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Abstract

The aim of this paper is to study the time asymptotic propagation for mild solutions
to the fractional reaction diffusion cooperative systems when at least one entry of the
initial condition decays slower than a power. We state that the solution spreads at
least exponentially fast with an exponent depending on the diffusion term and on the
smallest index of fractional Laplacians.
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1 Introduction

The reaction-diffusion equation with Fisher-KPP nonlinearity

∂tu+ (−4)αu = f (u) (1.1)

where (−4)α is the fracctional laplacian with index α ∈ (0,1) appears in models of physics,
chemistry and biology, when the diffusive phenomena is described by Lévy processes allo-
wing long jumps. Concerning equation (1.1), Cabré and Roquejoffre showed in [3] that, the
speed of propagation of solutions is exponential in time when the initial value decays faster
than the critical power |x|−d−2α, where d is the dimension of the spatial variable.

In the case in which the initial condition decay slower than the critical power, [8] states
that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover,
a quantitative estimate of motion of the level sets is obtained in terms of the decay of the
initial condition. All these results are in great contrast with the standard case i.e. taking α =
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1 in (1.1). Indeed, [1] shows that there exists a critical speed such that, for any compactly
supported initial value, there is a linear propagation in time of the fronts.

Moreover, the work on the single equation (1.1) with standard laplacian can be extended
to cooperative systems. In a series of papers, [10], [11], [14], [15], spreading speeds and
traveling waves are studied for a particular class of cooperative reaction-diffusion systems,
with standard diffusion. Results on single equations in the singular perturbation framework
proved in [7] have also been extended in [2].

In the fractional case, the recent paper [5] studies the time asymptotic propagation of
sectorial solutions to the fractional reaction-diffusion cooperative systems when the initial
conditions decay faster than a power, they prove that the propagation speed is exponential in
time and they find a precise exponent of propagation, which depends on the smallest index
of the fractional laplacians and on the principal eigenvalue of the reaction term derivative.
It is interesting to note, if we assume that each entry of the initial condition in [5] belongs
to the domain of the fractional laplacian, using Theorems 2.3 and 2.6 below, it is possible to
prove that the mild solution of the system studied en [5] spreads with the same speed than
in the sectorial case.

Following the line, we are interested in the large time behavior of solutions u = (ui)m
i=1

with m ∈ N∗, to the fractional reaction diffusion system:{
∂tui+ (−4)αiui = fi(u), ∀(t, x) ∈ R∗+×R

d

ui(0, x) = u0i(x), ∀x ∈ Rd (1.2)

where αi ∈ (0,1] for all i ∈ ~1,m� := {1, ...,m} with at least one αi , 1, we note, if α j = 1
then the fractional laplacian becomes in the standard laplacian. Without loss of generality,
we suppose αi+1 ≤ αi for all i ∈ ~1,m−1� and we set α := αm < 1. Henceforth, we impose
the nonnegative initial conditions u0i . 0, bounded by the constant Λ > 0 and u0i ∈ C0(Rd)
for all i ∈ ~1,m�, where the Banach space C0(Rd) is the set of continuous functions in Rd

which decay to zero as |x| →∞, doted with the L∞(Rd) norm. Also, to state the main result,
we need to consider that at least one entry of u0 = (u0i)m

i=1 satisfies

u0i(x) ≥Ci|x|−d−βi as |x| → ∞, for some βi < 2αi (1.3)

with Ci a positive constant and the other entries satisfy

u0 j(x) = O(|x|−d−2α j) as |x| → ∞, i , j. (1.4)

In general, the function F = ( fi)m
i=1 satisfies

fi(0) = 0, fi ∈C1(Rm) ∀i ∈ ~1,m� and ∂ j fi > 0 ∀i , j (1.5)

i.e., the system (1.2) is cooperative. Moreover, we will make additional assumptions on
the reaction term F that are not general but enable us to understand the long time behavior
of a class of monotone systems, however, it is important to note that these hypothesis are
compatible with strongly coupled systems.

(H1) The principal eigenvalue λ1 of the matrix DF(0) is positive,

(H2) fi is globally Lipschitz on Rm for all i ∈ ~1,m�.
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(H3) For all s = (si)m
i=1 ∈ R

m
+ satisfying |s| ≥ Λ, we have fi(s) ≤ 0,

(H4) For all s = (si)m
i=1 ∈ R

m
+ satisfying |s| ≤ Λ, D fi(0)s− fi(s) ≥ cδ1 si

1+δ1 ,

(H5) For all s = (si)m
i=1 ∈ R

m
+ satisfying |s| ≤ Λ, D fi(0)s− fi(s) ≤ cδ2 |s|

1+δ2 ,

where the constants cδ1 and cδ2 are positive and for all j ∈ {1,2}

δ j ≥
2

d+β
with β =min

i∈I
{βi}

where I = {i| u0i satisfies (1.3)}. This lower bound on δ1 and δ2 is a technical assumption to
make the supersolution and subsolution to (1.2), we construct, to be regular enough. Note
that one may easily produce examples of functions F satisfying (H1) to (H5).

This paper is devote to understand the time asymptotic spread of solutions to (1.2).
We consider the case, when the entries of the initial datum u0 satisfy (1.3) or (1.4). We
show in part b) of Theorem 1.1 below, that the speed of propagation for mild solutions is at
least exponential in time, with an exponent depending on the smallest index βi and of the
principal eigenvalue of the matrix DF(0). We prove also that this exponent is larger than
the exponent founded in [5] for sectorial solutions, when u0i satisfies (1.4) for all i ∈ ~1,m�.

We are now in a position to state our main theorem, which shows that the solution to
(1.2) moves exponentially fast in time.

Theorem 1.1. Let 2α ≥ β and assume that F satisfies (1.5) and (H1) to (H4). Let u be
the solution to (1.2) with a non negative, non identically equal to 0 and continuous initial
condition u0 satisfying (1.3) and (1.4). Then, for all i ∈ ~1,m�, the following two facts are
satisfied:

a) For all t ≥ 0 and εi > 0, there exists ri > 0 such that

0 ≤ ui(t, x) ≤ εi, f or all |x| > ri

b) There exist τ > 0 large enough, C > 0 and θi ∈ (0,Λ) such that

ui(t, x) > θi, f or all t ≥ τ and |x| ≤Ce
λ1

d+β t.

