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1 Introduction and Preliminaries

Majorization makes precise the vague notion that the components of a vector x are ”less
spread out” or ”more nearly equal” than the components of a vector y. For fixed m ≥ 2 let

x = (x1, ..., xm) , y = (y1, ...,ym)

denote two m-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[m], y[1] ≥ y[2] ≥ ... ≥ y[m],

x(1) ≤ x(2) ≤ ... ≤ x(m), y(1) ≤ y(2) ≤ ... ≤ y(m)

be their ordered components.
Majorization: [20, p.319] x is said to majorize y (or y is said to be majorized by x), in
symbol, x � y, if

l∑
i=1

y[i] ≤

l∑
i=1

x[i] (1.1)

holds for l = 1,2, ...,m−1 and
m∑

i=1

xi =

m∑
i=1

yi.

Note that (1.1) is equivalent to

m∑
i=m−l+1

y(i) ≤

m∑
i=m−l+1

x(i)

holds for l = 1,2, ...,m−1.
There are several equivalent characterizations of the majoriztion relation x � y in addi-

tion to the conditions given in definition of majorization. One is actually the answer of a
question posed and answered in 1929 by Hardy, Littlewood and Polya [11, 12]: x majorizes
y if

m∑
i=1

φ (yi) ≤
m∑

i=1

φ (xi) (1.2)

for all continuous convex functions φ. Another interesting characterization of x � y, also by
Hardy, Littlewood, and Polya [11, 12], is that y = Px for some double stochastic matrix P.
In fact, the previous characterization implies that the set of vectors x that satisfy x � y is the
convex hull spanned by the n! points formed from the permutations of the elements of x.
The following theorem is well-known as the majorization theorem and a convenient refer-
ence for its proof is given by Marshall and Olkin [17, p.11] (see also [20, p.320]):

Theorem 1.1. Let x = (x1, ..., xm) ,y = (y1, ...,ym) be two m-tuples such that xi, yi ∈ [a,b]
(i = 1, ...,m). Then

m∑
i=1

φ (yi) ≤
m∑

i=1

φ (xi) (1.3)

holds for every continuous convex function φ : [a,b]→ R iff x � y holds.
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The following theorem can be regarded as a generalization of Theorem 1.1 known as
Weighted Majorization Theorem and is proved by Fuchs in [10] (see also [20, p.323]):

Theorem 1.2. Let x = (x1, ..., xm) ,y = (y1, ...,ym) be two decreasing real m-tuples with xi, yi

∈ [a,b] (i = 1, ...,m), let w = (w1, ...,wm) be a real m-tuple such that
l∑

i=1

wi yi ≤

l∑
i=1

wi xi for l = 1, ...,m−1; (1.4)

and
m∑

i=1

wi yi =

m∑
i=1

wi xi. (1.5)

Then for every continuous convex function φ : [a,b]→ R, we have
n∑

i=1

wiφ (yi) ≤
n∑

i=1

wiφ (xi) . (1.6)

Consider the Green function G defined on [α,β]× [α,β] by

G(t, s) =

 (t−β)(s−α)
β−α , α ≤ s ≤ t;

(s−β)(t−α)
β−α , t ≤ s ≤ β.

(1.7)

The function G is convex in s, it is symmetric, so it is also convex in t. The function G is
continuous in s and continuous in t.

Theorem 1.3 ([2]). Let φ : [a,b]→ R be a continuous convex function on the interval [a,b]
and x = (x1, ..., xm) ,y = (y1, ...,ym) and w = (w1, ...,wm) be m-tuples such that xi, yi ∈ [a,b]
and wi ∈ R (i = 1, ...,m) which satisfies (1.5) and also G is defined in (1.7).

Then the following two statements are equivalent.

(i) For every continuous convex function φ : [a,b]→ R, it holds
m∑

i=1

wiφ(yi) ≤
m∑

i=1

wiφ(xi) (1.8)

(ii) For all τ ∈ [a,b], it holds
m∑

i=1

wiG (yi, τ) ≤
m∑

i=1

wiG(xi, τ). (1.9)

Moreover, the statements (i) and (ii) are also equivalent if we change the sign of inequality
in both inequalities, in (1.8) and in (1.9).

For integral version and generalization of majorization theorem see [17, p.583] ,[1, 3,
4, 7, 16, 18, 19]).
Bernstein had proved that if all the even derivatives are at least 0 in (a,b), then f has an
analytic continuation into the complex plane. Boas suggested to Widder that this might be
proved by use of the Lidstone series. This seemed plausible because the Lidstone series, a
generalization of the Taylor series, approximates a given function in the neighborhood of
two points instead of one by using the even derivatives. Such series have been studied by
G. J. Lidstone (1929), H. Poritsky (1932), J. M. Wittaker (1934) and others (see [6]).
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Definition 1.4. Let φ ∈C∞([0,1]), then the Lidstone series has the form

∞∑
k=o

(
φ(2k)(0)Λk(1− x)+φ(2k)(1)Λk(x)

)
, (1.10)

where, Λn is a polynomial of degree 2n+1 defined by the relations

Λ0(t) = t, Λ
′′

n (t) = Λn−1(t), Λn(0) = Λn(1) = 0, n ≥ 1.

In [23], Widder proved the fundamental lemma:

Lemma 1.5. if φ ∈C2n([0,1]), then

φ(t) =
n−1∑
k=0

[
φ(2k)(0)Λk(1− t)+φ(2k)Λk(t)

]
+

∫ 1

0
Gn(t, s)φ(2n)(t)dt,

where,

G1(t, s) =G(t, s) =

(t−1)s , s ≤ t,
(s−1)t, t ≤ s,

(1.11)

is homogeneous Green’s function of the differential operator d2

ds2 on [0,1], and with the
successive iterates of G(t, s)

Gn(t, s) =
∫ 1

0
G1(t, p)Gn−1(p, s)dp, n ≥ 2. (1.12)

The Lidstone polynomial can be expressed in terms of Gn(t, s) as

Λn(t) =
∫ 1

0
Gn(t, s)sds. (1.13)

When dealing with functions with different degree of smoothness divided differences are
found to be very useful.

