≥ 3 is odd and m < n, then

φ(a)−φ(b)+bφ′(b)−aφ′(a)+ (φ′(a)−φ′(b))L∆( f ,h)

+

m−1∑
k=2

(
φ(k)(a)

k!
L∆(( f −a1)k,h)−

φ(k)(b)
k!

(L∆( f ,h)−b)k
)

+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)m( f −b1)k−1,h)
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−

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

](L∆( f ,h)−b)m(L∆( f ,h)−a)k−1

≤L∆(φ( f ),h)−φ(L∆( f ,h)) (3.1)

≤φ(b)−φ(a)+aφ′(a)−bφ′(b)+ (φ′(b)−φ′(a))L∆( f ,h)

+

m−1∑
k=2

(
φ(k)(b)

k!
L∆(( f −b1)k,h)−

φ(k)(a)
k!

(L∆( f ,h)−a)k
)

+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

]L∆(( f −b1)m( f −a1)k−1,h)

−

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−a)m(L∆( f ,h)−b)k−1

Inequalities (3.1) also hold when the function φ is n-concave and m is even. In case when
the function φ is n-convex and m is even, or when the function φ is n-concave and m is odd,
the inequality signs in (3.1) are reversed.

Proof. Because f (E) = [a,b], we have ah(t) ≤ f (t)h(t) ≤ bh(t), and consequently L∆( f ,h) ∈
[a,b], so we can substitute t with L∆( f ,h) in (1.6) and obtain

φ(L∆( f ,h))−αφL∆( f ,h)−βφ (3.2)

=(L∆( f ,h)−a)
(
φ′(a)−φ[a,b]

)
+

m−1∑
k=2

φ(k)(a)
k!

(L∆( f ,h)−a)k

+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−a)m(L∆( f ,h)−b)k−1+Rm(L∆( f ,h)).

We need to study positivity and negativity of the term:

Rm(L∆( f ,h)) =
(
L∆( f ,h)−a

)m (
L∆( f ,h)−b

)n−m
φ[L∆( f ,h);a, ...,a︸︷︷︸

m times

; b,b, ...,b︸   ︷︷   ︸
(n−m) times

].

Since L∆( f ,h) ∈ [a,b], we have
(
L∆( f ,h)−a

)m
≥ 0 for any choice of m, and (L∆( f ,h)−

b)n−m ≤ 0 when n and m are of different parity, and (L∆( f ,h)−b)n−m ≥ 0 when n and m are
of equal parity.

If the function φ is n-convex, then φ[L∆( f ,h);a, ...,a︸︷︷︸
m times

; b,b, ...,b︸   ︷︷   ︸
(n−m) times

] ≥ 0, and if the function

φ is n-concave, then the inequality sign is reversed.
Now the relation (3.2) for n-convex function φ and n and m ≥ 3 of different parity, or

n-concave function φ and n and m ≥ 3 of the same parity, becomes

φ(L∆( f ,h))−αφL∆( f ,h)−βφ (3.3)

≤(L∆( f ,h)−a)
(
φ′(a)−φ[a,b]

)
+

m−1∑
k=2

φ(k)(a)
k!

(L∆( f ,h)−a)k
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+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−a)m(L∆( f ,h)−b)k−1,

and for n-convex function φ and n and m ≥ 3 of the same parity, or n-concave function φ
and n and m ≥ 3 of different parity, the inequality sign is reversed.

In the same way we can replace t with L∆( f ,h) in (1.10) and get

φ(L∆( f ,h))−αφL∆( f ,h)−βφ (3.4)

=(b−L∆( f ,h))
(
φ[a,b]−φ′(b)

)
+

m−1∑
k=2

φ(k)(b)
k!

(L∆( f ,h)−b)k

+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

](L∆( f ,h)−b)m(L∆( f ,h)−a)k−1+R∗m(L∆( f ,h)).

As before, we study positivity and negativity of the term R∗m(L∆( f ,h)):

R∗m(L∆( f ,h)) = (L∆( f ,h)−b)m(L∆( f ,h)−a)n−mφ[L∆( f ,h);b, ...,b︸︷︷︸
m times

; a,a, ...,a︸   ︷︷   ︸
(n−m) times

].

Again, since L∆( f ,h) ∈ [a,b], we have
(
L∆( f ,h)−a

)n−m
≥ 0 for any choice of m, and (L∆( f ,h)−

b)m ≤ 0 when m is odd, and (L∆( f ,h)−b)m ≥ 0 when m is even. If the function φ is n-convex,
then its n-th order divided differences are greater of equal to zero, and if the function φ is
n-concave, then its n-th order divided differences are less or equal to zero.

