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Abstract

We prove in this article new fixed point theorems for positive maps having approx-
imative minorant and majorant at 0 and ∞ in specific classes of operators. Then, the
new fixed point theorems are used to obtain existence results for positive solutions to
boundary value problems involving a generalized p(t)-Laplacian operator.
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1 Introduction and abstract background

The problem of seeking positive solutions for boundary value problems (bvps for short)
having positive nonlinearities, is usually converted to that of finding solutions in the cone
of nonnegative functions C of some functional space X, to the fixed point equation, u = Tu
where T : C→C is completely continuous.

This formulation has motivated many works, where existence results of fixed points for
operators leaving invariant a cone in a Banach space, have been proved; see [1], [2], [7], [8]
and [12]. Krasnosel’skii’s theorems of compression and expansion of a cone in a Banach
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space (see Theorems 4.10, 4.11, 4.12, 4.14 and 4.16 in [11] and Theorems 2.3.3 and 2.3.4
in [10]), are among the best known and most used in the literature.

Inspired by the works in [2], [5], [6], [7] and [8], we prove in this paper new fixed point
theorems for maps leaving invariant a cone in a Banach space, and as in Krasnosel’kii’s
theorems, the main assumptions are on the behavior of the considered mapping at 0 and
∞. More precisely, we will assume that the mapping has an approximative minorant at 0
and an approximative majorant at ∞, or vice versa; existence of the fixed point is obtained
under additional conditions: it is required that the positive spectrums of the approximative
minorant and majorant are oppositely located with respect to 1.

We present at the end of this paper an application of the main results, to obtain existence
results for at least one positive solution to bvps involving a φ-Laplacian or a p(t)-Laplacian
operator.

We will use extensively in this work cones and the fixed point index theory, so let us
recall some facts related to these two tools. Let X be a Banach space. A nonempty closed
convex subset C of X is said to be a cone if (tC) ⊂ C for all t ≥ 0 and C ∩ (−C) = {0X} . It
is well known that a cone C induces a partial order in the Banach space X. We write for all
x,y ∈ X : x � y if y− x ∈ C, x ≺ y if y− x ∈ C, y , x and x � y if y− x < C. Notations �, �
and � denote respectively the reverse situations.

Let C be a cone in X and let N : X → X. The mapping N is said to be positive if
N (C) ⊂ C. In this case, a nonnegative constant µ is said to be a positive eigenvalue of N if
there exists u ∈Cr {0X} such that Nu = µu.

Let N : X→ X be a positive mapping. N is said to be
i) increasing if for all u,v ∈ X, u � v implies Nu � Nv,
ii) lower bounded on C, if there exists a positive constant m such that for all u ∈

C, ‖Nu‖ ≥ m‖u‖ . For such an operator N, we denote N−C = inf {‖Nu‖/‖u‖ , u ∈C} ,
iii) upper bounded on C, if there exists a positive constant M such that for all u ∈

K, ‖Nu‖ ≤ M ‖u‖ . For such an operator N, we denote N+C = sup {‖Nu‖/‖u‖ , u ∈C} ,
Let N1,N2 : X→ X be positive maps. We write N1 � N2 if for all x ∈C, N1x � N2x.
A function f : Ω ⊂ X→ X is said to be bounded, if it maps bounded sets into bounded

sets, and it is said to be completely continuous, if it is continuous and maps bounded sets
into relatively compact sets.

At the end, let us recall some lemmas providing fixed point index computations. Let C
be a cone in X. Let for R > 0, CR =C∩B (0X ,R) where B (0X ,R) is the open ball of radius R
centred at 0X , ∂CR be its boundary and consider a compact mapping f : CR→C.

Lemma 1.1. If f x , λx for all x ∈ ∂CR and λ ≥ 1, then i ( f ,CR,C) = 1.

Lemma 1.2. If f x � x for all x ∈ ∂CR, then i ( f ,CR,C) = 1.

Lemma 1.3. If f x � x for all x ∈ ∂CR, then i ( f ,CR,C) = 0.

A detailed presentation of the fixed point index theory can be found in [10].
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2 Main results

2.1 Preliminaries

In all this section E is a real Banach space, K,P are two cones in E with P ⊂ K (it may
happen that K = P). We set

NP
K(E) = {N : E→ E, N is continuous and N (K) ⊂ P} , and

QP
K(E) =

{
N ∈ NP

K(E) : N is completely continuous
}
.

