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Abstract

In this paper we show the existence of one-dimensional solitons (travelling waves of
finite energy) for a generalized nonlinear dispersive equation modeling the deforma-
tions of a hyperelastic compressible plate. From the Hamiltonian structure for such
equation we find the natural space for the travelling wave solutions and characterize
travelling waves variationally as minimizers of an energy functional under a suitable
constraint. Our approach involves the Lions’s Concentration-Compactness Lemma.
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1 Introduction

The focus of the present work is the one-dimensional generalized dispersive equation
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x∂tu+α2∂

4
x∂tu+∂x

(
p+2
p+1

up+1−β
[
u∂x(∂xu)p+

p
p+1

(∂xu)p+1
])
= 0. (1.1)

When α1,α2 > 0, p ∈ Z+,β ∈ R, using a variational approach, we show that (1.1) admits in
the energy space H2(R) travelling wave solutions u(x, t) = v(x− ct).

In a recent paper R. M. Chen (see [4]) derived the following two-dimensional nonlinear
dispersive equation,

∂x
(
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x∂tu+α∂4
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(
2∂xu∂2

xu+u∂3
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))
−a∂2

yu+b∂2
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2
yu = 0, (1.2)

as a model for the deformations of a hyperelastic compressible plate relative to a uniformly
pre-stressed state. In this model u represents vertical displacement of the plate relative to a
uniformly pre-stressed state, while x and y are rescaled longitudinal and lateral coordinates
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in the horizontal plane. To reduce the full three-dimensional field equation to an approxi-
mate two-dimensional plate equation, an assumption has been made that the thickness of
the plate is small in comparison to the other dimensions. It is also assumed that the small
perturbations superimposed on the pre-stressed state only appear in the vertical direction
(the z-direction) and in one horizontal direction (the x-direction). Hence the variation of
waves in the transverse direction (the y-direction) is small. Equation (1.2) is obtained under
the additional assumption that the wavelength in the x-direction is short.

The parameters in equation (1.2) are all material constants. The scalar α describes the
stiffness of the plate which is nonnegative. The coefficients a and b are material constants
that measure weak transverse effects. The material constant β occurs as a consequence of
the balance between the nonlinear and dispersive effects. Note that there is no dissipation
in this model.

Equation (1.2) generalizes several well-known equations including the BBM equation
[1] when α= β= a= b= 0, the regularized long-wave Kadomtsev-Petviashvili(KP) equation
[2] (also referred as KP-BBM equation, see [8]) when α= β= b= 0, and the Camassa-Holm
(CH) equation [3] when α = a = b = 0,β = 1. In contrast to the derivation in [4] of nonlinear
dispersive waves in a hyperelastic plate, these particular equations are usually derived as
models of water waves. In equation (1.2), the two spatial dimensions make the analysis
very different from the CH equation. The β-terms include a nonlinear term of fourth order,
which makes equation (1.2) very different from the KP- BBM equation.

In the work [5], R. M. Chen showed the global well-posedness for the initial value
problem associated to the equation (1.2), in the space W equipped with the norm

‖u‖2W = ‖u‖L2 + ‖∂xu‖L2 + ‖∂2
xu‖L2 + ‖∂yu‖L2 + ‖∂−1

x ∂yu‖L2 ,

where ∂−1
x ∂yu is defined via the Fourier transformation as

̂∂−1
x ∂yu =

η

ξ
û(η,ξ).

In addition, for α > 0, R. M. Chen established in the space W the existence of 2D-solitons,

i.e. the existence of solutions of the form u(x,y, t) = v(x− ct,y).
When we searching the existence of 1D-solitons for the equation (1.2). This is, the

existence of travelling wave solutions, u(x,y, t)= v(x−ct),which propagate in the x−direction
with speed wave c > 0. One see that the travelling wave profile v should satisfy the ordinary
differential equation [

c
(
v′− v′′′+αv′′′′′

)
−3vv′+β

(
2v′v′′+ vv′′′

)]′
= 0,

which, upon integration, yields

c
(
v′− v′′′+αv′′′′′

)
−3vv′+β

(
2v′v′′+ vv′′′

)
+A = 0, (1.3)

where A is a constant of integration. Among all the travelling wave solutions we shall focus
on solutions which have the additional property that the waves are localized and that v and
its derivatives decay at infinity, that is,

v(n)(z)→ 0 as |z| → ∞, n ∈ Z+. (1.4)
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Under this decay assumption the constant of integration in (1.3) vanishes and then we have
the equation

c
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v− v′′+αv′′′′

)′
−

3
2

(v2)′+β
(
vv′′+

1
2

(v′)2
)′
= 0.