It is interesting to note that, if we assume for the moment that u0i ∈ L2(Rd) for all i ∈ I,
then we can find a sectorial solution u of (1.2), easily using Theorems 1 and 2 stated in
[5], and we can deduce that the spread speed of u is at least exponential as t→∞, with
an exponent given by λ1/(d+2α). The aim of this paper is to improve this exponent when
we consider only mild solutions, thus to establish Theorem 1.1, similarly to [5], but in this
case using the fact that at least one entry of the initial condition satisfies (1.3), we state
suitable sub and super solutions, in order to prove that the mild solution of (1.2), which
is not necessarily classical or sectorial, spreads at least with an exponential speed with an
exponent given by λ1/(d + β). Furthermore, since 2α ≥ β, then λ1/(d + β) ≥ λ1/(d + 2α),
which shows that the mild solution associated with an initial datum satisfying (1.3) and
(1.4) spreads faster than the sectorial solution of the problem studied in [5].

In sake of completeness, we state the following result which shows an upper bound for
the movement of the solution in a particular case.
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Theorem 1.2. Let 2α ≥ β and assume that F satisfies (1.5), (H1) to (H3) and (H5). Let u be
the solution to (1.2) with a non negative, non identically equal to 0 and continuous initial
condition u0 satisfying (1.3) and (1.4). If u0i(x) = O(|x|−d−β) as |x| → +∞ for all i ∈ I, then
for every positive ε ∈ Rm, there exist τ > 0 and c > 0 such that,

u(t, x) < ε, f or all t ≥ τ and |x| > ce
λ1

d+β t.

The plan to set Theorems 1.1 and 1.2 is organized as follows. First, we present some
preliminaries in which we prove the existence and uniqueness of mild solutions for coope-
rative systems involving fractional diffusion and we state a comparison principle for mild
and classical solutions, also we present some results which help us to find auxiliary classical
solutions. Then, by the manipulation of some Polya integrals, we set algebraically upper
and lower bounds for solutions of (1.2), which give us the space decay of the solution at
any time t > 0. The end of this paper gives the proof of Theorems 1.1 and 1.2, that relies on
the construction of explicit classical subsolutions and supersolutions.

2 Mild solutions and comparison principles

In order to state the existence of the unique solution to the system (1.2) in a Banach space
X, we consider a function G : [0,+∞)× Xm → Xm, G = (Gi(t,u))m

i=1 that satisfies for all
i ∈ ~1,m�

Gi ∈C1([0,+∞)×Xm; X),
Gi(t, ·) is globally Lipschitz in Xm uniformly in t ≥ 0,

(2.1)

where Xm is the product space doted with the norm ‖u‖Xm =
∑m

i=1 ‖ui‖X . Given any T > 0,
we are interested in the nonlinear problem{

∂tu+Lu = G(t,u), in (0,T )
u(0) = u0,

(2.2)

where L = diag((−4)α1 , ..., (−4)αm), u = (ui)m
i=1 and u0 ∈ Xm. In the sequel, the heat kernel of

the Laplace operator of order αi ∈ (0,1] in Rd is denoted by pαi . It satisfies

1. pαi ∈C((0,+∞)×Rd), pαi > 0 and
∫
Rd pαi(t, x)dx = 1 for all t > 0,

2. pαi(t, ·)∗ pαi(s, ·) = pαi(t+ s, ·) for all (t, s) ∈ R2
+,

3. If αi ∈ (0,1), then there exists B > 1 such that, for (t, x) ∈ R+×Rd :

B−1

t
d

2αi (1+ |xt−
1

2αi |d+2αi)
≤ pαi(t, x) ≤

B

t
d

2αi (1+ |xt−
1

2αi |d+2αi)
.

We define the map Nu0 : C([0,T ]; X)m→C([0,T ]; X)m by

Nu0(u)(t) := Ttu0+

∫ t

0
Tt−sG(s,u(s))ds (2.3)
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where Tt = diag(Tt,1, ...,Tt,m) and Tt,iw(x) = (pαi(t, ·) ∗w)(x) is a strongly continuous semi-
group of bounded linear operators for all i ∈ ~1,m�. Similarly to [16], we can prove that
there exists u ∈C([0,T ]; X)m such that

u = lim
i→+∞

(Nu0)i(u0), (2.4)

where u0(t) = Ttu0 for all T > 0. The limit u is the unique fixed point of Nu0 , hence u is the
unique mild solution of (2.2) for all T > 0. By uniqueness, under assumption (2.1), the mild
solution of (2.2) extends uniquely to all t ∈ [0,+∞), i.e., it is global in time.

Let u = (ui)m
i=1 be the unique mild solution of (2.2). We define

Hi(t,w) =Gi(t,u1, ...,ui−1,w,ui+1, ...,um)

and we have
Hi ∈C1([0,+∞)×X; X),
Hi(t, ·) is globally Lipschitz in X uniformly in t ≥ 0.

(2.5)

Consider now the problem{
∂tw+ (−4)αiw = Hi(t,w), in (0,T )

w(0) = u0i.
(2.6)

Following the computations of section 2.3 in [3], we conclude that this problem has a unique
mild solution in C([0,T ]; X), given by w = ui. Thus, if the initial datum belongs to the
domain D(Ai) in X of Ai = (−4)αi , we have further regularity in t of the mild solution
ui = ui(t). Under hypothesis (2.5), the mild solution ui of (2.6) satisfies

ui ∈C1([0,T ); X) and ui([0,T )) ⊂ D(Ai) if u0i ∈ D(Ai), (2.7)

and it is a classical solution, i.e., a solution satisfying (2.6) pointwise for all t ∈ (0,T ).
Doing the same procedure for all i ∈ ~1,m� and for all T > 0, we conclude that u = (ui)m

i=1
is a classical solution of (2.2) global in time.