Definition 1.6. Let φ be a real-valued function defined on the segment [a,b]. The divided
difference of order n of the function φ at distinct points x0, ..., xn ∈ [a,b] is defined recur-
sively (see [5], [20]) by

φ[xi] = φ(xi), (i = 0, ...,n)

and

φ[x0, ..., xn] =
φ[x1, ..., xn]−φ[x0, ..., xn−1]

xn− x0
.

The value φ[x0, ..., xn] is independent of the order of the points x0, ..., xn.
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The definition may be extended to include the case that some (or all) the points coincide.
Assuming that φ( j−1)(x) exists, we define

φ [x, ..., x]︸  ︷︷  ︸
j−times

=
φ( j−1)(x)
( j−1)!

. (1.14)

The notion of n-convexity goes back to Popoviciu [22]. We follow the definition given by
Karlin [15]:

Definition 1.7. A function φ : [a,b]→ R is said to be n-convex on [a,b], n ≥ 0 if for all
choices of (n+1) distinct points in [a,b], the n-th order divided difference of φ satisfies

φ[x0, ..., xn] ≥ 0.

In fact, Popoviciu proved that each continuous n-convex function on [a,b] is the uni-
form limit of the sequence of n-convex polynomials. Many related results, as well as some
important inequalities due to Favard, Berwald and Steffensen can be found in [14].
The aim of this paper is to obtain some new identities by using Lidstone’s interpolating
polynomial. We arrange the paper in this manner: in Section 2, we give generalized re-
sults of majorization theorem by using Lidstone’s polynomial and conditions on Green’s
function. We also give results for (2n)-convex functions and get classical and weighted
majorization theorems as its special cases. In Section 3, we give bounds for identities re-
lated to the generalizations of majorization inequalities by using Čebyšev functionals. We
also give Grüss type inequalities and Ostrowski-type inequalities for these functionals. In
Section 4, we present mean value theorems and n-exponential convexity for these function-
als which leads to exponential convexity and then log-convexity. Finally, in Section 5, we
present several families of functions which construct to a large families of functions that are
exponentially convex. We give classes of Cauchy type means and prove their monotonicity.

2 Main Results

Theorem 2.1. Let n ∈ N, x = (x1, ..., xm) ,y = (y1, ...,ym) and w = (w1, ...,wm) be m-tuples
such that xi, yi ∈ [a,b] and wi ∈ R (i = 1, ...,m) and φ ∈C2n[a,b]. Then

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

=

n−1∑
k=0

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
+

n−1∑
k=0

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−a

)
−

m∑
i=1

wiΛk

(yi−a
b−a

)
+ (b−a)2n−1

∫ b

a

 m∑
i=1

wiGn

( xi−a
b−a

,
t−a
b−a

)
−

m∑
i=1

wiGn

(yi−a
b−a

,
t−a
b−a

)φ(2n)(t)dt.

(2.1)
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Proof. Consider

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi) . (2.2)

We use Widder’s Lemma for representation of function in the form:

φ(x) =
n−1∑
k=0

(b−a)2k
[
φ(2k)(a)Λk

(
b− x
b−a

)
+φ(2k)(b)Λk

( x−a
b−a

)]
+ (b−a)2n−1

∫ b

a
Gn

( x−a
b−a

,
t−a
b−a

)
φ(2n)(t)dt, (2.3)

where, Λk is a Lidstone polynomial.
Using value of φ(x) from (2.3) in (2.2), we have

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

=

m∑
i=1

wi

n−1∑
k=0

(b−a)2k
[
φ(2k)(a)Λk

(
b− xi

b−a

)
+φ(2k)(b)Λk

( xi−a
b−a

)]
+

m∑
i=1

wi

[
(b−a)2n−1

∫ b

a
Gn

( xi−a
b−a

,
t−a
b−a

)
φ(2n)(t)dt

]

−

m∑
i=1

wi

n−1∑
k=0

(b−a)2k
[
φ(2k)(a)Λk

(
b− yi

b−a

)
+φ(2k)(a)Λk

(yi−a
b−a

)]
−

m∑
i=1

wi

[
(b−a)2n−1

∫ b

a
Gn

(yi−a
b−a

,
t−a
b−a

)
φ(2n)(t)dt

]
,

after some arrangement we get (2.1). �

Integral version of the above theorem can be stated as:

Theorem 2.2. Let n ∈ N, x,y : [α,β]→ [a,b], w : [α,β]→ R be continuous functions and
φ ∈C2n[a,b]. Then∫ β

α
w(t)φ (x(t))dt−

∫ β

α
w(t)φ (y(t))dt

=

n−1∑
k=0

(b−a)2kφ(2k)(a)
[∫ β

α
w(t)Λk

(
b− x(t)
b−a

)
dt−

∫ β

α
w(t)Λk

(
b− y(t)
b−a

)
dt

]

+

n−1∑
k=0

(b−a)2kφ(2k)(b)
[∫ β

α
w(t)Λk

(
x(t)−a
b−a

)
dt−

∫ β

α
w(t)Λk

(
y(t)−a
b−a

)
dt

]
+ (b−a)2n−1

∫ b

a
φ(2n)(s)

[∫ β

α
w(t)Gn

(
x(t)−a
b−a

,
s−a
b−a

)
dt−

∫ β

α
w(t)Gn

(
y(t)−a
b−a

,
s−a
b−a

)
dt

]
ds.
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We give generalization of majorization theorem for 2n−convex function.

Theorem 2.3. Let n ∈ N, , x = (x1, ..., xm) ,y = (y1, ...,ym) and w = (w1, ...,wm) be m-tuples
such that xi, yi ∈ [a,b] and wi ∈ R (i = 1, ...,m).
If for all t ∈ [a,b]

m∑
i=1

wiGn

(yi−a
b−a

,
t−a
b−a

)
≤

m∑
i=1

wiGn

( xi−a
b−a

,
t−a
b−a

)
(2.4)

then for every (2n)-convex function φ : [a,b]→ R, we have

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

≥

n−1∑
k=0

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
+

n−1∑
k=0

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−a

)
−

m∑
i=1

wiΛk

(yi−a
b−a

) . (2.5)

If the reverse inequality in (2.4) holds, then also the reverse inequality in (2.5) holds.