Equality (3.4) now turns into

φ(L∆( f ,h))−αφL∆( f ,h)−βφ (3.5)

≤(b−L∆( f ,h))
(
φ[a,b]−φ′(b)

)
+

m−1∑
k=2

φ(k)(b)
k!

(L∆( f ,h)−b)k

+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

](L∆( f ,h)−b)m(L∆( f ,h)−a)k−1

for n-convex function φ and an odd number m ≥ 3 or n-concave function φ and an even
number m ≥ 3. If φ is n-convex and m is even, or if φ is n-concave and m is odd, the
inequality is reversed.

By combining inequalities (3.3) and (3.5) we get that

(L∆( f ,h)−a)
(
φ′(a)−φ[a,b]

)
+

m−1∑
k=2

φ(k)(a)
k!

(L∆( f ,h)−a)k

+

n−m∑
k=1

φ[a, ...,a︸︷︷︸
m times

;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−a)m(L∆( f ,h)−b)k−1

≤φ(L∆( f ,h))−αφL∆( f ,h)−βφ (3.6)
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≤(b−L∆( f ,h))
(
φ[a,b]−φ′(b)

)
+

m−1∑
k=2

φ(k)(b)
k!

(L∆( f ,h)−b)k

+

n−m∑
k=1

φ[b, ...,b︸︷︷︸
m times

;a, ...,a︸︷︷︸
k times

](L∆( f ,h)−b)m(L∆( f ,h)−a)k−1

holds if n is odd and φ is n-convex and m is odd, or φ is n-concave and m is even. If φ
is n-convex and m is even, or φ is n-concave and m is odd, then the inequality signs are
reversed.

When we multiply series of inequalities (3.6) by −1 and add to (2.6), we get exactly
(3.1), and the proof is complete. �

Next result also provides us with a lower and upper bound for the difference in the
Jensen inequality for time scales, and it is obtained from Theorem 2.4 and Lemma 1.11.

Theorem 3.2. Let φ ∈ Cn([a,b]) be an n-convex function. Assume E is as in Theorem 1.7
and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E → R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. If n ≥ 3 is odd, then

φ[a,a;b](b−L∆( f ,h))(L∆( f ,h)−a)+
n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)( f −b1)k−1,h)

− (L∆( f ,h)−a)2
n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−b)k−1

≤L∆(φ( f ),h)−φ(L∆( f ,h)) (3.7)

≤φ[a,a;b]L∆(( f −a1)( f −b1),h)− (L∆( f ,h)−a)
n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−b)k−1

+

n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

]L∆(( f −a1)2( f −b1)k−1,h).

Inequalities (3.7) also hold when the function φ is n-concave and n is even. In case when
the function φ is n-convex and n is even, or when the function φ is n-concave and n is odd,
the inequality signs in (3.7) are reversed.

Proof. By following a similar procedure as in the proof of the previous theorem, we start
by replacing t with L∆( f ,h) in with relations (1.3) and (1.4) from Lemma 1.11. We get

φ(L∆( f ,h))−αφL∆( f ,h)−βφ =
n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−a)(L∆( f ,h)−b)k−1+R1(L∆( f ,h))

(3.8)

and

φ(L∆( f ,h))−αφL∆( f ,h)−βφ (3.9)
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=φ[a,a;b](L∆( f ,h)−a)(L∆( f ,h)−b)

+

n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−a)2(L∆( f ,h)−b)k−1+R2(L∆( f ,h))

respectively. After discussing the positivity an negativity of terms R1(L∆( f ,h)) and R2(L∆( f ,h))
in the same way as in the proof Theorem 3.1, from relations (3.8) and (3.9) we get a series
of inequalities

(L∆( f ,h)−a)
n−1∑
k=2

φ[a;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−b)k−1 ≤ φ(L∆( f ,h))−αφL∆( f ,h)−βφ (3.10)

≤φ[a,a;b](L∆( f ,h)−a)(L∆( f ,h)−b)+ (L∆( f ,h)−a)2
n−2∑
k=2

φ[a,a;b, ...,b︸︷︷︸
k times

](L∆( f ,h)−b)k−1

that holds when n is odd and φ is n-convex, or when n is even and φ is n-concave. If n is
odd and φ is n-concave, or if n is even and φ is n-convex, then the inequality signs in (3.10)
are reversed.