Using the decay condition (1.4) again, we see that the travelling wave equation takes the
form

c
(
v− v′′+αv′′′′

)
−

3
2

v2+β
(
vv′′+

1
2

(v′)2
)
= 0.

Next, we note that u(x,y, t) = v(x− ct) is a travelling wave solution for the equation
(1.2) if and only if u(x,y) = v(x− ct) is a travelling wave solution for the equation (1.1),
for α1 = 1,α2 = α and p = 1. So, the main objective in this article is to investigate the
existence of solitons for the equation (1.1). For this, we follow a variational approximation
by characterizing solitons (travelling waves in the energy space) as multiples of the minimi-
zers of an energy functional subject to a suitable constraint. Using Lions’s Concentration-
Compactness Principle, we prove that any minimizing sequences converges strongly, after
an appropriate translation, to a minimizer. A multiple of this minimizer is a travelling wave
solution.

This paper is organized as follows. In Section 2, we describe the Hamiltonian structure
for the equation (1.1). From this structure, we find the natural space for the travelling wave
solutions, and characterize travelling wave solutions for the equation (1.1) as multiples
of the minimizers to a variational problem. In Section 3, we prove the existence of such
minimizers by using the Concentration-Compactness Theorem . Throughout this work Hs =

Hs(R) denotes the usual Sobolev space of order s and C denotes a generic constant whose
value may change from instance to instance.

2 Variational approach for travelling waves

In this section we characterize travelling wave solutions for the equation (1.1) as multiples
of the minimizers to a variational problem. First, we show that the evolution equation (1.1)
has a Hamiltonian structure.

Proposition 2.1. The nonlinear evolution equation (1.1) can be expressed in Hamiltonian
form,

ut = −∂x
(
I−α1∂

2
x+α2∂

4
x

)−1
F′(u),

where F is defined on H2(R) as

F(u) =
1

p+1

∫
R

(
up+2+βu (∂xu)p+1

)
dx.

Proof. Since the proof follows the ideas given for other equation models we only present a
sketch. First, we will prove that F is well defined on H2(R). In fact, since the embedding
H1(R) ↪→ L∞(R) is continuous we have that there is C > 0 such that∫

R
up+2dx ≤ ‖u‖pL∞‖u‖

2
L2 ≤C‖u‖p+2

H2 .
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Moreover, ∫
R

u(∂xu)p+1dx ≤ ‖u‖L∞‖∂xu‖p−1
L∞ ‖∂xu‖2L2

≤C‖u‖H1‖∂xu‖p−1
H1 ‖∂xu‖2L2

≤C‖u‖p+2
H2 .

Therefore
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H2 .

Now, we note that if m = u−α1∂
2
xu+α2∂

4
xu then the equation (1.1) can be rewritten as
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,

and a simple calculation shows that for every w ∈ H2(R),

〈
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〉
=

1
p+1

∫
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=
1
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[
p(∂xu)p+1+ (p+1)u∂x(∂xu)p
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Then we conclude that

F′(u) =
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[
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p
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]
.