Proof. If the function φ is 2n-convex, without loss of generality we can assume that φ is
2n-times differentiable, therefore we have φ(2n)(x) ≥ 0, for all x ∈ [a,b], and by using (2.4),
we get (2.5). �

Integral version can be stated as:

Theorem 2.4. Let n ∈N, x,y : [α,β]→ [a,b] and w : [α,β]→R be any continuous functions.
If for all s ∈ [a,b]∫ β

α
w(t)Gn

(
y(t)−a
b−a

,
s−a
b−a

)
dt ≤

∫ β

α
w(t)Gn

(
x(t)−a
b−a

,
s−a
b−a

)
dt (2.6)

then for every (2n)-convex function φ : [a,b]→ R,∫ β

α
w(t)φ(x(t))dt ≥

∫ β

α
w(t)φ(y(t))dt

+

n−1∑
k=0

(b−a)2kφ(2k)(a)
[∫ β

α
w(t)Λk

(
b− x(t)
b−a

)
dt−

∫ β

α
w(t)Λk

(
b− y(t)
b−a

)
dt

]

+

n−1∑
k=0

(b−a)2kφ(2k)(b)
[∫ β

α
w(t)Λk

(
x(t)−a
b−a

)
dt−

∫ β

α
w(t)Λk

(
y(t)−a
b−a

)
dt

]
.

(2.7)

If the reverse inequality in (2.6) holds, then also the reverse inequality in (2.7) holds.

The following theorem is majorization theorem for 2n-convex function:
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Theorem 2.5. Let n ∈N, Let x = (x1, ..., xm) ,y = (y1, ...,ym) be two decreasing real m-tuples
with xi, yi ∈ [a,b] (i = 1, ...,m), let w = (w1, ...,wm) be a real m-tuple such that which satisfies
(1.4), (1.5) and Gn be defined in (1.12).

(i) If n is odd, then for every 2n-convex function φ : [a,b]→ R, it holds

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

≥

n−1∑
k=1

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
+

n−1∑
k=1

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−a

)
−

m∑
i=1

wiΛk

(yi−a
b−a

) .
(2.8)

(ii) Consider the inequality (2.8) be satisfied and let ϑ : [a,b]→ R be a function defined
by

ϑ(.) :=
n−1∑
k=1

(b−a)2k
(
φ(2k)(a)Λk

(
b− .
b−a

)
+φ(2k)(b)Λk

(
.−a
b−a

))
. (2.9)

If ϑ is a convex function, then the right hand side of (2.8) is non-negative that is the
following weighted majorization inequality holds

m∑
i=1

wiφ (yi) ≤
m∑

i=1

wiφ (xi) . (2.10)

(iii) If n is even, then for every 2n-convex function φ : [a,b]→ R, it holds

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

≤

n−1∑
k=1

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
+

n−1∑
k=1

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−a

)
−

m∑
i=1

wiΛk

(yi−a
b−a

) .
(2.11)

(iv) Consider the inequality (2.11) be satisfied and let ϑ : [a,b]→ R be a function defined
in (2.9). If ϑ is a concave function, then the right hand side of (2.11) is non-positive
that is reverse inequality in (2.10) is valid.

Proof. (i) By (1.11), G1(t, s) ≤ 0, for 0 ≤ t, s ≤ 1.
By using (1.12), we have Gn(t, s) ≤ 0 for odd n and Gn(t, s) ≥ 0 for even n.
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Now as G1 is convex and Gn−1 is positive for odd n, therefore by using (1.12), Gn is convex
in first variable if n is odd. Similarly Gn is concave in first variable if n is even.
Hence if n is odd then by majorization theorem we have

m∑
i=1

wiGn

(yi−a
b−a

,
t−a
b−a

)
≤

m∑
i=1

wiGn

( xi−a
b−a

,
t−a
b−a

)
. (2.12)

Therefore if n is odd, then by Theorem 2.3, (2.8) holds.
(ii) We can easily get the equivalent form of the inequality (2.8) as

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi) ≥
m∑

i=1

wiϑ (xi)−
m∑

i=1

wiϑ (yi) .

By using (1.4), (1.5) and the fact that ϑ is a convex function, so by applying weighted
majorization inequality, we get immediately the non-negativity of the right hand side of
(2.8) and we have the inequality (2.10).
Similarly we can prove (iii) and (iv). �

The following theorem is majorization theorem for 2n-convex function in integral case:

Theorem 2.6. Let n ∈ N, x,y : [α,β] → [a,b] be decreasing and w : [α,β] → R be any
continuous functions and Gn be defined in (1.12). Let∫ υ

α
w(t)y(t)dt ≤

∫ υ

α
w(t)x(t)dt, f or υ ∈ [α,β] (2.13)

and ∫ β

α
w(t)y(t)dt =

∫ β

α
w(t)x(t)dt. (2.14)

(i) If n is odd, then for every 2n-convex function φ : [a,b]→ R, it holds∫ β

α
w(t)φ(x(t))dt−

∫ β

α
w(t)φ(y(t))dt

≥

n−1∑
k=1

(b−a)2kφ(2k)(a)
[∫ β

α
w(t)Λk

(
b− x(t)
b−a

)
dt−

∫ β

α
w(t)Λk

(
b− y(t)
b−a

)
dt

]

+

n−1∑
k=1

(b−a)2kφ(2k)(b)
[∫ β

α
w(t)Λk

(
x(t)−a
b−a

)
dt−

∫ β

α
w(t)Λk

(
y(t)−a
b−a

)
dt

]
.