Inequalities (3.7) are obtained after multiplying (3.10) by −1 and adding it to (2.7). �

In the analogue way as described in the proof of the previous theorem, but with utilizing
Lemma 1.12 and Theorem 2.5, we can get a similar lower and upper bound for the difference
in the Jensen inequality (1.1) that holds for all n ∈ N, not only the odd ones.

Theorem 3.3. Let φ ∈ Cn([a,b]) be an n-convex function, n ≥ 3. Assume E is as in Theorem
1.7 and suppose f is ∆-integrable on E such that f (E) = [a,b]. Moreover, let h : E→ R be
nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. We have

φ[b,b;a]L∆(( f −b1)( f −a1),h)− (L∆( f ,h)−b)
n−1∑
k=2

φ[b;a, ...,a︸︷︷︸
k times

](L∆( f ,h)−a)k−1

+

n−2∑
k=2

φ[b,b;a, ...,a︸︷︷︸
k times

]L∆(( f −b1)2( f −a1)k−1,h)

≤L∆(φ( f ),h)−φ(L∆( f ,h)) (3.11)

≤ f [b,b;a](b−L∆( f ,h))(L∆( f ,h)−a)+
n−1∑
k=2

φ[b;a, ...,a︸︷︷︸
k times

]L∆(( f −b1)( f −a1)k−1,h)

− (L∆( f ,h)−b)2
n−2∑
k=2

φ[b,b;a, ...,a︸︷︷︸
k times

](L∆( f ,h)−a)k−1.

If the function φ is n-concave, the inequality signs in (3.11) are reversed.
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4 Applications

In this section, we use the results from the previous sections to get new converse inequalities
for generalized means and power means in the time scale setting.

4.1 Generalized means

Suppose Ψ : I→R is continuous and strictly monotone and f is ∆-integrable on E such that
f (E) = I, where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable
such that

∫
E

h(t)∆t > 0. The generalized mean with respect to the multiple Lebesgue delta

time scale integral is defined by

MΨ
(

f ,L∆( f ,h)
)
= Ψ−1

(
L∆(Ψ( f ),h)

)
. (4.1)

Now, our intention is to derive mutual bounds for generalized means in the time scale
setting. In such a way, we will obtain some new reverse relations for generalized means
that correspond to n-convex functions.

Before we state such results, we have to introduce some notations arising from this
particular setting. Throughout this section we denote

Φ = χ◦ψ−1, αΦ =
χ(b)−χ(a)
ψ(b)−ψ(a)

, βΦ =
ψ(b)χ(a)−ψ(a)χ(b)

ψ(b)−ψ(a)

and
ψa =min{ψ(a),ψ(b)}, ψb =max{ψ(a),ψ(b)},

where χ and ψ are strictly monotone functions. It is obvious that if the function ψ is in-
creasing, then ψa = ψ(a), ψb = ψ(b), and if ψ is decreasing, then ψa = ψ(b), ψb = ψ(a).

Since for a ∆-integrable function f on E such that f (E) = [a,b] we have ψ( f (E)) =
[ψa,ψb], all of the results from previous sections can be exploited in establishing some new
reverses of Jensen’s inequality and the Edmundson-Lah-Ribarič inequality for selfadjoint
operators related to quasi-arithmetic means by substituting φ with Φ = χ ◦ψ−1 and f with
ψ( f ).

We start with some Edmundson-Lah-Ribarič type inequalities for qgeneralized means
which arise from the results from Section 2. The first result in this section is carried out by
virtue of our Theorem 2.1.

Corollary 4.1. Suppose ψ,χ : [a,b]→ R are continuous and strictly monotone and Φ =
χ ◦ψ−1 ∈ Cn([a,b]) is n-convex. Assume f is ∆-integrable on E such that f (E) = [a,b],
where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable such that∫
E

h(t)∆t > 0. If n > m ≥ 3 are of different parity, then

χ
(
Mχ( f ,L∆( f ,h))

)
−αΦψ

(
Mψ( f ,L∆( f ,h))

)
−βΦ (4.2)

≤(L∆(ψ( f ),h)−ψa)
(
Φ′(ψa)−Φ[ψa,ψb]

)
+

m−1∑
k=2

Φ(k)(ψa)
k!

L∆
(
(ψ( f )−ψa1)k,h

)
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+

n−m∑
k=1

Φ[ψa, ...,ψa︸    ︷︷    ︸
m times

;ψb, ...,ψb︸    ︷︷    ︸
k times

]L∆
(
(ψ( f )−ψa1)m(ψ( f )−ψb1)k−1,h

)
.