Hence, the proof is complete. �

Now, notice that if u is a solution of the equation (1.1) of the type u(x, t)= v(x−ct). Then
we see that the travelling wave profile v should satisfy, for α0 = 1, the ordinary differential
equation

c
2∑

k=0

(−1)kαkv(2k+1)−

(
p+2
p+1

vp+1−β
[
v
(
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which, upon integration, yields

c
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(
(v′)p)′+ p

p+1
(v′)p+1

])
+A = 0, (2.1)

where A is a constant of integration. Under the decay assumption (1.4) the constant of
integration in (2.1) vanishes and then the travelling wave equation takes the form

c
2∑

k=0

(−1)kαkv(2k)−
1

p+1

(
(p+2)vp+1−β

[
(p+1)v

(
(v′)p)′+ p(v′)p+1

])
= 0. (2.2)

From the Proposition 2.1 we note that the natural space (energy space) to look for travelling
waves is the space H2(R). Thus, if we multiply the travelling wave equation (2.2) with a test
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function w ∈ H2(R), after integration by parts, a travelling wave solution v ∈ H2(R) satisfy
the integral equation∫

R

[
c

2∑
k=0

αkv(k)w(k)−
1

p+1

(
(p+2)vp+1w+β

(
(v′)p+1w+ (p+1)v(v′)pw′

))]
dx = 0. (2.3)

Definition 2.2. We say that v ∈ H2(R) is a weak solution of (2.2) if for all w ∈ H2(R) the
integral equation (2.3) holds.

Our strategy to prove the existence of a solution of (2.3) is to consider the following
minimization problem

Ic := inf
{
Ic(v) : v ∈ H2(R) with G(v) = 1

}
, (2.4)

where the energy Ic and the constraint G are functionals defined in H2(R) given by

Ic(v) =
c
2

∫
R

[
v2+α1(v′)2+α2(v′′)2

]
dx, (2.5)

G(v) =
1

p+1

∫
R

[
vp+2+βv(v′)p+1

]
dx. (2.6)

We start by showing some properties of Ic and G, assuming that α1, α2 > 0, p ∈ Z+ and
β ∈ R.

Lemma 2.3. Let c > 0. Then

1. The functionals Ic and G are well defined in H2(R) and smooth.

2. The functional Ic is nonnegative. Moreover, there are C1(α1,α2,c) < C2(α1,α2,c)
such that

C1Ic(v) ≤ ‖v‖2H2(R) ≤C2Ic(v). (2.7)

3. Ic is finite and positive.

Proof. 1. Ic is clearly well defined for v ∈ H2(R). Moreover, note that if v ∈ H2(R) ⊂ H1(R)
then, using the fact that the embedding H1(R) ↪→ L∞(R) is continuous, we see that there is
a constant C =C(p,β) > 0 such that

|G(v)| ≤C‖v‖p
H2

(
‖v‖2L2 + ‖v′‖2L2

)
≤C‖v‖p+2

H2 . (2.8)

So that, G is well defined. 2. This property is straightforward. 3. Note that there exists
v ∈ H2(R) such that G(v) , 0. Then for some t we have that

G(tv) = tp+2G(v) = 1.

On the other hand, the inequalities (2.7)-(2.8) imply that there is C > 0 such that for any
v ∈ H2(R) with G(v) = 1,

C (Ic(v))
p+2

2 ≥C‖v‖p+2
H2 ≥G(v) = 1,

meaning that the infimum Ic is finite and positive. �
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Theorem 2.4. If v0 is a minimizer for the problem (2.4), then v = θv0 is a nontrivial weak
solution of (2.2) with θ = 2

p+2Ic.

Proof. By the Lagrange Theorem there is a multiplier θ such that for any w ∈ H1(R),〈
I′c(v0),w

〉
− θ

〈
G′(v0),w

〉
= 0. (2.9)

Now, a direct calculation shows that〈
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〉
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]
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[
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∫
R

[
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]
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Thus, from the equation (2.9),

2Ic(v0)− (p+2)θG(v0) = 0. (2.10)

But, by using G(v0) = 1 we see that θ = 2
p+2Ic. Moreover, from (2.9) we see that θv0 is a

nontrivial solution of the integral equation (2.3). �

3 Existence of Minimizers

The existence of solitons for the equation (1.1) as multiples of the minimizers of the vari-
ational problem (2.4) is based on the existence of a compact embedding (local) result and
also on an important result by P. L. Lions, known as the Concentration-Compactness Prin-
ciple (see [6], [7]).