Now, for N ∈ NP
K(E) we define the subsets

ΛN
P = {λ ≥ 0 : there exist u ∈ Pr {0E} such that Nu � λu} ,

ΘN
P = {θ ≥ 0 : there exist u ∈ Pr {0E} such that Nu � θu} .

Remark 2.1. Note that
i) 0 ∈ ΘN

P and if θ ∈ ΘN
P , then [0, θ] ⊂ ΘN

P .

ii) If λ ∈ ΛN
P then [λ,+∞) ⊂ ΛN

P .

iii) ΛN
P ⊂ Λ

N
K and ΘN

P ⊂ Θ
N
K .

iv) If µ is positive eigenvalue of N, then µ ∈ ΘN
P ∩Λ

N
P .

v) If N−1 (0E)∩K = {0E} , then ΛN
P = Λ

N
K and ΘN

P = Θ
N
K .

In all this paper, we set for N ∈ NP
K (E) ,

θN
P = supΘN

P

and when ΛN
P is nonempty

λN
P = infΛN

P .

Lemma 2.2 ([8]). Let N ∈ QP
K (E) and assume that N is upper bounded on K. Then the

subset ΛN
P is nonempty.

Lemma 2.3. Let N ∈ NP
K (E) and assume that the cone P is solid. Then the subset ΛN

P is
nonempty.

Proof. Let u0 ∈ int (P) , then we have from Lemma 3.7 in [13] that there is α0 > 0 such that
α0Nu0 � u0, proving that α−1

0 ∈ Λ
N
P . �

Lemma 2.4 ([8]). Let N ∈ NP
K be upper bounded on K and assume that the cone K is normal

with a constant n. Then θN
P <∞.

Observe that if N ∈ QP
K (E) , then for all R > 0, the permanence property of the fixed

point index implies that i (N,KR,K) = i (N,PR,P) .

Lemma 2.5. Let N ∈ QP
K (E) and let γ,R be positive real numbers. We have

i) i (γN,PR,P) = 1, if γθN
P < 1.

ii) i (γN,PR,P) = 0, if the subset ΛN
P is nonempty and γλN

P > 1.
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Proof. i) Suppose that γθN
P < 1 and let u ∈ ∂PR such that γNu� u. This implies that 1/γ ∈ΘN

P
and 1/γ ≤ θN

P which contradicts γθN
P < 1. Thus, the hypothesis of Lemma 1.2 holds and

i (γN,PR,P) = 1.
ii) Suppose that the subset ΛN

P is nonempty and γλN
P > 1 and let u ∈ ∂PR such that

γNu � u. This implies that 1/γ ∈ ΛN
P and 1/γ ≥ infΛN

p = λ
N
P which contradicts γλN

P > 1.
Thus, the hypothesis of Lemma 1.3 holds and i (γN,PR,P) = 0. This completes the proof.

�

Lemma 2.6. Let N ∈ QP
K(E) and assume that the subset ΛN

P is nonempty. Then we have
λN

P ≤ θ
N
P .

Proof. The case θN
P =+∞ is obvious and if θN

P = 0, then i (γN,PR,P)= 1 for all γ > 0 proving
that λN

P = 0.
Now, to the contrary suppose that λN

P > θ
N
P > 0 and let γ ∈

(
1/λN

P ,1/θ
N
P

)
. We have from

i) and ii) of Lemma 2.5, the contradiction

i (γN,KR,K) =
{

1, since γθN
P < 1,

0, since γλN
P > 1.

This ends the proof. �

Corollary 2.7. Let N ∈ QP
K(E) and assume that the subset ΛN

P is nonempty and λN
P > 0.

Then N admits at least one positive eigenvalue.

Proof. Let γ0 > 0 be such that γ0 > 1/λN
P and let R > 0. We have from ii) of Lemma 2.5 that

i (γN,KR,K) = 0 , 1 and we deduce from Lemma 1.1 that there is µ > 1 and u ∈ ∂PR such
that γ0Nu = µu. This proves that µ/γ0 is a positive eigenvalue of N. �

Lemma 2.8. Let N ∈ NP
K(E) be lower bounded on P and assume that the cone K is normal

and the subset ΛN
P is nonempty. Then we have θN

P ≥ λ
N
P > 0.

Proof. Let λ > 0 and u ∈ P r {0E} be such that Nu � λu and let nK be the constant of
normality of the cone K. We have then

N−P ‖u‖ ≤ ‖Nu‖ ≤ λnK ‖u‖

leading to λ ≥ N−P/nK and λN
P ≥ N−P/nK > 0. �

Lemma 2.9. Let N ∈ NP
K(E) be upper bounded on K and assume that the cone K is normal.