Now, we set a useful fact that we need in the following computations. If u is the solution
of the system (2.2) with u0 ∈ Xm and G satisfies (2.1), then for any l ∈ R, ũ(t) = eltu(t) is
the mild solution of the system (2.2) with u0 ∈ Xm and G(t,u) replaced by G̃(t, ũ) = lũ+
eltG(t,e−ltũ). This fact is proved in the same way as in [16].

We now consider the Banach space X = C0(Rd) and set, for all i ∈ ~1,m�, Gi(t,u)(x) :=
fi(u(x)) so that Gi satisfies (2.1). We use that fi ∈ C1(Rm) and fi(0) = 0 to check that the
map u ∈ C0(Rd)m 7→ fi(u) ∈ C0(Rd) is continuously differentiable. Thus, by the previous
considerations, there is a unique mild solution u of (1.2) starting from u0 ∈ Xm. Moreover,
if the initial datum u0 belongs to

∏m
i=1 D0(Ai), where D0(Ai) is the domain of Ai in C0(Rd),

then the mild solution u satisfies (2.7) for all i ∈ ~1,m� and for all T > 0 and it is a classical
solution global in time.

Since, for all i ∈ I, u0i is not necessarily in the domain D(Ai), we need to state the
following results which will be helpful at the moment to find a classical auxiliary solution
of (1.2).
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Lemma 2.1. Given u0i satisfying (1.3), then there exists a positive v0i ∈ D0(Ai) such that

c1,i|x|−d−βi ≤ v0i(x) ≤ c2,i|x|−d−βi i f |x| > 2 (2.8)

for βi < 2αi and c1i,c2i positive constants. Moreover,

T2,iu0i(x) ≥ v0i(x), ∀ x ∈ Rd.

Proof. Let

σ(x) =
1

1+ |x|d+βi
and v0i(x) = c

∫ 2

1
Ts,iσ(x)ds

where c > 0 is constant and Ts,i is the operator associated with Ai = (−4)αi . Form [3], we
know that v0i ∈ D0(Ai) since σ ∈C0(Rd). Now, we prove that, there exists c1,i > 0 such that
v0i(x) ≥ c1,i|x|−d−βi for |x| > 2. Indeed,

v0i(x) ≥ 2−1/2αi
c
B

∫
Rd

1
1+ |y|d+2αi

1
1+ |x− y|d+βi

dy

:= 2−1/2αi
c
B
σ1(x). (2.9)

Let’s analyze σ1. Note, we can find C1 > 0 and R ∈ (0,1) such that 1
1+|y|d+2αi

≥ C1 for all
|y| ≤ R. We divide the proof in two cases. We consider first |x| > R, thus

σi(x) ≥
∫
|y|≤R

C1

1+ |x− y|d+βi
dy ≥

C
1+ |x|d+βi

(2.10)

noting that in the last inequality, we use |x−y| ≤ |x|+ |y| ≤ |x|+R ≤ 2|x|. In the case in which
|x| ≤ R, we have

1+ |x− y|d+βi ≤ 1+ (|x|+ |y|)d+βi ≤ 1+ (R+1)d+βi , i f |y| ≤ 1

hence,

σi(x) ≥
1

1+ (R+1)d+βi

∫
|y|≤1

1
1+ |y|d+2αi

dy ≥C

≥
C

1+ |x|d+βi
. (2.11)

Then, from (2.9), (2.10) and (2.11), we see that there exists C̃ > 0 such that

v0i(x) ≥ C̃(1+ |x|−d−βi)−1 for all x ∈ Rd. (2.12)

Moreover, if |x| > 2, we conclude that v0i(x) ≥ c1,i|x|−d−βi for some constant c1,i > 0. Now,
by definition of v0i, it is easy to see that v0i ≤ c in Rd, moreover, we claim that

v0i(x) ≤ c2,i|x|−d−βi , for |x| ≥ 2. (2.13)
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To prove the claim, we assume |x| ≥ 2 and let us note that

v0i(x) ≤ cB2d/2αi+1
[∫
{|y|≤|x|/2}

1
1+ |y|d+2αi

1
1+ |x− y|d+βi

dy

+

∫
{|y|>|x|/2}

1
1+ |y|d+2αi

1
1+ |x− y|d+βi

dy
]

:= cB2d/2αi+1(I1+ I2). (2.14)

If |y| ≤ |x|/2, we have |x− y| ≥ |x| − |y| ≥ |x|2 , then

I1 ≤

∫
{|y|≤|x|/2}

1
1+ |y|d+2αi

2d+βi

1+ |x|d+βi
dy (2.15)

≤
2d+βi

|x|d+βi

∫
Rd

dy
1+ |y|d+2αi

≤
C
|x|d+βi

.

Now, if |y| > |x|/2 and since |x| ≥ 2, we see that 1+ |y|d+2αi ≥ 1
2d+βi
|x|d+βi , hence

I2 ≤
2d+βi

|x|d+βi

∫
Rd

ds
1+ |s|d+βi

:=
C
|x|d+βi

.

Therefore, from (2.14), we get (2.13). To finalize the proof, we consider

T2,iu0i(x) =
∫
Rn

Hi(2,y)u0i(x− y)dy

where

Hi(t, x) =


1

(4πt)
d
2

e−
|x|2
4t i f αi = 1

pi(t, x) i f αi ∈ (0,1).
(2.16)

In both cases αi ∈ (0,1) and αi = 1, taking |x| > x0 with x0 > 1 large enough such that (1.3)
is satisfied, we have

Hi(2, ·)∗u0i(x) ≥C
∫
|y|≤1

1
|x− y|d+βi

dy

for some small constant C > 0. Also, |x− y| ≤ |x|+ |y| ≤ |x|+1 ≤ 2|x|, so

Hi(t, ·)∗u0i(x) ≥ C̃|x|−d−βi .