(2.15)

(ii) Consider the inequality (2.15) be satisfied and let ϑ : [a,b]→ R be a function defined
in (2.9) is a convex function, then the right hand side of (2.15) is non-negative that is
the following weighted majorization inequality in integral case holds∫ β

α
w(t)φ(y(t))dt ≤

∫ β

α
w(t)φ(x(t))dt. (2.16)
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(iii) If n is even, then for every 2n-convex function φ : [a,b]→ R, it holds∫ β

α
w(t)φ(x(t))dt−

∫ β

α
w(t)φ(y(t))dt

≤

n−1∑
k=1

(b−a)2kφ(2k)(a)
[∫ β

α
w(t)Λk

(
b− x(t)
b−a

)
dt−

∫ β

α
w(t)Λk

(
b− y(t)
b−a

)
dt

]

+

n−1∑
k=1

(b−a)2kφ(2k)(b)
[∫ β

α
w(t)Λk

(
x(t)−a
b−a

)
dt−

∫ β

α
w(t)Λk

(
y(t)−a
b−a

)
dt

]
.

(2.17)

(iv) Consider the inequality (2.17) be satisfied and let ϑ : [a,b]→ R be a function defined
in (2.9). If ϑ is a concave function, then the right hand side of (2.17) is non-positive
that is reverse inequality in (2.16) is valid.

3 BOUNDS FOR IDENTITIES RELATED TO GENERALIZA-
TION OF MAJORIZATION INEQUALITY

For two Lebesgue integrable functions f ,h : [a,b]→ R we consider the Čebyšev functional

Ω( f ,h) =
1

b−a

∫ b

a
f (t)h(t)dt−

1
b−a

∫ b

a
f (t)dt.

1
b−a

∫ b

a
h(t)dt. (3.1)

In [8], the authors proved the following theorems:

Theorem 3.1. Let f : [a,b]→ R be a Lebesgue integrable function and h : [a,b]→ R be an
absolutely continuous function with (.−a)(b− .)[h

′

]2 ∈ L[a,b]. Then we have the inequality

|Ω( f ,h) |≤
1
√

2

[
Ω( f , f )

] 1
2

1
√

b−a

(∫ b

a
(x−a)(b− x)

[
h
′

(x)
]2

dx
) 1

2

. (3.2)

The constant 1√
2

in (3.2) is the best possible.

Theorem 3.2. Assume that h : [a,b] → R is monotonic nondecreasing on [a,b] and f :
[a,b]→ R is absolutely continuous with f

′

∈ L∞[a,b]. Then we have the inequality

|Ω( f ,h) |≤
1

2(b−a)
‖ f

′

‖∞

∫ b

a
(x−a)(b− x)dh(x). (3.3)

The constant 1
2 in (3.3) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the results proved
in the previous section.
For m-tuples w = (w1, ...,wm), x = (x1, ..., xm) and y = (y1, ...,ym) with xi, yi ∈ [a,b],wi ∈ R

(i = 1, ...,m) and the function Gn as defined above, denote

Υ(t) =
m∑

i=1

wiGn

( xi−a
b−a

,
t−a
b−a

)
−

m∑
i=1

wiGn

(yi−a
b−a

,
t−a
b−a

)
, (3.4)
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similarly for x,y : [α,β] → [a,b] and w : [α,β] → R be continuous functions and for all
s ∈ [a,b], denote

Υ̃(s) =
∫ β

α
w(t)Gn

(
x(t)−a
b−a

,
s−a
b−a

)
dt−

∫ β

α
w(t)Gn

(
y(t)−a
b−a

,
s−a
b−a

)
dt. (3.5)

Theorem 3.3. Let φ : [a,b] → R be such that φ ∈ C2n[a,b] for n ∈ N with (. − a)(b −
.)
[
φ(2n+1)

]2
∈ L[a,b], and xi,yi ∈ [a,b] and wi ∈ R (i = 1,2, ...,m) and let the functions Gn

and Υ be defined in (1.12) and (3.4) respectively. Then the remainder H1
n(φ;a,b) defined by

H1
n(φ;a,b) =

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

−

n−1∑
k=0

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
−

n−1∑
k=0

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−a

)
−

m∑
i=1

wiΛk

(yi−a
b−a

)
− (b−a)2n−2

(
φ(2n−1)(b)−φ(2n−1)(a)

)∫ b

a
Υ(t)dt (3.6)

satisfies the estimation

∣∣∣H1
n(φ;a,b)

∣∣∣ ≤ (b−a)2n− 1
2

√
2

[Ω(Υ,Υ)]
1
2

∣∣∣∣∣∣
∫ b

a
(t−a)(b− t)

[
φ(2n+1)(t)

]2
dt

∣∣∣∣∣∣
1
2

. (3.7)

Proof. Comparing (2.1) and (3.6) we get

H1
n(φ;a,b) = (b−a)2n−1

∫ b

a
Υ(t)φ(2n)(t)dt− (b−a)2n−2

(
φ(2n−1)(b)−φ(2n−1)(a)

)∫ b

a
Υ(t)dt

= (b−a)2n−1
∫ b

a
Υ(t)φ(2n)(t)dt− (b−a)2n−2

∫ b

a
φ(2n)dt

∫ b

a
Υ(t)dt

= (b−a)2nΩ(Υ,φ(2n)).

Applying Theorem 3.1 on the functions Υ and φ(2n) we get (3.7). �

Integral case of the above theorem can be given:

Theorem 3.4. Let φ : [a,b] → R be such that φ ∈ C2n[a,b] for n ∈ N with (. − a)(b −
.)
[
φ(2n+1)

]2
∈ L[a,b], and x,y : [α,β]→ [a,b], w : [α,β]→ R be continuous functions and

let the functions Gn and Υ̃ be defined in (1.12) and (3.5) respectively. Then the remainder
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H̃1
n(φ;a,b) defined by

H̃1
n(φ;a,b) =

∫ β

α
w(t)φ (x(t))dt−

∫ β

α
w(t)φ (y(t))dt

−

n−1∑
k=0

(b−a)2kφ(2k)(a)
[∫ β

α
w(t)Λk

(
b− x(t)
b−a

)
dt−

∫ β

α
w(t)Λk

(
b− y(t)
b−a

)
dt

]

−

n−1∑
k=0

(b−a)2kφ(2k)(b)
[∫ β

α
w(t)Λk

(
x(t)−a
b−a

)
dt−

∫ β

α
w(t)Λk

(
y(t)−a
b−a

)
dt

]
− (b−a)2n−2

(
φ(2n−1)(b)−φ(2n−1)(a)

)∫ b

a
Υ̃(s)ds (3.8)

satisfies the estimation

∣∣∣H̃1
n(φ;a,b)

∣∣∣ ≤ (b−a)2n− 1
2

√
2

[
Ω(Υ̃, Υ̃)

] 1
2

∣∣∣∣∣∣
∫ b

a
(t−a)(b− t)

[
φ(2n+1)(t)

]2
dt

∣∣∣∣∣∣
1
2

.