Then we have θN
P < +∞.

Proof. Let λ > 0 and u ∈ P r {0E} be such that Nu � λu and let nK be the constant of
normality of the cone K. We have then

λ‖u‖ ≤ nK ‖Nu‖ ≤ nK N+K ‖u‖

leading to λ ≤ nK N+K and θN
P ≤ nK N+K < +∞. �

Proposition 2.10. Let N1,N2 ∈ NP
K (E) and assume that N1 � N2. Then λN1

P ≤ λ
N2
P and θN1

P ≤

θN2
P .
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Proof. Indeed, we have
Θ

N1
P ⊂ Θ

N2
P and ΛN2

P ⊂ Λ
N1
P

leading to
λN1

P ≤ λ
N2
P and θN1

P ≤ θ
N2
P .

�

2.2 Fixed point theorems for positive maps

Throughout this subsection, we let T : K→ K be a completely continuous mapping and we
want to obtain properties for the existence of fixed points of T .

Theorem 2.11. Assume that the cone K is normal and there exists operators N1,N2 ∈

QK
K (E) , Ñ1 ∈ QP1

K (E) , Ñ2 ∈ QP2
K (E), where P1,P2 are two cones contained in K, α> 0 and

three functions G1,G2;G3 : K→ K such that θÑ1
P1
< 1< λÑ2

P2
, N1,N2 are uniformly continuous

on B̄ (0E ,2) , Ñ1, Ñ2 are increasing and for all u ∈ K,

Tu � N1 (u+G1(u)) ,

N2 (u−G2(u)) � T (u) � αN2 (u+G3(u)) .
(2.1)

If either G1(u) = ◦ (‖u‖)near 0 and Gi(u) = ◦ (‖u‖) near∞ for i = 2,3,

limt→0
N1 (tu)

t
= Ñ1 (u) and limt→+∞

N2 (tu)
t
= Ñ2 (u) uniformly in ∂B (0E ,1) ,

(2.2)

or G1(u) = ◦ (‖u‖) near∞ and Gi(u) = ◦ (‖u‖) near 0 for i = 2,3,

limt→+∞
N1 (tu)

t
= Ñ1 (u) and limt→0

N2 (tu)
t
= Ñ2 (u) uniformly in ∂B (0E ,1) ,

(2.3)

then T admits at least one fixed point.

Proof. We present the proof in the case where (2.2) holds, the other case is checked simi-
larly. We have to prove the existence of 0 < r < R such that

i(T,Kr,K) = 1 and i(T,KR,K) = 0,

in such a case, the additivity and the solution properties of fixed point index imply that

i(T,KRr K̄r,K) = i(T,KR,K)− i(T,Kr,K) = −1,

and T admits a positive fixed point u, with r < ‖u‖ < R.
Consider the function H1 : [0,1]×K→ K defined by H1(t,u) = tTu+ (1− t)N2(u) and let

us prove existence of R > 0 large enough such that for all t ∈ [0,1] equation H1(t,u) = u has
no solution in ∂KR. To the contrary, suppose that for all integers n ≥ 1, there exist tn ∈ [0,1]
and un ∈ ∂Kn such that

un = tnT (un)+ (1− tn)N2(un).
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Note that vn = un/‖un‖ ∈ ∂K1 and satisfies

vn = tn
T (un)
‖un‖

+ (1− tn)
N2(un)
‖un‖

and

Ñ2(vn) = Ñ2

(
tn

T (un)
‖un‖

+ (1− tn)
N2(un)
‖un‖

)
. (2.4)

Because Ñ2 is completely continuous, N2 is uniformly continuous on B̄ (0E ,2) and by the
homogeneity condition imposed on N2 in Hypothesis (2.2), there is a subsequence of in-
tegers (nl) , t̂ ∈ [0,1] and w ∈ P2 such that lim tnl = t̂, w = lim Ñ2(vnl) = lim N2(unl)/