Now, if |x| ≤ x0, then Hi(2, ·) ∗ u0i(x) ≥ C for some small constant C > 0. Thus, since v0i

satisfies (2.13), we can take c > 0 in the definition of v0i small enough such that T2,iu0i ≥

v0i. �

In what follows, Lip( f j
i ) denotes the Lipschitz constant of f j

i and we define the constant

l = max
i∈~1,m�

{Lip( fi)} (2.17)

which appears several times throughout the paper.
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Lemma 2.2. Given u0 satisfying (1.3) and (1.4), there exists v0 ∈
∏m

i=1 D0(Ai) such that

w(2, x) ≥ v0(x), ∀ x ∈ Rd (2.18)

where w is the mild solution of{
∂twi+ (−4)αiwi = lwi+ elt fi(e−ltw)

wi(0, ·) = u0i
(2.19)

with l > 0 defined in (2.17). Moreover, v0i satisfies (2.8) for all i ∈ I and (1.4) for all i < I,
also 0 < v0i ≤ Λ for all i ∈ ~1,m�.

Proof. By the previous computations, the solution w is the limit of the iterative process (2.4)
applied to the system (2.19) with initial term given by w0(t, x) = Ttu0(x). By the choice of
l > 0 and since F satisfies (1.5), f̃i(w) := lwi + elt fi(e−ltw) is nondecreasing in its second
argument for all i ∈ ~1,m�. Using (2.3), (2.4), F(0) = 0 and the properties of F̃, we can
deduce that

w(t, x) ≥ w0(t, x), ∀ (t, x) ∈ [0,∞)×Rd. (2.20)

If u0i satisfies (1.3), by Lemma 2.1, there exists v0i ∈ D(Ai) satisfying (2.8). Moreover, if
u0i satisfies (1.4), we define

v0i(x) := ci

∫ 2

1
pi(s, x)ds

hence, by Lemma 2.2 in [3], we have that v0i ∈ D(Ai) satisfying (1.4) and in both cases
T2,iu0i(x) ≥ v0i(x), thus v0i is bounded by Λ. Furthermore, by (2.20), we get (2.18). �

Before stating the bounds for the solutions, we need to establish a comparison principle
for mild solutions defined in any Banach space X.

Theorem 2.3. For every j ∈ {1,2}, set F j = ( f j
i )m

i=1 where, for all i ∈ ~1,m�, f j
i is C1(Rm),

satisfies (1.5) and is globally Lipschitz. Let u j = (u j
i )m

i=1 be a mild solution of

∂tu j+Lu j = F j(u j),

with initial condition u j(0, ·) ∈ X. If, for all i ∈ ~1,m�, f 1
i ≤ f 2

i in Rm and u1
i (0, ·) ≤ u2

i (0, ·)
in X, then

u1
i (t, x) ≤ u2

i (t, x) for all (t, x) ∈ [0,+∞)×Rd.

Proof. Taking l = max
i∈~1,m�, j∈{1,2}

Lip( f j
i ), we define for i ∈ ~1,m�, j ∈ {1,2} and t ≥ 0

f̃ j
i (t,v) = lvi+ elt f j

i (e−ltv).

For i ∈ ~1,m� and j ∈ {1,2}, by the choice of l > 0 and since f̃ j
i satisfy (1.5), the function

f̃ j
i is nondecreasing in its second argument. Moreover, since f 1

i ≤ f 2
i in Rm, we have at any

time t ≥ 0, f̃ 1
i (t, ·) ≤ f̃ 2

i (t, ·).
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For j ∈ {1,2}, we define F̃ j = ( f̃ j
i )m

i=1, and consider the system{
∂tũ j+Lũ j = F̃ j(ũ j) t > 0, x ∈ Rm,

ũ j(0, ·) = u j
0, x ∈ Rm.

(2.21)

By the previous section, we know that ũ j(t, x) = eltu j(t, x) is the solution of (2.21), where
u j is the solution of (2.21) with F̃ j replaced by F j. Therefore, it is enough to prove that
ũ1 ≤ ũ2. Consider the mapping N j for j = {1,2}, defined by

N j(w)(t, ·) := Ttu
j
0(·)+

∫ t

0
Tt−sF̃ j(s,w(s, ·))ds.

Taking u0, j(t, ·) = Ttu
j
0(·), we know that ũ j = limn→+∞(N j)n(u0, j). Thus, using a standard

induction argument, we only need to show that (N1)n(u0,1) ≤ (N2)n(u0,2) on [0,+∞)×Rd

for all n ∈ N. This fact is obvious since u1
i (0, ·) ≤ u2

i (0, ·), f̃ j
i is nondecreasing in its second

argument and f 1
i ≤ f 2

i for all i ∈ ~1,m�. �

Remark 2.4. If we suppose f 1
i ≤ f 2

i in Rm
+ and 0 ≤ u1

i (0, ·) ≤ u2
i (0, ·) for all i ∈ ~1,m�, we

obtain the same result as in Theorem 2.3.

Remark 2.5. Since F(0)= 0 by the previous theorem, we conclude that the solution of (1.2),
satisfies ui(t, x) ≥ 0 for all (t, x) ∈ [0,+∞)×Rd and all i ∈ ~1,m�.

Now, we state the following comparison principle for classical solutions, which is an
adaptation of Theorem 2 of [5]. This result will be useful to deal with sub and super so-
lutions. Indeed, we have not devised a mild representation for them, so we can not apply
Theorem 2.3 directly.

Theorem 2.6. Let u = (ui)m
i=1 and v = (vi)m

i=1 functions in C1([0,T ];C0(Rd))m such that, for
all i ∈ ~1,m�,

∂tui+ (−4)αiui ≤ fi(u), ∂tvi+ (−4)αivi ≥ fi(v),

where fi satisfies (1.5). If for all i ∈ ~1,m� and x ∈ Rd, ui(0, x) ≤ vi(0, x) and for all t ∈ [0,T ]

ui(t, x) = O(|x|−(d+β)) and vi(t, x) = O(|x|−(d+β)) as |x| → +∞, (2.22)

then
u(t, x) ≤ v(t, x) for all (t, x) ∈ [0,T ]×Rd.