Inequality (4.2) also holds when the function Φ is n-concave and n and m are of equal
parity. In case when the function Φ is n-convex and n and m are of equal parity, or when
the function Φ is n-concave and n and m are of different parity, the inequality sign in (4.2)
is reversed.

The following result is a direct consequence of Theorem 2.2.

Corollary 4.2. Suppose ψ,χ : [a,b]→ R are continuous and strictly monotone and Φ =
χ ◦ψ−1 ∈ Cn([a,b]) is n-convex. Assume f is ∆-integrable on E such that f (E) = [a,b],
where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable such that∫
E

h(t)∆t > 0. For an odd number m ≥ 3 such that m < n, we have

χ
(
Mχ( f ,L∆( f ,h))

)
−αΦψ

(
Mψ( f ,L∆( f ,h))

)
−βΦ (4.3)

≤(ψb−L∆(ψ( f ),h))
(
Φ[ψa,ψb]−Φ′(ψb)

)
+

m−1∑
k=2

Φ(k)(ψb)
k!

L∆((ψ( f )−ψb1)k,h)

+

n−m∑
k=1

Φ[ψb, ...,ψb︸    ︷︷    ︸
m times

;ψa, ...,ψa︸    ︷︷    ︸
k times

]L∆( f ,h)(ψ( f )−ψb1)m(ψ( f )−ψa1)k−1.

Inequality (4.3) also holds when the function Φ is n-concave and m is even. In case when
the function Φ is n-convex and m is even, or when the function Φ is n-concave and m is odd,
the inequality sign in (4.3) is reversed.

Our next result arises from Theorem 2.4.

Corollary 4.3. Suppose ψ,χ : [a,b]→ R are continuous and strictly monotone and Φ =
χ ◦ψ−1 ∈ Cn([a,b]) is n-convex. Assume f is ∆-integrable on E such that f (E) = [a,b],
where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable such that∫
E

h(t)∆t > 0. If n ≥ 3 is odd, then

n−1∑
k=2

Φ[ψa;ψb, ...,ψb︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψa1)(ψ( f )−ψb1)k−1,h)

≤χ
(
Mχ( f ,L∆( f ,h))

)
−αΦψ

(
Mψ( f ,L∆( f ,h))

)
−βΦ (4.4)

≤Φ[ψa,ψa;ψb]L∆((ψ( f )−ψa1)(ψ( f )−ψb1),h)

+

n−2∑
k=2

Φ[ψa,ψa;ψb, ...,ψb︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψa1)2(ψ( f )−ψb1)k−1,h).

Inequalities (4.4) also hold when the function Φ is n-concave and n is even. In case when
the function Φ is n-convex and n is even, or when the function Φ is n-concave and n is odd,
the inequality signs in (4.4) are reversed.
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As a consequence of Theorem 2.5, we have the following result.

Corollary 4.4. Suppose ψ,χ : [a,b]→ R are continuous and strictly monotone and Φ =
χ◦ψ−1 ∈ Cn([a,b]) is n-convex, n≥ 3. Assume f is ∆-integrable on E such that f (E)= [a,b],
where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable such that∫
E

h(t)∆t > 0. Then we have

Φ[ψb,ψb;ψa]L∆((ψ( f )−ψb1)(ψ( f )−ψa1),h)

+

n−2∑
k=2

Φ[ψb,ψb;ψa, ...,ψa︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψb1)2(ψ( f )−ψa1)k−1,h)

≤χ
(
Mχ( f ,L∆( f ,h))

)
−αΦψ

(
Mψ( f ,L∆( f ,h))

)
−βΦ (4.5)

≤

n−1∑
k=2

Φ[ψb;ψa, ...,ψa︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψb1)(ψ( f )−ψa1)k−1,h).

If the function Φ is n-concave, the inequality signs in (4.5) are reversed.

The corollaries below arise from the results from Section 3 and give us Jensen type
inequalities for quasi-arithmetic means. They are obtained from Theorem 3.1, 3.2 and 3.3
respectively.