∥∥∥unl

∥∥∥ =
lim N2

(
unl −G2

(
unl

))
/
∥∥∥unl

∥∥∥ = lim N2
(
unl +G3

(
unl

))
/
∥∥∥unl

∥∥∥ = w. Note that w � 0E . Indeed,
if lim N2(unl)/

∥∥∥unl

∥∥∥ = 0E , then we have from

T
(
unl

)∥∥∥unl

∥∥∥ � αN2
(
unl +G3

(
unl

))∥∥∥unl

∥∥∥
and the normality of the cone K that limT

(
unl

)
/
∥∥∥unl

∥∥∥ = 0E , leading to

limvnl = lim

tn T
(
unl

)∥∥∥unl

∥∥∥ + (1− tnl)
N2(unl)∥∥∥unl

∥∥∥
 = 0E ,

contradicting
∥∥∥vnl

∥∥∥ = 1.
At this stage, letting l→∞ in

Ñ2(vnl) = Ñ2

tnl

T
(
unl

)∥∥∥unl

∥∥∥ + (1− tnl)
N2(unl)∥∥∥unl

∥∥∥


� Ñ2

tnl

N2
(
unl −G2

(
unl

))∥∥∥unl

∥∥∥ + (1− tnl)
N2(unl)∥∥∥unl

∥∥∥


we obtain w � Ñ2 (w) and 1 ∈ ΛÑ2
P2

contradicting λÑ2
P2
> 1.Thus, our claim is proved, and for

such a real number R > 0, we deduce from the homotopy property of the fixed point index
and Lemma 1.3 that

i(T,KR,P) = i(H1(1, ·),KR,K) = i(H1(0, ·),KR,K) = i(N2,KR,K) = 0.

In similar way, consider the function H2 : [0,1]×K→ K defined by H2(t,u) = tTu+ (1−
t)N1u and let us prove existence of r > 0 small enough such that for all t ∈ [0,1] , equation
H2(t,u) = u has no solution in ∂Kr. To the contrary, suppose that for all integers n ≥ 1, there
exist tn ∈ [0,1] and un ∈ ∂K1/n such that

un = tnTun+ (1− tn)N1(un).
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Note that vn = un/‖un‖ ∈ ∂K1 and satisfies

vn = tn
Tun

‖un‖
+ (1− tn)

N1(un)
‖un‖

.

Then

Ñ1(vn) = Ñ1

(
tn

Tun

‖un‖
+ (1− tn)

N1(un)
‖un‖

)
.

Because Ñ1 is completely continuous, N1 is uniformly continuous on B̄ (0E ,2) and the
homogeneity condition imposed on N1 in Hypothesis (2.2), there is a subsequence of in-
tegers (nl), t̂ ∈ [0,1] and ω ∈ P1 such that lim tnl = t̂, lim Ñ1

(
vnl

)
= lim N1(unl)/

∥∥∥unl

∥∥∥ =
lim N2

(
unl +G1

(
unl

))
/
∥∥∥unl

∥∥∥ = ω.
Note that ω� 0E . Indeed, if lim N1(vnl) = 0E , then we have from

T
(
unl

)∥∥∥unl

∥∥∥ � N1
(
unl +G1

(
unl

))∥∥∥unl

∥∥∥
and the normality of the cone K that limT

(
unl

)
/
∥∥∥unl

∥∥∥ = 0E , leading to

limvnl = lim

tn T
(
unl

)∥∥∥unl

∥∥∥ + (1− tnl)
N2(unl)∥∥∥unl

∥∥∥
 = 0E ,

contradicting
∥∥∥vnl

∥∥∥ = 1.
At this stage, letting l→∞ in

Ñ1(vnl) = Ñ1

tnl

T
(
unl

)∥∥∥unl

∥∥∥ + (1− tnl)
N1(unl)∥∥∥unl

∥∥∥


� Ñ1

tnl

N1
(
unl +G1

(
unl

))∥∥∥unl

∥∥∥ + (1− tnl)
N1(unl)∥∥∥unl

∥∥∥
 ,

we obtain ω � Ñ1 (ω) and 1 ∈ ΘÑ1
P1
, contradicting θÑ1

P1
< 1. Thus, our claim is proved and for

such a real number r > 0, we deduce from the homotopy property of the fixed point index
and Lemma 1.2 that

i(T,Kr,K) = i(H2(1, ·),Kr,K) = i(H2(0, ·),Kr,K) = i(N1,Kr,K) = 1.