Proof. Let us define for all i ∈ ~1,m�, wi = ui− vi. Then wi satisfies wi(0, x) ≤ 0 and

∂twi+ (−4)αiwi ≤ fi(u)− fi(v) =
∫ 1

0
∇ fi(σu+ (1−σ)v)dσ.(u− v)

=

∫ 1

0
∇ fi(ζσ)dσ.w, (2.23)

where ζσ = σu+ (1−σ)v. By hypothesis, for all i ∈ ~1,m�, the function wi belongs to
C1([0,T ];C0(Rd)) and consequently there exist positive constants C1(T ) and C2(T ) such
that for all (t, x) ∈ [0,T ]×Rd

|wi(t, x)| ≤C1(T ) and |∂twi(t, x)| ≤C2(T ). (2.24)
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Moreover, by 2.22, for all t ∈ [0,T ], we have

wi(t, x) = O(|x|−(d+β)) as |x| → +∞. (2.25)

Thus, it is easy to see that for all t ∈ [0,T ]∫
Rd
|wi(t, x)||w j(t, x)|dx ≤Ci j(T ), (2.26)

where Ci j(T ) are constants that depend on T . Let w+i be the positive part of wi. We want to
prove that

d
dt

[∫
Rd

(w+i )2dx
]
=

∫
Rd
∂t

[
(w+i )2

]
dx, (2.27)

which is quite simple because (w+i )2 and ∂t
[
(w+i )2

]
are continuous in (0,T )×Rd and∣∣∣∣∂t

[
(w+i )2

]∣∣∣∣ = 2
∣∣∣w+i ∂twi

∣∣∣ ≤ 2C2(T ) |wi| ≤Cg(x). (2.28)

The last inequality and the existence of the integrable function g follows from (2.24) and
(2.25), thus we conclude (2.27). Now, multiplying each term of (2.23) by w+i and integrating
over Rd, we have

0 ≤

∫
Rd

w+i (−4)αiwidx

≤

∫
Rd

w+i

∫ 1

0
∇ fi(ζσ)dσ.wdx−

∫
Rd

w+i ∂twidx. (2.29)

By (2.26) and (2.28), we get ∫
Rd

w+i (−4)αiwidx <∞.

Now, since all the above integrals exist and having in mind that fi ∈C1(Rm) for all i ∈ ~1,m�,
from (2.27), (2.29) and since ∂ j fi(ζσ) > 0, we get

1
2

d
dt

[∫
Rd

(w+i )2dx
]
≤

∫
Rd

∫ 1

0
∂i fi(ζσ)dσ(w+i )2dx

+

m∑
j=1, j,i

∫
Rd

∫ 1

0
∂ j fi(ζσ)dσw+i w+j dx

≤ C
m∑

j=1

∫
Rd

(w+j )2dx,

where C is a constant that depends on m. Doing this procedure for each i ∈ ~1,m� and
adding, we get for t ∈ [0,T ]

d
dt

 m∑
j=1

∫
Rd

(w+j )2dx

 ≤C
m∑

j=1

∫
Rd

(w+j )2dx.
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By Gronwall’s inequality

0 ≤
m∑

j=1

∫
Rd

(w+j )2dx ≤ eCt
m∑

j=1

∫
Rd

(w+j (0, x))2dx = 0.

Thus, we conclude that for all j ∈ ~1,m� and (t, x) ∈ [0,T ]×Rd

w j(t, x) ≤ 0.

�

Remark 2.7. Let u be a function that satisfies the assumptions of the previous theorem.
From hypothesis (H3), we deduce that the positive vector M = Λ1, where 1 is the vector
of size m with all entries equal to 1, is a supersolution to (1.2) since the initial condition
u0 = (u0i)m

i=1 is smaller than M (in the sense that all functions u0i are smaller than Λ). Thus,
we can not directly apply Theorem 2.6 to prove that u is bounded from above by the constant
vector M, since a constant vector is not in C0(Rd). However, we can adapt the proof of this
theorem to get this upper bound on u. Indeed, consider for x ∈ Rd and t ≥ 0

w(t, x) = (wi(t, x))m
i=1 = e−lt(u(t, x)−M),

where l > 0 is defined in (2.17). Thus, for all i ∈ ~1,m�, wi solves on (0,+∞)×Rd

∂twi+ (−∆)αiwi ≤ l(|wi| −wi).

As in the proof of Theorem 2.6, we multiply this inequality by the positive part w+i of wi,
and integrate over Rd. All the integrals converge since w+i is continuous and compactly
supported. Moreover, we have ∫

Rd
l(|wi| −wi)w+i dx = 0,

which leads to the same conclusion as in Theorem 2.6. Thus, starting from u0 = (u0i)m
i=1

smaller than M, we have

0 ≤ u(t, x) ≤ M, for all (t, x) ∈ [0,+∞)×Rd.

3 Upper and lower estimates.

First, let consider the auxiliary initial condition v0 = (v0i)m
i=1 given in Lemma 2.2 and let v be

the mild solution of (1.2) with initial condition v0. From (H2), we know that, for i ∈ ~1,m�
and j ∈ ~1,m� ∣∣∣∂ j fi(s)

∣∣∣ ≤ Lip( fi), for all s ∈ Rm,

where Lip( fi) is the Lipschitz constant of fi. Taking l > 0 defined in (2.17), we have for all
s = (si)m

i=1 ≥ 0

fi(s) =
∫ 1

0
D fi(σs)dσ · s ≤

∣∣∣∣∣∣∣∣
m∑

j=1

s j

∫ 1

0

∂ fi
∂s j

(σs)dσ

∣∣∣∣∣∣∣∣ ≤ l
m∑

j=1

s j. (3.1)



Propagation Speed for Fractional Cooperative Systems 93

Let us consider v = (vi)m
i=1 the mild solution of the following system{

∂tv+Lv = Bv, t > 0, x ∈ Rm

v(0, ·) = v0, R
m,

(3.2)

where B = (bi j)m
i, j=1 is a matrix with bi j = l for all i, j ∈ ~1,m�. By (3.1) and Remark 2.4, we

conclude that v ≤ v in Rd × [0,+∞). Moreover, since v0 belongs to the domain
∏m

i=1 D0(Ai),
v and v are classical solutions to (1.2). Taking Fourier transforms in each term of system
(3.2), we have {

∂tF(v) = (A(|ξ|)+B)F(v), ξ ∈ Rm, t > 0
F(v)(0, ·) = F(v0), Rm,

where A(|ξ|) = diag(−|ξ|2α1 , ...,−|ξ|2αm). Thus,

F(v)(t, ξ) = e(A(|·|)+B)t.F(v0)(ξ).