Use Theorem 3.2 we obtain the following Grüss type inequality.

Theorem 3.5. Let φ : [a,b]→ R be such that φ ∈ C2n[a,b] (n ∈ N) and φ(2n+1) ≥ 0 on [a,b]
and let the function Υ be defined by (3.4). Then the remainder H1

n(φ;a,b) defined by (3.6)
satisfies the estimation

∣∣∣H1
n(φ;a,b)

∣∣∣ ≤ (b−a)2n−1
∥∥∥Υ′∥∥∥

∞

{
φ(2n−1)(b)+φ(2n−1)(a)

2
−
φ(2n−2)(b)−φ(2n−2)(a)

b−a

}
. (3.9)

Proof. Since H1
n(φ;a,b) = (b− a)2nΩ(Υ,φ(2n)), applying Theorem 3.2 on the functions Υ

and φ(2n) we get (3.9). �

Integral version of the above theorem can be given as:

Theorem 3.6. Let φ : [a,b]→ R be such that φ ∈ C2n[a,b] (n ∈ N) and φ(2n+1) ≥ 0 on [a,b]
and let the function Υ̃ be defined by (3.5). Then the remainder H̃1

n(φ;a,b) defined by (3.8)
satisfies the estimation

∣∣∣H̃1
n(φ;a,b)

∣∣∣ ≤ (b−a)2n−1
∥∥∥Υ̃′∥∥∥

∞

{
φ(2n−1)(b)+φ(2n−1)(a)

2
−
φ(2n−2)(b)−φ(2n−2)(a)

b−a

}
.

We give the Ostrowski-type inequality related to the generalization of majorization in-
equality.

Theorem 3.7. Suppose that all the assumptions of Theorem 2.1 hold. Assume (p,q) is a
pair of conjugate exponents, that is 1 ≤ p,q ≤ ∞, 1

p +
1
q = 1. Let

∣∣∣φ(2n)
∣∣∣p : [a,b]→ R be an
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R-integrable function for some n ∈ N. Then we have∣∣∣∣∣∣∣
m∑

i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

−

n−1∑
k=0

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
−

n−1∑
k=0

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−a

)
−

m∑
i=1

wiΛk

(yi−a
b−a

)
∣∣∣∣∣∣∣

≤ (b−a)2n−1
∥∥∥φ(2n)

∥∥∥
p

∫ b

a

∣∣∣∣∣∣∣
m∑

i=1

wiGn

( xi−a
b−a

,
t−a
b−a

)
−

m∑
i=1

wiGn

(yi−a
b−a

,
t−a
b−a

)∣∣∣∣∣∣∣
q

dt


1
q

.

(3.10)

The constant on the right-hand side of (3.10) is sharp for 1 < p ≤ ∞ and the best possible
for p = 1.

Proof. Let us denote

Ψ(t) = (b−a)2n−1

 m∑
i=1

wiGn

( xi−a
b−a

,
t−a
b−a

)
−

m∑
i=1

wiGn

(yi−a
b−a

,
t−a
b−a

) .
Using the identity (2.1) and applying Hölder’s inequality we obtain∣∣∣∣∣∣∣

m∑
i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

−

n−1∑
k=0

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
−

n−1∑
k=0

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−α

)
−

m∑
i=1

wiΛk

(yi−a
b−a

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ b

a
Ψ(t)φ(2n)(t)dt

∣∣∣∣∣∣ ≤ ∥∥∥φ(2n)
∥∥∥

p

(∫ b

a
|Ψ(t)|q dt

) 1
q

.

For the proof of the sharpness of the constant
(∫ b

a |Ψ(t)|q dt
) 1

q
let us find a function φ for

which the equality in (3.10) is obtained.
For 1 < p <∞ take φ to be such that

φ(2n)(t) = sgnΨ(t) |Ψ(t)|
1

p−1 .

For p =∞ take φ(2n)(t) = sgnΨ(t).
For p = 1 we prove that∣∣∣∣∣∣

∫ b

a
Ψ(t)φ(2n)(t)

∣∣∣∣∣∣ ≤ max
t∈[a,b]

|Ψ(t)|
(∫ b

a

∣∣∣φ(2n)(t)
∣∣∣dt

)
(3.11)
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is the best possible inequality. Suppose that |Ψ(t)| attains its maximum at t0 ∈ [a,b]. First
we assume that Ψ(t0) > 0. For ε small enough we define φε(t) by

φε(t) :=


0, a ≤ t ≤ t0,

1
ε n! (t− t0)n , t0 ≤ t ≤ t0+ ε,
1
n! (t− t0)n−1 , t0+ ε ≤ t ≤ b.

Then for ε small enough∣∣∣∣∣∣
∫ b

a
Ψ(t)φ(2n)(t)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ t0+ε

t0
Ψ(t)

1
ε

dt

∣∣∣∣∣∣ = 1
ε

∫ t0+ε

t0
Ψ(t)dt.

Now from the inequality (3.11) we have

1
ε

∫ t0+ε

t0
Ψ(t)dt ≤ Ψ(t0)

∫ t0+ε

t0

1
ε

dt = Ψ(t0).