This completes the proof. �

Theorem 2.12. Assume that the cone K is normal and there exist operators N1,N2 ∈

QK
K (E), Ñ1 ∈ QP1

K (E) , Ñ2 ∈ QP2
K (E), where P1,P2 are two cones contained in K and func-

tions G1,G2 : K → K such that N1,N2 are uniformely continuous on B̄ (0E ,2) , Ñ2 is lower
bounded, θÑ1

P < 1 < λÑ2
P , Ñ1, Ñ2 are increasing and for all u ∈ K,

N2 (u−G2(u)) � T (u) � N1 (u+G1(u)) .
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If either G1(u) = ◦ (‖u‖)near 0 and Gi(u) = ◦ (‖u‖) near∞ for i = 2,3,

limt→0
N1 (tu)

t
= Ñ1 (u) and limt→+∞

N2 (tu)
t
= Ñ2 (u) uniformly in ∂B (0E ,1)

(2.5)

or  G1(u) = ◦ (‖u‖) near∞ and Gi(u) = ◦ (‖u‖) near 0 for i = 2,3,

limt→+∞
N1 (tu)

t
= Ñ1 (u) and limt→0

N2 (tu)
t
= Ñ2 (u) uniformly in ∂B (0E ,1) ,

then T admits at least one fixed point.

Proof. We present the proof in the case where (2.5) holds. The other case is checked sim-
ilarly. As in the proof of Theorem 2.11, we have to prove existence of 0 < r < R such
that

i(T,Kr,K) = 1 and i(T,KR,K) = 0.

Consider the function H3 : [0,1]×K→ K defined by H3(t,u) = (1− t)Tu+ tN2(u) and let
us prove existence of R > 0 large enough such that for all t ∈ [0,1] , equation H3(t,u) = u has
no solution in ∂KR. To the contrary, suppose that for all integers n ≥ 1, there exist tn ∈ [0,1]
and un ∈ ∂Kn such that

un = H3(tn,un) = (1− tn)Tun+ tnN2(un).

Note that vn = un/‖un‖ ∈ ∂K1 and satisfies

vn = (1− tn)
T (un)
‖un‖

+ tn
N2(un)
‖un‖

and

Ñ2(vn) = Ñ2

(
(1− tn)

T (un)
‖un‖

+ tn
N2(un)
‖un‖

)
. (2.6)

Because Ñ2 is completely continuous and by the homogeneity condition imposed on N2
in Hypothesis (2.5), there is a subsequence of integers (nl), t̂ ∈ [0,1] and w ∈ P2 such that
lim tnl = t̂, lim N2(unl)/

∥∥∥unl

∥∥∥ = lim N2
(
unl −G2

(
unl

))
/
∥∥∥unl

∥∥∥ = w.
Note that the lower boundeness of Ñ2 on the cone P, leads to ‖w‖ ≥ Ñ−2,P > 0. Thus,

letting l→∞ in

Ñ2(vnl) = Ñ2

(1− tnl)
T

(
unl

)∥∥∥unl

∥∥∥ + tnl

N2(unl)∥∥∥unl

∥∥∥


≥ Ñ2

(1− tnl)
N2

(
unl −G2

(
unl

))∥∥∥unl

∥∥∥ + tnl

N2(unl)∥∥∥unl

∥∥∥
 ,

we get w � Ñ2 (w) and 1 ∈ ΛÑ2
P2

contradicting λÑ2
P2
> 1.Thus, our claim is proved and for

such a real number R > 0, we deduce from homotopy property of the fixed point index and
Lemma 1.3 that

i(T,KR,K) = i(H3(1, ·),KR,K) = i(H3(0, ·),KR,K) = i(N2,KR,K) = 0.
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Arguing as in the proof of Theorem 2.11, we prove existence of r > 0 small enough
such that i(T,Kr,K) = 1. This completes the proof. �

Remark 2.13. Theorem 2.12 holds true if we replace the condition K normal by the condi-
tion that N1 is lower bounded on P1.

3 Application to bvps

We are concerned in this section with existence of positive solutions to the bvp{
− (a(t)φ (t,u′(t)))′ = f (t,u (t)), a.e. t ∈ (0,1)
u′(0) = u(1) = 0

(3.1)

where a,b : [0,1]→ [0,+∞) are measurable functions such that a(t)> 0 a.e. t ∈ [0,1] , meas {b(t) > 0}>
0, φ : [0,1]×R→R is continuous, φ (t, ·) :R→R is an odd increasing homeomorphism and
f ∈C([0,1]× [0,+∞), [0,+∞)).

In all of this section, ψ : [0,1]×R→ R is the continuous function such that ψ (t, ·) is the
inverse function of φ (t, ·) .