In what follows, we prove that for each time t > 0, the solution v of (1.2) with initial v0
decay as |x|−d−β for large values of |x|.

Lemma 3.1. Let v = (vi)m
i=1 be the classical solution of (1.2), with initial condition v0. If

2α ≥ β, then, there exist locally bounded functions Ci : (0,∞)→ R+ such that for all t > 0
and |x| large enough, we have

vi(t, x) ≤
Ci(t)

1+ |x|d+β
, ∀i ∈ ~1,m�

Proof. Defining the Fourier Transform F−1(e(A(|ξ|)+B)t) := (ηi j)m
i, j=1, we have that

0 ≤ vi(t, x) ≤ v =
m∑

j=1

ηi j(t, ·)∗ v0 j(x), ∀ i ∈ ~1,m�

moreover, by Lemma 3 of [5]

|ηi j(t, x)| ≤
Ci j(t)

1+ |x|d+2α , ∀ t > 0, |x| > R

for some R > 0 and Ci j locally positive bounded functions in (0,+∞). Taking R > 0 large if
necessary, there exists a constant c > 0 such that∫

Rd

1
1+ |y|d+2α

1
1+ |x− y|d+β

≤
c
|x|d+β

, if |x| ≥ 2R. (3.3)

Moreover, from the choice of v0, we see that, for all j ∈ ~1,m�, v0 j(x)=O(|x|−d−β) as |x|→∞
and since v0 j is bounded by Λ, we have that v0 j(x) ≤ C(1+ |x|d+β)−1 for all x ∈ Rd. Hence,
for all t > 0 and |x| ≥ 2R

|ηi j(t, ·)∗ v0 j(x)| ≤
∫
|y|<R

C|ηi j(t,y)|
1+ |x− y|d+β

dy

+

∫
|y|≥R

Ci j(t)
1+ |y|d+2α

C
1+ |x− y|d+β

dy

:= I1+ I2.
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Now, if |y| < R, we have that |x|/2 ≥ R > |y| and then |x−y| ≥ |x|− |y| ≥ |x|/2, thus, by Lemma
4 in [5], the first integral is bounded by

I1 ≤
2d+βC

1+ |x|d+β

∫
|y|<R
|ηi j(t,y)|dy

≤
Cect

1+ |x|d+β

[∫ 1

0
rd−1e−r2α1t

dr+
∫ ∞

1
rd−1e−r2αt

dr
]

≤
Ci ject

1+ |x|d+β

(
t−

d
2α1 + t−

d
2α

)
.

Moreover, by (3.3), we have I2 ≤Ci j(t)(1+ |x|d+β)−1. �

Now, for the sake of completeness, we present an alternative proof of Lemma 3.1, for
the particular case in which α := αi < 1 for all i ∈ ~1,m�. In this case, since we are working
with a unique index α, we can bound directly in the iteration process (2.4), to prove that the
solution of the system (1.2) decay as |x|−d−β for all t > 0.

Proof. From the iterative process (2.4), we have that v = limi→+∞ vi where vi satisfies

vn+1(t, x) = Ttv0(x)+
∫ t

0
Tt−sF(vn(s, x))ds

with v0(t) = (Ttv0i)m
i=1. Using the semigroup properties of the operator Tt and taking l > 0

defined in (2.17), we have for all i ∈ ~1,m� and n ∈ N

|vn
i (t, x)| ≤

(
1+ (lmt)+

(lmt)2

2!
+ ...+

(lmt)n

n!

) m∑
j=1

Ttv0 j(x) (3.4)

where vn = (vn
i )m

i=1. Also, we know that∥∥∥vn− v
∥∥∥

C([0,∞),X)m → 0, when n→ +∞

where X =C0(Rd). Then, we deduce that

|vn
i (t, x)| → |vi(t, x)| = vi(t, x) when n→ +∞

for all (t, x) ∈ [0,∞)×Rd and i ∈ ~1,m�. Taking the limit when n→+∞ in (3.4), we conclude
that

vi(t, x) ≤ elmt
m∑

j=1

Ttv0 j(x), (t, x) ∈ [0,∞)×Rd. (3.5)

Now, by definition of v0, we have that there exist ci > 0 large enough and ri > 1, such that

v0i(x) ≤ ci|x|−d−β, ∀ |x| ≥ ri (3.6)
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also we know that 0 ≤ v0i ≤ Λ. Thus, if |x| > 2ri and t > 0

Ttv0i(x) ≤

∫
Rd

t−
d

2α Bv0i(x− y)

1+ (t−
1

2α |y|)d+2α
dy

≤

∫
{|y|≤|x|/2}

t−
d

2α Bv0i(x− y)

1+ (t−
1

2α |y|)d+2α
dy

+

∫
{|y|>|x|/2}

t−
d

2α Bv0i(x− y)

1+ (t−
1

2α |y|)d+2α
dy

:= I1+ I2.

If |y| ≤ |x|/2, we have |x− y| ≥ |x| − |y| ≥ |x|2 , then

I1 ≤

∫
{|y|≤|x|/2}

t−
d

2α B

1+ (t−
1

2α |y|)d+2α

ci

|x− y|d+β
dy ≤

2d+βBci

|x|d+β

∫
Rd

1
1+ |s|d+2α ds

≤
ci

|x|d+β
.

Now, if |y| > |x|/2 and since |x| > 2ri, we have that 1+ (t−
1

2α |y|)d+2α ≥ (2−1t−
1

2α )d+2α|x|d+β,
hence

I2 ≤
2d+2αBt
|x|d+β

∫
Rd

v0i(s)ds ≤
cit
|x|d+β

.

Therefore, we conclude that, if |x| ≥ 2ri then Ttv0i ≤ 2ci(1+ t)(1+ |x|d+β)−1. Otherwise if
|x| < 2ri

Ttv0i(x) ≤
∫
Rd

t−
d

2α Bv0i(y)

1+ (t−
1

2α |x− y|)d+2α
dy ≤ ΛB

∫
Rd

1
1+ |s|d+2α ds ≤

ci

1+ |x|d+β
.