Since

lim
ε→0

1
ε

∫ t0+ε

t0
Ψ(t)dt = Ψ(t0)

the statement follows. In the case Ψ(t0) < 0, we define φε(t) by

φε(t) :=


1
n! (t− t0− ε)n−1 , a ≤ t ≤ t0,
− 1
ε n! (t− t0− ε)n , t0 ≤ t ≤ t0+ ε,

0, t0+ ε ≤ t ≤ b,

and the rest of the proof is the same as above. �

Integral version of the above theorem can be stated as:

Theorem 3.8. Suppose that all the assumptions of Theorem 2.2 hold. Assume (p,q) is a
pair of conjugate exponents, that is 1 ≤ p,q ≤ ∞, 1

p +
1
q = 1. Let

∣∣∣φ(2n)
∣∣∣p : [a,b]→ R be an

R-integrable function for some n ∈ N. Then we have∣∣∣∣∣∣
∫ β

α
w(t)φ (x(t))dt−

∫ β

α
w(t)φ (y(t))dt

−

n−1∑
k=0

(b−a)2kφ(2k)(a)
[∫ β

α
w(t)Λk

(
b− x(t)
b−a

)
dt−

∫ β

α
w(t)Λk

(
b− y(t)
b−a

)
dt

]

−

n−1∑
k=0

(b−a)2kφ(2k)(b)
[∫ β

α
w(t)Λk

(
x(t)−a
b−a

)
dt−

∫ β

α
w(t)Λk

(
y(t)−a
b−a

)
dt

]∣∣∣∣∣∣∣
≤ (b−a)2n−1

∥∥∥φ(2n)
∥∥∥

p

(∫ b

a

∣∣∣∣∣∣
∫ β

α
w(t)Gn

(
x(t)−a
b−a

,
s−a
b−a

)
dt−

∫ β

α
w(t)Gn

(
y(t)−a
b−a

,
s−a
b−a

)
dt

∣∣∣∣∣∣q ds
) 1

q

.

(3.12)

The constant on the right-hand side of (3.12) is sharp for 1 < p ≤ ∞ and the best possible
for p = 1.
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4 n-Exponential Convexity and Exponential Convexity

Motivated by the inequality (2.5) and (2.7), we define functional Θ1(φ) and Θ2(φ) by

Θ1(φ) =
m∑

i=1

wiφ (xi)−
m∑

i=1

wiφ (yi)

−

n−1∑
k=0

(b−a)2kφ(2k)(a)

 m∑
i=1

wiΛk

(
b− xi

b−a

)
−

m∑
i=1

wiΛk

(
b− yi

b−a

)
−

n−1∑
k=0

(b−a)2kφ(2k)(b)

 m∑
i=1

wiΛk

( xi−a
b−a

)
−

m∑
i=1

wiΛk

(yi−a
b−a

) (4.1)

Θ2(φ) =
∫ β

α
w(t)φ(x(t))dt−

∫ β

α
w(t)φ(y(t))dt

−

n−1∑
k=0

(b−a)2kφ(2k)(a)
[∫ β

α
w(t)Λk

(
b− x(t)
b−a

)
dt−

∫ β

α
w(t)Λk

(
b− y(t)
b−a

)
dt

]

−

n−1∑
k=0

(b−a)2kφ(2k)(b)
[∫ β

α
w(t)Λk

(
x(t)−a
b−a

)
dt−

∫ β

α
w(t)Λk

(
y(t)−a
b−a

)
dt

]
.

(4.2)

Theorem 4.1. Let φ : [a,b]→R be such that φ ∈C2n[a,b]. If the inequalities in (2.4) (i= 1),
(2.6) (i = 2) hold, then there exist ξi ∈ [a,b] such that

Θi(φ) = φ(2n)(ξ)Θi(η), i = 1,2. (4.3)

where η(x) = x2n

(2n)! .

Proof. Similar to the proof of Theorem 7 in [6]. �

Theorem 4.2. Let φ,ψ : [a,b]→ R be such that φ,ψ ∈ C2n[a,b]. If the inequalities in (2.4)
(i = 1), (2.6) (i = 2) hold, then there exist ξi ∈ [a,b] such that

Θi(φ)
Θi(ϕ)

=
φ(2n)(ξ)
ψ(2n)(ξ)

, i = 1,2. (4.4)

provided that the denominators are not zero.

Proof. Similar to the proof of Corollary 12 in [6]. �

Definition 4.3 ([20, p. 2]). A function φ : I→ R is convex on an interval I if

φ(x1)(x3− x2)+φ(x2)(x1− x3)+φ(x3)(x2− x1) ≥ 0, (4.5)

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

Now, let us recall some definitions and facts about exponentially convex functions (see
[13]):
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Definition 4.4. A function φ : I→ R is n-exponentially convex in the Jensen sense on I if
n∑

k,l=1

αkαlφ
( xk + xl

2

)
≥ 0

holds for αk ∈ R and xk ∈ I, k = 1,2, ...,n.

Definition 4.5. A function φ : I→ R is n-exponentially convex on I if it is n-exponentially
convex in the Jensen sense and continuous on I.

Remark 4.6. From the definition it is clear that 1-exponentially convex functions in the
Jensen sense are in fact non-negative functions. Also, n-exponentially convex functions in
the Jensen sense are m-exponentially convex in the Jensen sense for every m ∈ N,m ≤ n.

Proposition 4.7. If φ : I → R is an n-exponentially convex in the Jensen sense, then the
matrix

[
φ
(

xk+xl
2

) ]m

k,l=1
is a positive semi-definite matrix for all m ∈ N,m ≤ n. Particularly,

det
[
φ
( xk + xl

2

)]m

k,l=1
≥ 0

for all m ∈ N, m = 1,2, ...,n.

Definition 4.8. A function φ : I → R is exponentially convex in the Jensen sense on I if it
is n-exponentially convex in the Jensen sense for all n ∈ N.

Definition 4.9. A function φ : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

Remark 4.10. It is easy to show that φ : I→ R is log-convex in the Jensen sense if and only
if

α2φ(x)+2αβφ
( x+ y

2

)
+β2φ(y) ≥ 0

holds for every α,β ∈ R and x,y ∈ I. It follows that a function is log-convex in the Jensen-
sense if and only if it is 2-exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and only if
it is 2-exponentially convex.