Corollary 4.5. Suppose ψ,χ : [a,b]→ R are continuous and strictly monotone and Φ =
χ ◦ψ−1 ∈ Cn([a,b]) is n-convex. Assume f is ∆-integrable on E such that f (E) = [a,b],
where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable such that∫
E

h(t)∆t > 0. If m ≥ 3 is odd and m < n, then

Φ(ψa)−Φ(ψb)+ψbΦ
′(ψb)−ψaΦ

′(ψa)+ (Φ′(ψa)−Φ′(ψb))L∆(ψ( f ),h)

+

m−1∑
k=2

(
Φ(k)(ψa)

k!
L∆((ψ( f )−ψa1)k,h)−

Φ(k)(gb)
k!

(L∆(ψ( f ),h)−ψb)k
)

+

n−m∑
k=1

Φ[ψa, ...,ψa︸    ︷︷    ︸
m times

;ψb, ...,ψb︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψa1)m(ψ( f )−ψb1)k−1,h)

−

n−m∑
k=1

Φ[ψb, ...,ψb︸    ︷︷    ︸
m times

;ψa, ...,ψa︸    ︷︷    ︸
k times

](L∆(ψ( f ),h)−ψb)m(L∆(ψ( f ),h)−ψa)k−1

≤χ
(
Mχ( f ,L∆( f ,h))

)
−χ

(
Mψ( f ,L∆( f ,h))

)
(4.6)

≤Φ(ψb)−Φ(ψa)+ψaΦ
′(ψa)−ψbΦ

′(ψb)+ (Φ′(ψb)−Φ′(ψa))L∆(ψ( f ),h)

+

m−1∑
k=2

(
Φ(k)(ψb)

k!
L∆((ψ( f )−ψb1)k,h)−

Φ(k)(ψa)
k!

(L∆(ψ( f ),h)−ψa)k
)

+

n−m∑
k=1

Φ[ψb, ...,ψb︸    ︷︷    ︸
m times

;ψa, ...,ψa︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψb1)m(ψ( f )−ψa1)k−1,h)
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−

n−m∑
k=1

Φ[ψa, ...,ψa︸    ︷︷    ︸
m times

;ψb, ...,ψb︸    ︷︷    ︸
k times

](L∆(ψ( f ),h)−ψa)m(L∆(ψ( f ),h)−ψb)k−1

Inequalities (4.6) also hold when the function Φ is n-concave and m is even. In case when
the function Φ is n-convex and m is even, or when the function Φ is n-concave and m is odd,
the inequality signs in (4.6) are reversed.

Corollary 4.6. Suppose ψ,χ : [a,b]→ R are continuous and strictly monotone and Φ =
χ ◦ψ−1 ∈ Cn([a,b]) is n-convex. Assume f is ∆-integrable on E such that f (E) = [a,b],
where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable such that∫
E

h(t)∆t > 0. If n ≥ 3 is odd, then

Φ[ψa,ψa;ψb](ψb−L∆(ψ( f ),h))(L∆(ψ( f ),h)−ψa)

+

n−1∑
k=2

Φ[ψa;ψb, ...,ψb︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψa1)(ψ( f )−ψb1)k−1,h)

− (L∆(ψ( f ),h)−ψa)2
n−2∑
k=2

Φ[ψa,ψa;ψb, ...,ψb︸    ︷︷    ︸
k times

](L∆(ψ( f ),h)−ψb)k−1

≤χ
(
Mχ( f ,L∆( f ,h))

)
−χ

(
Mψ( f ,L∆( f ,h))

)
(4.7)

≤Φ[ψa,ψa;ψb]L∆((ψ( f )−ψa1)(ψ( f )−ψb1),h)

− (L∆(ψ( f ),h)−ψa)
n−1∑
k=2

Φ[ψa;ψb, ...,ψb︸    ︷︷    ︸
k times

](L∆(ψ( f ),h)−ψb)k−1

+

n−2∑
k=2

Φ[ψa,ψa;ψb, ...,ψb︸    ︷︷    ︸
k times

](L∆((ψ( f )−ψa1)2(ψ( f )−ψb1)k−1,h).

Inequalities (4.7) also hold when the function Φ is n-concave and n is even. In case when
the function Φ is n-convex and n is even, or when the function Φ is n-concave and n is odd,
the inequality signs in (4.7) are reversed.