Throughout we assume that

∃α,β ∈ (0,+∞) such that for all t, x ≥ 0 and s ∈ (0,1)
sβφ(t, x) ≤ φ(t, sx) ≤ sαφ(t, x),

(3.2)

leading to

s
1
αψ(t, x) ≤ ψ(t, sx) ≤ s

1
βψ(t, x) for all t, x ≥ 0 and s ∈ (0,1) . (3.3)

Let φ+,φ−,ψ+,ψ− be the odd functions defined on [0,+∞) by

φ+ (x) =
{

xα if x ≤ 1
xβ if x ≥ 1

φ− (x) =
{

xβ if x ≤ 1
xα if x ≥ 1

ψ+ (x) =

 x
1
β if x ≤ 1

x
1
α if x ≥ 1

ψ− (x) =

 x
1
α if x ≤ 1

x
1
β if x ≥ 1

and note that ψ−,ψ+ are, respectively, the inverse functions of φ+,φ−.
Typical examples of a functions φ satisfying (3.2) are: φ (t,u) =

∑i=k
i=1 ζi |u|pi(t)−1 u, where

for i = 1, ...k, ζi> 0 and pi ∈C ([0,1] , (0,+∞)) and φ (t,u) =
∑i=k

i=1ωi (t) |u|qi−1 u, where for i =
1, ...k, qi> 0 and ωi ∈C ([0,1] , (0,+∞)) . This shows that the differential operator considered
in this section is more general that in [3], [4] and [9].

The main results of this section will be obtained under the following conditions on a
and b.

ψ+
(
1
a

)
∈ L1

loc (0,1] , b ∈ L1
loc [0,1) and Γ = sup

t∈(0,1)

(
1

a(t)

∫ t

0
b(s)ds

)
dt <∞. (3.4)
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lim
t→0

1
a(t)

∫ t

0
b(s)ds = 0. (3.5)

Also, in all of this section, E is the Banach space of all continuous functions defined
on [0,1] equipped with its sup-norm denoted ‖·‖, and K is the normal cone of nonnegative
functions in E.

A typical example of weights a,b satisfying (3.4) and (3.5) is

a(t) =
tm

(1− t)n b(t) =
(1− t)n

tm , m,n ∈ N.

Because of Hypothesis (3.4), the operator N : E → E, defined for h ∈ E and t ∈ [0,1] ,
by Nh(t) =

∫ 1
t ψ

(
s, 1

a(s)

∫ s
0 b (τ)h (τ)dτ

)
ds is well defined and we have that N (K) ⊂ K, and

N is a completely continuous operator.
Let F : K→ K be the mapping defined, for u ∈ K, by Fu (t) = f (t,u(t)) and note that F is

continuous and bounded (maps bounded sets into bounded sets). Set T = NF and observe
that T (K) ⊂ K, T is a completely continuous operator and because of Hypothesis (3.5), u is
a positive solution to (3.1) if and only if u is a fixed point of the operator T.

Now, let λ > 0 and N−λ , N+λ ,Nα,Nβ : E→ E be the operators defined by

N−λ u (t) =
∫ 1

t ψ
−

(∫ s
0

b (τ)φ+ (λu (τ))
a(s)

dτ
)
ds, N+λ u (t) =

∫ 1
t ψ
+

(∫ s
0

b (τ)φ− (λu (τ))
a(s)

dτ
)
ds,

Nαu (t) =
∫ 1

t ϕ1/α

(∫ s
0

b (τ)ϕα (u (τ))
a(s)

dτ
)
ds and Nβu (t) =

∫ 1
t ϕ1/β

(∫ s
0

b (τ)ϕβ (u (τ))
a(s)

dτ
)
ds,

where for θ > 0, ϕθ (x) = |x|θ−1 x.
It is easy to prove the following lemma.

Lemma 3.1. Assume that Hypotheses (3.2), (3.4) hold. Then
i) for N = N−λ , N+λ ,Nα,Nβ, N is completely continuous, N (K) ⊂ K and N is upper

bounded on K,
ii) If ρ̄ =

∫ 1
0 ψ
+ (1/a(s))ds <∞, then Nα (K) ⊂ Pα, Nβ (K) ⊂ Pβ and Nα,Nβ are respec-

tively lower bounded on Pα and Pβ where for ν = α,β, Pν is the cone defined by

Pν = {u ∈ K, u(t) ≥ ρν (t)‖u‖ for all t ∈ [0,1]}

with

ρν (t) =
1
ρ̄ν

∫ 1

t
ϕ 1

ν

(
1

a(s)

)
ds and ρ̄ν =

∫ 1

0
ϕ 1

ν

(
1

a(s)

)
ds.

Lemma 3.2. Assume that Hypotheses (3.2), (3.4) hold. Then

limγ→0
N+λ (γu)

γ
= λNβ (u) , limγ→+∞

N+λ (γu)
γ

= λNα (u) ,

limγ→0
N−λ (γu)

γ
= λNα (u) , limγ→+∞

N−λ (γu)
γ

= λNβ (u) ,

uniformly in ∂B(0E ,1).