Corollary 4.11. If φ : I→ (0,∞) is an exponentially convex function, then φ is a log-convex
function that is

φ(λx+ (1−λ)y) ≤ φλ(x)φ1−λ(y), f or all x,y ∈ I, λ ∈ [0,1].

We use an idea from [13] to give an elegant method of producing an n-exponentially
convex functions and exponentially convex functions applying the above functionals on a
given family with the same property (see [19]):

Theorem 4.12. LetΦ= {φs : s ∈ J}, where J an interval inR, be a family of functions defined
on an interval [a,b] in R, such that the function s 7→ φs [x0, ..., x2l] is an n-exponentially
convex in the Jensen sense on J for every (2l+1) mutually different points x0, ..., x2l ∈ [a,b].
Let Θi(φ), i = 1,2 be linear functionals defined as in (4.1) and (4.2). Then s 7→ Θi(φs) is
an n-exponentially convex function in the Jensen sense on J. If the function s 7→ Θi(φs) is
continuous on J, then it is n-exponentially convex function on J.
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Proof. For ϑi ∈ R, i = 1, ...,n and si ∈ J, i = 1, ...,n we define the function

δ(x) =
n∑

i, j=1

ϑiϑ jφ si+s j
2

(x).

Using the assumption that the function s 7→ fs [x0, ..., x2l] is n-exponentially convex in the
Jensen sense, we have

δ [x0, ..., x2l] =
n∑

i, j=1

ϑiϑ jφ si+s j
2

[x0, ..., x2l] ≥ 0,

which in turn implies that δ is a 2l-convex function on J, so it is Θk(δ) ≥ 0, hence

n∑
i, j=1

ϑiϑ jΘk(φ si+s j
2

) ≥ 0.

We conclude that the function s 7→ Θk(φs) is n-exponentially convex function in the Jensen
sense on J.
If the function s 7→ Θk(φs) is also continuous on J, then s 7→ Θk(φs) is n-exponentially
convex by definition. �

The following corollaries are an immediate consequences of the above theorem:

Corollary 4.13. Let Φ = {φs : s ∈ J}, where J an interval in R, be a family of functions
defined on an interval [a,b] inR, such that the function s 7→ φs [x0, ..., x2l] is an exponentially
convex in the Jensen sense on J for every (2l+1) mutually different points x0, ..., x2l ∈ [a,b].
Let Θi(φ), i = 1,2 be linear functionals defined as in (4.1) and (4.2). Then s 7→ Θi(φs) is
an exponentially convex function in the Jensen sense on J. If the function s 7→ Θi(φs) is
continuous on J, then it is exponentially convex function on J.

Corollary 4.14. Let Φ = {φs : s ∈ J}, where J an interval in R, be a family of functions de-
fined on an interval [a,b] in R, such that the function s 7→ φs [x0, ..., x2l] is an 2-exponentially
convex in the Jensen sense on J for every (2l+1) mutually different points x0, ..., x2l ∈ [a,b].
Let Θi(φ), i = 1,2 be linear functionals defined as in (4.1) and (4.2). Then the following
statements hold:

(i) If the function s 7→ Θi(φs) is continuous on J, then it is 2-exponentially convex func-
tion on J. If s 7→ Θi(φs) is additionally strictly positive, then it is log-convex on J.
Furthermore, the Lypunov’s inequality holds true:[

Θi(φs)
]t−r
≤

[
Θi(φr)

]t−s [
Θi(φt)

]s−r (4.6)

for every choice r, s, t ∈ J, such that r < s < t.

(ii) If the function s 7→ Θi(φs) is strictly positive and differentiable on J, then for every
s,q,u,v ∈ J, such that s ≤ u and q ≤ v, we have

µs,q (Θi,Φ) ≤ µu,v (Θi,Φ) , (4.7)
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where

µs,q (Θi,Φ) =


(
Θi(φs)
Θi(φq)

) 1
s−q
, s , q,

exp
( d

dsΘi(φs)
Θi(φq)

)
, s = q,

(4.8)

for φs,φq ∈ Φ.

Proof. (i) This is an immediate consequence of Theorem 4.12 and Remark 4.10.
(ii) Since by (i) the function s 7→ Θi(φs) is log-convex on J. So, we get

logΘi(φs)− logΘi(φq)
s−q

≤
logΘi(φu)− logΘi(φv)

u− v
(4.9)

for s ≤ u and q ≤ v, s , q u , v, and there form conclude that

µs,q (Θi,Φ) ≤ µu,v (Θi,Φ) .

Cases s = q and u = v follows from (4.9) as limiting cases. �

Remark 4.15. Note that the results from theorem and corollaries still hold when two of the
points x0, ..., x2l ∈ [a,b] coincide, say x1 = x0, for a family of differentiable functions φs

such that the function s 7→ φs [x0, ..., x2l] is an n-exponentially convex in the Jensen sense
(exponentially convex in the Jensen sense, log-convex in the Jensen sense), and furthermore,
they still hold when all (2l+ 1) points coincide for a family of 2l differentiable functions
with the same property. The proofs are obtained by (1.14) and suitable characterization of
convexity.

5 Applications to Stolarsky type means

In this section, we present several families of functions which fulfill the conditions of The-
orem 4.12, Corollary 4.13, Corollary 4.14 and Remark 4.15. This enable us to construct a
large families of functions which are exponentially convex. For a discussion related to this
problem see [9].

Example 5.1. Let
Λ1 = {ψt : R→ [0,∞) : t ∈ R}

be a family of functions defined by

ψt(x) =


etx

t2n , t, 0;

x2n

(2n)! , t= 0.