Thus, we conclude that

Ttv0i(x) ≤ 2ci(1+ t)(1+ |x|d+β)−1, ∀ (t, x) ∈ (0,∞)×Rd.

Using (3.5), (3.6), we get vi(t, x)≤Ci(t)(1+ |x|d+β)−1 for all (t, x) ∈ [0,∞)×Rd, where Ci(t)=
2(1+ t)elmt ∑m

i=1 ci. �

The following is an important result needed to prove Theorem 1.1, which sets an alge-
braically lower bound for the solutions of the cooperative system (1.2).

Lemma 3.2. Let v = (vi)m
i=1 be the solution of the system (1.2), with initial condition v0 and

F satisfying (1.5) and (H2). If 2α ≥ β, there exist constants σi > 0, τ1 > 0 and Ci > 0 such
that

vi(t, x) ≥
Cite−σit

t
d
β+1
+ |x|d+β

, ∀i ∈ ~1,m�

for all x ∈ Rd and t ≥ τ1.
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Proof. It is easy to prove that w(t, x) = eltv(t, x) is the mild solution of (2.19) with the initial
condition v0 and l > 0 defined in (2.17). Thus, following the same computations as in
Lemma 2.2, we can deduce that

w(t, x) ≥ Ttv0(x), ∀ (t, x) ∈ [0,∞)×Rd.

By definition of β, there exists k ∈ I such that β = βk. So, we have that

vk(t, x) ≥ e−ltHk(t, ·)∗ v0k(x), for all t ≥ 0

where Hk is the heat kernel defined in (2.16). In both cases αk ∈ (0,1) or αk = 1, taking
|x| > 1 and t ≥ 1, since v0k satisfies (2.12)

Hk(t, ·)∗ v0k(x) ≥Ckte−t
∫
|y|≤1

1
1+ |x− y|d+β

dy

for some positive constant Ck. Also, |x− y| ≤ |x|+ |y| ≤ |x|+1 ≤ 2|x|, so

1+ |x− y|d+β ≤ 2d+βt
d
β+1
+2d+β|x|d+β

then Hk(t, ·)∗ v0k(x) ≥Ckte−t
(
t

d
β+1
+ |x|d+β

)−1
. Now, if |x| ≤ 1 and t ≥ 1

Hk(t, ·)∗ v0k(x) ≥Cke−t ≥
Ckte−t

t
d
β+1
+ |x|d+β

with Ck > 0 smaller if necessary. Then, taking σk = l+1, we have

vk(t, x) ≥
Ckte−σkt

t
d
β+1
+ |x|d+β

, ∀x ∈ Rd, t ≥ 1.

Now, to compute the lower bound for the other entries of the solution, we note that

fi(z) =
∫ 1

0
D fi(σz)dσ · z =

m∑
j=1

z j

∫ 1

0

∂ fi
∂z j

(ζσ)dσ (3.7)

thus, if z ∈ [0,M] then ζσ = σz ∈ [0,M] and since ∂ fi
∂u j

: [0,M]→ R is continuous for all
i, j ∈ ~1,m�, using the fact that the system is cooperative, there exist constants γi j > 0 such
that ∣∣∣∣∣∂ fi

∂ui
(ζσ)

∣∣∣∣∣ ≤ γii and γi j ≤
∂ fi
∂u j

(ζσ) for all i , j. (3.8)

Now, for all i , k, by (3.7) and (3.8)

fi(z) ≥
∫ 1

0

∂ fi
∂zk

(ζσ)dσzk +

∫ 1

0

∂ fi
∂zi

(ζσ)dσzi ≥ γikzk −δizi

where δi ≥ max(γii,σk + 2). Hence, taking vk as a fixed function and since 0 ≤ v ≤ M by
Lemma 3.1 and Remark 2.7, we have for all i , k, x ∈ Rd and t ≥ 0

∂tvi+ (−4)αivi ≥ γikvk −δivi.
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Then, by the maximum principle of reaction diffusion equations and Duhamel’s formula,
we have

vi(t, x) ≥ e−δit
(
Hi(t, ·)∗ v0i(x)+γik

∫ t

0

∫
Rd

Hi(t− s,y)vk(s, x− y)eδi sdyds
)

for all (t, x) ∈ R+×Rd. So, taking t ≥ τ1 for any τ1 ≥ 3

vi(t, x) ≥Ckγike−δit
∫ t−1

1

∫
Rd

Hi(t− s,y)
se(δi−σk)s

s
d
β+1
+ |x− y|d+β

dyds.

To conclude, we claim that it is possible to find a constant C > 0 such that∫
Rd

se−
|y|2
4

s
d
β+1
+ |x− y|d+β

dy ≥
Cse−s

s
d
β+1
+ |x|d+β

, ∀x ∈ Rd, s ≥ 1

and ∫
Rd

1
1+ |y|d+2αi

 s

s
d
β+1
+ |x− y|d+β

dy ≥
Cse−s

s
d
β+1
+ |x|d+β

, ∀x ∈ Rd, s ≥ 1.