122 A. Benmezai, S. Mechrouk, and J. Henderson

Proof. It easy to see that

limδ→0
φ+ (δu)
δα

= ϕα (u) , limδ→+∞
φ+ (δu)
δβ

= ϕβ (u) ,

limδ→0
φ− (δu)
δβ

= ϕβ (u) , limδ→+∞
φ− (δu)
δα

= ϕα (u) ,

uniformly for u in bounded intervals, and then

limδ→0
ψ− (δu)

δ
1
α

= ϕ 1
α

(u) , limδ→+∞
ψ− (δu)

δ
1
β

= ϕ 1
β

(u) ,

limδ→0
ψ+ (δu)

δ
1
β

= ϕ 1
β

(u) , limδ→0
ψ+ (δu)

δ
1
α

= ϕ 1
α

(u) ,

uniformly for u in bounded intervals.
Now, let ε > 0 be small enough, that there exists δ0 > 0 such that, for δ ≤ δ0,

δβ
(
ϕβ (u)−ε

)
≤ φ− (δu) ≤ δβ

(
ϕβ (u)+ε

)
for u ∈ [−1,1]

and

δ
1
β

(
ϕ 1

β
(u)−ε

)
≤ ψ+ (δu) ≤ δ

1
β

(
ϕ 1

β
(u)+ε

)
for u ∈ [−Γ (λ+1)/λ,Γ (λ+1)/λ] .

These inequalities lead to

N+λ (δu) (t)
δ

≤
∫ 1

t ϕ 1
β

(
1

a (s)

∫ s
0 b (τ)

(
ϕβ (λu (τ))+ε

)
dτ

)
ds+ε

≤ λ
∫ 1

t ϕ 1
β

(
1

a (s)

∫ s
0 b (τ)

(
ϕβ (u (τ))+ (ε/λ)

)
dτ

)
ds+ε

(3.6)

and
N+λ (δu) (t)

δ
≥

∫ 1
t ϕ 1

β

(
1

a (s)

∫ s
0 b (τ)

(
ϕβ (λu (τ))−ε

)
dτ

)
ds−ε

≥ λ
∫ 1

t ϕ 1
β

(
1

a (s)

∫ s
0 b (τ)

(
ϕβ (u (τ))− (ε/λ)

)
dτ

)
ds−ε

(3.7)

for all u ∈ ∂B(0E ,1).
Finally, we have from (3.6) and (3.7)

−ε−λc (β,ε/λ) ≤
N+λ (δu) (t)

δ
−λNβu(t) ≤ ε+λc (β,ε/λ)

where

C (ε,β) = max
x∈[−1,1]

(
ϕ 1

β
(x+ ε)−ϕ 1

β
(x)

)
=

 ε
1
β if β ≥ 1(
ε
β

)
(1+ ε)

1
β−1 if β ≤ 1.

Thus, we have proved that limδ→0 N+λ (δu)/δ = λNβu uniformly for u ∈ ∂B (0E ,1) . The other
limits are checked similarly. �

Proposition 3.3. Assume that Hypotheses (3.2) and (3.4) hold. Then for all p > 0 the
operator Np has a unique positive eigenvalue µ (p) .
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Proof. Let (ξn) and (ηn) be two sequences of real numbers such that 0 < ξn < ηn < 1, (ξn) is
decreasing and (ηn) is increasing. Let

an (t) =
{

a (t) if t ∈ (ξn,1)
sup(a (t) ,a (ξn)) if t ∈ (0, ξn) bn (t) =

{
b (t) if t ∈ (0,ηn)
0 if t ∈ (ηn,1)

and note that 1/an,bn ∈ L1 [0,1] . Let us define for all n ∈ N, Np,n : E → E by Np,nu (t) =∫ 1
t ϕ1/p

(
1

an(s)

∫ s
0 bn (τ)ϕp (u (τ))dτ

)
ds. Clearly Np,n is completely continuous and Np,n (K) ⊂

K. By considering the restriction of Np,n to the space E#, we have that Np,n (K#r {0E}) ⊂ O
where

E# =
{
u ∈C1 [0,1] : u′ (0) = u (1) = 0

}
O = {u ∈ E# : u (t) > 0 for all t ∈ [0,1) and u′ (1) < 0} .

Thus, similar arguments to that used in the proof of Theorem 4.10 in [8] lead to Nθ has a
unique positive eingenvalue µn (p) with µn (p) = θNp,n

K = λ
Np,n
K .