Corollary 4.7. Suppose ψ,χ : [a,b]→ R are continuous and strictly monotone and Φ =
χ◦ψ−1 ∈ Cn([a,b]) is n-convex, n≥ 3. Assume f is ∆-integrable on E such that f (E)= [a,b],
where E ⊂ Rn is as in Theorem 1.7. Let h : E → R be nonnegative ∆-integrable such that∫
E

h(t)∆t > 0. Then we have

Φ[ψb,ψb;ψa]L∆((ψ( f )−ψb1)(ψ( f )−ψa1),h)

− (L∆(ψ( f ),h)−ψb)
n−1∑
k=2

Φ[ψb;ψa, ...,ψa︸    ︷︷    ︸
k times

](L∆(ψ( f ),h)−ψa)k−1

+

n−2∑
k=2

Φ[ψb,ψb;ψa, ...,ψa︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψb1)2(ψ( f )−ψa1)k−1,h)
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≤χ
(
Mχ( f ,L∆( f ,h))

)
−χ

(
Mψ( f ,L∆( f ,h))

)
(4.8)

≤Φ[ψb,ψb;ψa](ψb−L∆(ψ( f ),h))(L∆(ψ( f ),h)−ψa)

+

n−1∑
k=2

Φ[ψb;ψa, ...,ψa︸    ︷︷    ︸
k times

]L∆((ψ( f )−ψb1)(ψ( f )−ψa1)k−1,h)

− (L∆(ψ( f ),h)−ψb)2
n−2∑
k=2

Φ[ψb,ψb;ψa, ...,ψa︸    ︷︷    ︸
k times

](L∆(ψ( f ),h)−ψa)k−1.

If the function Φ is n-concave, the inequality signs in (4.8) are reversed.

4.2 Examples with power means

Assume E ⊂ Rn is as in Theorem 1.7 and f is ∆-integrable on E such that f (E) = I and
f (t) > 0, t ∈ E. Let h : E→ R be nonnegative ∆-integrable such that

∫
E

h(t)∆t > 0. For r ∈ R,

suppose f r and (log f ) are ∆-integrable on E. The power mean with respect to the multiple
Riemann delta time scale integral is defined by

M[r]
(

f ,L∆( f ,h)
)
=


(
L∆( f r,h)

) 1
r , if r , 0

exp
(
L∆(log f ,h)

)
, if r = 0.

(4.9)

Since power means are a special case of generalized means for particular choices of
functions χ and ψ, first let us set χ(t) = ts and ψ(t) = tr, where s and r are real parameters
such that r , 0 and t > 0.

Now, the function Φ(t) = (χ◦ψ−1)(t) = ts/r belongs to the class Cn(R) for any n ∈N, and
we have

Φ(n)(t) =
s
r

( s
r
−1

) ( s
r
−2

)
· · ·

( s
r
−n+1

)
t

s
r−n.

It is straightforward to check that:

• if r < 0 < s or s < 0 < r, then the function Φ is n-convex for any even n ∈ N, and
n-concave for any odd number n;

• if 0 < s < r or r < s < 0, then the function Φ is n-convex for any odd n ∈ N, and
n-concave for any even number n;

• if 0 < r < s or s < r < 0, then the function Φ is n-convex when b s
r c is even and n is

odd, or when b s
r c is odd and n is even, and Φ is n-concave when b s

r c and n are both
either even or odd.

It remains to consider the cases when one of the parameters r and s is equal to zero.

If s = 0, then setting χ(t) = log t and ψ(t) = tr, it follows that Φ(t) = (χ ◦ψ−1)(t) =
1
r

log t
belongs to the class Cn(R) for any n ∈ N, and we have

Φ(n)(t) =
1
r

(−1)n−1(n−1)! t−n.

It is easy to see that:
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• the function Φ is n-convex if r > 0 and n ∈ N is odd, or if r < 0 and n ∈ N is even;

• the function Φ is n-concave if r > 0 and n ∈ N is even, or if r < 0 and n ∈ N is odd.

In cases when r < 0 the function ψ(t) = tr is strictly decreasing, so we have ψa = br and
ψb = ar, and in cases when 0 < r the function ψ is strictly increasing, so we have ψa = ar

and ψb = br.
Finally, if r = 0, then setting χ(t) = ts and ψ(t) = log t, it follows that the function Φ(t) =

(φ◦ψ−1)(t) = est belongs to the class Cn(R) for any n ∈ N, and we have

Φ(n)(t) = sn est.

Trivially,

• if s > 0, then the function Φ is n-convex for any n ∈ N;

• if s< 0, thenΦ is n-convex for any even number n, and n-concave for any odd number
n.

The function ψ(t) = log t is strictly increasing, so in this case we have ψa = loga and
ψb = logb.

We see that all of the results regarding quasi-arithmetic means from the previous sub-
section can be applied to power means, considering our discussion from above.
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