We have d2nψt
dx2n (x) = etx > 0 which shows that ψt is 2n-convex on R for every t ∈ R and

t 7→ d2nψt
dx2n (x) is exponentially convex by definition. Using analogous arguing as in the proof

of Theorem 4.12 we also have that t 7→ ψt[x0, ..., x2n] is exponentially convex (and so expo-
nentially convex in the Jensen sense). Using Corollary 4.13 we conclude that t 7→ Θi(ψt),
i = 1,2 are exponentially convex in the Jensen sense. It is easy to verify that this mapping
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is continuous (although mapping t 7→ ψt is not continuous for t = 0), so it is exponentially
convex.
For this family of functions, µt,q (Θi,Λ1), i = 1,2 from (4.8), becomes

µt,q (Θi,Λ1) =


(
Θi(ψt)
Θi(ψq)

) 1
t−q
, t , q;

exp
(
Θi(id.ψt)
Θi(ψt)

− 2n
t

)
, t = q , 0;

exp
(

1
2n+1

Θi(id.ψ0)
Θi(ψ0)

)
, t = q = 0.

Now, using (4.7) it is monotone function in parameters t and q.

We observe here that

 d2nψt
dx2n

d2nψq
dx2n


1

t−q

(lnx) = x so using Theorem 4.2 it follows that

Mt,q(Θi,Λ1) = lnµt,q(Θi,Λ1), i = 1,2

satisfy

a ≤ Mt,q(Θi,Λ1) ≤ b, i = 1,2.

This shows that Mt,q(Θi,Λ1) is mean for i = 1,2. Because of the above inequality (4.7), this
mean is also monotonic.

Example 5.2. Let
Λ2 = {λt : (0,∞)→ R : t ∈ R}

be a family of functions defined by

λt(x) =


xt

t(t−1)...(t−2n+1) , t < {0,1,..., 2n-1};

x jlnx
(−1)2n−1− j j!(2n−1− j)! , t= j∈ {0,1,..., 2n-1}.

Here, d2nλt
dx2n (x) = xt−2n = e(t−2n)lnx > 0 which shows that λt is 2n-convex on (0,∞) for every

t ∈ R and t 7→ d2nψt
dx2n (x) is exponentially convex by definition. Arguing as in Example 5.1 we

get the mappings t 7→ Θi(λt), i = 1,2 are exponentially convex. In this case we assume that
[a,b] ∈ R+.
For this family of functions, µt,q (Θi,Λ1), i = 1,2 from (4.8), becomes

µt,q (Θi,Λ2) =


(
Θi(λt)
Θi(λq)

) 1
t−q
, t , q;

exp
(
−(2n−1)!Θi(λ0λt)

Θi(λt)
+

∑2n−1
k=0

1
k−t

)
, t=q < {0,1,..., 2n-1};

exp
(
−(2n−1)!Θi(λ0λt)

2Θi(λt)
+

∑2n−1
k=0,k,t

1
k−t

)
, t=q ∈ {0,1,..., 2n-1}.

We observe that

 d2nλt
dx2n

d2nλq
dx2n


1

t−q

(x) = x, so if Θi (i = 1,2) are positive, then Theorem 4.2 yield that

there exists some ξi ∈ [a,b], i = 1,2 such that

ξ
t−q
i =

Θi(λt)
Θi(λq)

, i = 1,2.
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Since the function ξ→ ξt−q is invertible for t , q, we then have

a ≤
(
Θi(λt)
Θi(λq)

) 1
t−q

≤ b, i = 1,2.

This shows that µt,q (Θi,Λ2) is mean for i = 1,2. Because of the above inequality (4.7), this
mean is also monotonic.

Example 5.3. Let
Λ3 = {ζt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

ζt(x) =


t−x

(lnt)2n , t , 1;

x2n

(2n)! , t= 1.

Since d2nζt
dx2n (x) = t−x is the Laplace transform of a non-negative function (see [24]) it is ex-

ponentially convex. Obviously ζt are 2n-convex functions for every t > 0.
For this family of functions, µt,q (Θi,Λ3), i = 1,2, in this case for [a,b] ∈ R+, from (4.8)
becomes

µt,q (Θi,Λ3) =


(
Θi(ζt)
Θi(ζq)

) 1
t−q
, t , q;

exp
(
−
Θi(id.ζt)
tΘi(ζt)

− 2n
t lnt

)
, t = q , 1;

exp
(
− 1

2n+1
Θi(id.ζ1)
Θi(ζ1)

)
, t = q = 1.

This is monotonous function in parameters t and q by (4.7).
Using Theorem 4.2 it follows that

Mt,q (Θi,Λ3) = −L(t,q)lnµt,q (Θi,Λ3) , i = 1,2.

satisfy

a ≤ Mt,q (Θi,Λ3) ≤ b, i = 1,2.

This shows that Mt,q (Θi,Λ3) is mean for i = 1,2. Because of the above inequality (4.7), this
mean is also monotonic. L(t,q) is logarithmic mean defined by

L(t,q) =


t−q

log t−logq , t , q;

t, t= q.

Example 5.4. Let
Λ4 = {γt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

γt(x) =
e−x
√

t

tn .
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Since d2nγt
dx2n (x) = e−x

√
t is the Laplace transform of a non-negative function (see [24]) it is

exponentially convex. Obviously γt are 2n-convex function for every t > 0.
For this family of functions, µt,q (Θi,Λ4), i = 1,2, in this case for [a,b] ∈ R+, from (4.8)
becomes

µt,q (Θi,Λ4) =


(
Θi(γt)
Θi(γq)

) 1
t−q
, t , q;

exp
(
−
Θi(id.γt)

2
√

tΘi(γt)
− n

t

)
, t = q.

This is monotonous function in parameters t and q by (4.7).
Using Theorem 4.2 it follows that

Mt,q (Θi,Λ4) = −
(√

t+
√

q
)
lnµt,q (Θi,Λ4) , i = 1,2.

satisfy

a ≤ Mt,q (Θi,Λ4) ≤ b, i = 1,2.

This shows that Mt,q (Θi,Λ4) is mean for i = 1,2. Because of the above inequality (4.7), this
mean is also monotonic.
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[12] G. H. Hardy, J. E. Littlewood, G. Pólya : Inequalities, London and New York: Cam-
bridge University Press, second ed., 1952.
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