Thus, in both cases αi ∈ (0,1) or αi = 1, by the previous inequalities, we can bound as
follows

vi(t, x) ≥Ci
e−δit

t
d
β

∫ t−1

1

se(δi−σk−1)s

s
d
β+1
+ |x|d+β

ds ≥
Cite−σit

t
d
β+1
+ |x|d+β

for all x ∈ Rd, t ≥ τ1 with τ1 larger if necessary and taking σi := δi. �

4 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. For the proof of part a), we analyze the limit of u(t, x) as |x| → +∞
for all t ≥ 0. Since u0i ∈C0(Rd) for all i ∈ ~1,m�, from the construction of the mild solution
u of the system (1.2) with initial datum u0, we know that

u ∈C([0,+∞);C0(Rd))m

thus, for each t ≥ 0, we conclude that u(t, ·) ∈C0(Rd)m.
For the proof of part b), we consider the vector field

u = aelt
(
1+b(t)|x|δ2(d+β)

)− 1
δ2 φ1

where a is a positive constant, l > 0 is defined in (2.17), δ2 as in (H5), b(t) is a time con-
tinuous function and φ1 = (φ1,i)m

i=1 ∈ R
m is the normalized principal eigenvector of DF(0)

associated to the principal eigenvalue λ1. Note that, since the system is cooperative, by
Perron-Frobenius Theorem, we can ensure φ1 > 0. Doing a similar proof to Lemma 6 of
[5], there exist a constant D > 0 such that

| (−4)αiui |≤ Db(t)
2αi
δ2(d+β) ui, in Rd
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with αi ∈ (0,1], for all i ∈ ~1,m�. Taking for the moment B≤ (Lλ−1
1 )−

δ2(d+β)
β with any constant

L ≥max{D,λ1}. We consider

b(t) = (Lλ−1
1 +B−

β
δ2(d+β) e

βλ1
d+β t)−

δ2(d+β)
β and a ≤

(
mini∈~1,m�{φ1,i}λ1

2cδ2

) 1
δ2

where cδ2 is defined in (H5). Similarly to Lemma 8 of [5], appropriately choosing a, B and
by (H5), we can prove that

∂tui+ (−4)αiui− f̃i(u) ≤ 0, for all i ∈ ~1,m�

with f̃i(u) := lui+ elt fi(e−ltu).
Moreover, it is possible to find t1 ≥ max{τ1,2Lλ−1

1 } large enough, where τ1 was de-
fined in Lemma 3.2, such that elt1vi(t1, x) ≥ ui(0, x) for all x ∈ Rd and i ∈ ~1,m�, note that,
it is possible by the lower bound stated in Lemma 3.2. Now, by Lemma 2.2, we know
that w(2, x) ≥ v0(x) where w(t, x) = eltu(t, x) with u the solution of (1.2), hence, applying
Theorem 2.6 to the system (2.19), by the previous considerations, we have for all i ∈ ~1,m�

wi(t, x) ≥ el(t−2)vi(t−2, x) ≥ ui(t− t1−2, x), ∀ x ∈ Rd, t ≥ t1+2.

Let us define
θi = aφ1,iel(t1+2)2−

1
δ2 and Cd+β = e−λ1(t1+2)B−

1
δ2 .

Then, if t ≥ t1+2 and |x| ≤Ce
λ1

d+β t, we have that

wi(t, x) ≥ ael(t−t1−2)φ1,i(1+b(t− t1−2)|x|δ2(d+β))−
1
δ2 ≥ eltθi.

Taking τ := t1+2, we conclude ui(t, x) ≥ θi for all i ∈ ~1,m�. �

Proof of Theorem 1.2. We consider the function u given by

u = a
(
1+b(t)|x|δ1(d+β)

)− 1
δ1 φ1

with δ1 as in (H4), a > 0 and b a continuous function. Now, we choose a constant B <

(1+Dλ−1
1 )−

δ1(d+β)
β and we set

b(t) = (−Dλ−1
1 +B

−
β

δ1(d+β) e
βλ1
d+β t)−

δ1(d+β)
β

and
a ≥ [(D+λ1)/cδ1]

1
δ1 maxi∈~1,m�(1/φ1,i)

with cδ1 given in (H4). Similarly to Lemma 7 of [5], for all i ∈ ~1,m�, using the fact b(t)≤ 1,
by (H3) and (H4), we can prove that

∂tui+ (−4)αiui− fi(u) ≥ 0. (4.1)

Now, since u0i(x) = O(|x|−d−β) as |x| → +∞ for all i ∈ ~1,m�, let consider

σ(x) =
1

1+ |x|d+β
and v0i(x) = ci

∫ 2

1
Ts,iσ(x)ds
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thus, following the same computations done in Lemma 2.1, we can prove that v0i ∈ D(Ai) is
bounded and

v0i(x) ≥ c1,i(1+ |x|−d−β)−1 for all x ∈ Rd

with c1,i a multiple of the positive constant ci for all i ∈ ~1,m�, hence, taking ci large if
necessary, we have that u0i ≤ v0i in Rd, moreover, v0i(x) ≤ c2,i|x|−d−β if |x| ≥ 2 for all i ∈
~1,m�.

Thus, we define by v the mild solution of (1.2) with initial conditions v0 = (v0i)m
i=1 and

by election of v0 we have that v is classical.
It is important to notice that v satisfies the conclusion of Lemma 3.1 and by Theorem

2.3 we have that u ≤ v in Rd for all t ≥ 0. To end the proof, for any t0 > 0 fixed, we can take
a satisfying the above condition and t2 > t0 such that

ui(t2, x) ≥ vi(t0, x), ∀x ∈ Rd,∀i ∈ ~1,m� (4.2)

note that, this is possible due to Lemma 3.1. Therefore, we conclude that u is a supersolution
to (1.2). Thus, using (4.1), (4.2) and Theorem 2.6, we get for all t ≥ t0

ui(t+ t2− t0, x) ≥ vi(t, x) ≥ ui(t, x), ∀x ∈ Rd,∀i ∈ ~1,m�.

Now, given any ε = (εi)m
i=1 > 0, we define cd+β

i := aφ1,ieλ1(t2−t0)
[
εiB

1/δ1
]−1

. Thus, taking

c =maxi{ci}, for all t > t0 and |x| > ce
λ1

d+β t

ui(t, x) ≤ aφ1,i(1+b(t+ t2− t0)|x|δ1(d+β))−
1
δ1 < εi.

We conclude taking τ := t0. �
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[4] X. Cabré and A. C. Coulon, and J. M. Roquejoffre, Propagation in Fisher-KPP type
equations with fractional diffusion in periodic media, C. R. Math. Acad. Sci. Paris 350
(2012), pp. 885-890.



100 M. Yangari

[5] A-C Coulon and M. Yangari, Exponential propagation for fractional reaction-
diffusion cooperative systems with fast decaying initial conditions, J. Dyn. Diff. Equat.
(2015), DOI: 10.1007/s10884-015-9479-1.
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