Since (µn (p)) is nondecreaing and bounded by Γ, it converges to some µ (p) . Also, we
have that

lim
∥∥∥Np−Np,n

∥∥∥ = lim sup
u∈B̄(0E ,1)

∥∥∥Np (u)−Np,n (u)
∥∥∥ = 0

and
i
(
γNp,K1,K

)
= lim i

(
γNp,n,K1,K

)
= 1 for all γ < µ (p) and

i
(
γNp,K1,K

)
= lim i

(
γNp,n,K1,K

)
= 0 for all γ > µ (p) .

This shows that µ (p) is the unique positive eigenvalue of Np. This ends the proof. �

Set for ν = 0,∞

fν = liminf
u→ν

(
min

t∈[0,1]

ψ− ( f (t,u))
u

)
f ν = limsup

u→ν

(
max
t∈[0,1]

ψ+ ( f (t,u))
u

)

f ν,+ = limsup
u→ν

(
max
t∈[0,1]

ψ+ ( f (t,u))
u

)
and let µ (p) for p = α,β, be the unique positive eigenvalue of Np given by Proposition 3.3.

Theorem 3.4. Assume that Hypotheses (3.2), (3.4) and (3.5) hold and ψ+ (1/a) ∈ L1 [0,1] .
If either

f 0µ (β) < 1 < µ (β) f∞ (3.8)

or
f∞µ (α) < 1 < µ (α) f0, (3.9)

then bvp (3.1) admits a positive solution.

Proof. We present the proof in the case where (3.8) holds (the other case is checked simi-
larly). Let ε > 0 be such that

(
f 0+ ε

)
µ (β) < 1 < ( f∞− ε)µ (β) . We have then

N2 (u−G2u) � Tu � N1 (u+G1u)
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where

N1u = N+( f 0+ε) (u) G1 (u) =max
{
f (t,u(t)−

(
f 0+ ε

)
u(t),0

}
/
(

f 0+ ε
)

N2u = N−( f∞−ε)
(u) G2 (u) =

c
( f∞− ε)

and c is a positive constant large enough.
Furthermore, Lemma 3.2 guarantees that

limγ→+∞
N2 (γu)
γ

= ( f∞− ε) Nβ (u) = Ñ2u and

limγ→0
N1 (γu)
γ

=
(

f 0+ ε
)
Nα (u) = Ñ1u uniformly in ∂B(0E ,1).

Since Lemma 3.1 guarantees that Ñ1, Ñ2 are, respectively, lower bounded on Pα and Pβ,
and upper bounded on K and we have

θÑ1
Pα
=

(
f 0+ ε

)
µ (β) < 1 < ( f∞− ε)µ (β) = λÑ2

Pβ
.

Therefore, existence of a positive solution to bvp (3.1) follows from Theorem 2.12. �

Theorem 3.5. Assume that Hypotheses (3.2), (3.4) and (3.5) hold and either

f 0µ (β) < 1 < µ (β) f∞, f∞,+ <∞ (3.10)

or
f∞µ (α) < 1 < µ (α) f0, f 0,+ <∞. (3.11)

Then bvp (3.1) admits a positive solution.

Proof. We present the proof in the case where (3.10) holds (the other case is checked simi-
larly). Let ε > 0 be such that

(
f 0+ ε

)
µ (β) < 1 < ( f∞− ε)µ (β) . We have then

Tu � Tu � N1 (u+G1u)
N2 (u−G2u) � Tu � αN2 (u+G3u)

where

N1u = N+( f 0+ε) (u) G1 (u) =max
{
f (t,u(t)−

(
f 0+ ε

)
u(t),0

}
/
(

f 0+ ε
)

N2u = N−( f∞−ε)
(u) G2 (u) =

c
( f∞− ε)

,

α = ψ+
(
φ−

(
f∞,++ ε
f∞− ε

))
G3 (u) =

C
( f∞,++ ε)

and c,C are positive constant large enough.
We have also

limγ→+∞
N2 (γu)
γ

= ( f∞− ε) Nβ (u) = Ñ2u and

limγ→0
N1 (γu)
γ

=
(

f 0+ ε
)
Nα (u) = Ñ1u uniformly in ∂B(0E ,1).
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Since Lemma 3.1 guarantees that

θÑ2
P = ( f∞− ε)µ (β) < 1 <

(
f 0+ ε

)
µ (β) = λÑ1

P .

Therefore, existence of a positive solution to bvp (3.1) follows from Theorem 2.11. �
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