Theorem 3.1. (P. L. Lions, [6], [7]) Let I be a real number and let {νm} be a sequence of
nonnegative measures on R such that

lim
m→∞

∫
R

dνm = I.

Then there is a subsequence of {νm} (which we denote by the same symbol) that satisfies
only one of the following properties.
Vanishing. For any R > 0,

lim
m→∞

(
sup
x∈R

∫
BR(x)

dνm
)
= 0, (3.1)

where BR(x) is the ball in R of radius R centered at x.

Dichotomy. There exist θ ∈ (0,I) such that for any τ > 0, there are R > 0 and a sequence
{xm} in R with the following property: Given R′ > R there are nonnegative measures ν1m, ν

2
m

such that
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1. 0 ≤ ν1m+ ν
2
m ≤ νm,

2. supp (ν1m) ⊂ BR(xm), supp (ν2m) ⊂ R \BR′(xm),

3. limsupm→∞

(
|θ−

∫
R

dν1m|+ |(I− θ)−
∫
R

dν2m|
)
≤ τ.

Compactness. There exists a sequence {xm} in R such that for any τ > 0, there is R > 0 with
the property that ∫

BR(xm)
dνm ≥ I−τ, for all m. (3.2)

In order to apply this result to our case, let us assume that {vm} in H2(R) is a minimizing
sequence for Ic, then we define the positive measures {νm} by dνm = ρmdx, where ρm is
defined as

ρm =
c
2

(
v2

m+α1(v′m)2+α2(v′′m)2
)
, (3.3)

From the Concentration-Compactness Theorem (see Theorem 3.1), there exists a subse-
quence of {νm} (which we denote by the same symbol) that satisfies either vanishing, or
dichotomy, or compactness. We will see that vanishing and dichotomy can be ruled out,
and so using compactness we will establish that the minimizing sequence {vm} is compact
in H2(R), up to translation, as a consequence of a local compact embedding result.

We will establish some technical result. The first one is related with the characterization
of “vanishing sequences” in H2(R).

Lemma 3.2. (Vanishing sequences) Let R > 0 be given and let {vm} be a bounded sequence
in H2(R) such that

lim
m→∞

(
sup
x∈R

∫
BR(x)

dνm

)
= 0.

Then we have that
lim
n→∞

∫
R

vp+2
m dx = lim

m→∞

∫
R

vm(v′m)p+1 dx = 0.

In particular, if {vm} is a minimizing sequence for Ic, then vanishing is ruled out.

Proof. Let x ∈ R, R > 0 and BR = BR(x). First, we notice that there is C > 0 such that

‖vm‖
2
H2(BR) ≤C

∫
BR

dνm.

Thus, since the embedding H1(BR) ↪→ L∞(BR) is continuous, we obtain that∫
BR

|vm|
p+2dx ≤ ‖vm‖

p
L∞(BR)

∫
BR

|vm|
2dx

≤C‖vm‖
p
H2(BR)

(∫
BR

(vm)2dx+
∫

BR

(v′m)2dx
)

≤C‖vm‖
p
H2(BR)

∫
BR

dνm.
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Now, covering R by balls of radius R in such a way that each point of R is contained in at
most two balls, we find that∫

R
|vm|

p+2dx ≤ 2C‖vm‖
p
H2(R)

(
sup
x∈R

∫
BR(x)

dνm

)
.

Thus, under the assumptions of the lemma,

lim
n→∞

∫
R

vp+2
m = 0.

In a similar fashion we obtain the other result, limm→∞
∫
R

vm
(
v′m

)p+1
= 0. As a consequence

of this we see that
lim

m→∞
G(vm) = 0.

If we assume that {vm}m is a minimizing sequence for Ic, then we have that G(vm) = 1, but
from the previous fact we reach a contradiction. �

In order to rule out dichotomy, we will establish a splitting result for a sequence {vm} in
H2(R). Fix a function φ ∈ C∞0 (R,R+) such that suppφ ⊂ B2(0) and φ ≡ 1 in B1(0). If R > 0
and x0 ∈ R, we define a split for v ∈ H2(R) given by

v = v1
R+ v2

R,

where
v1

R = vφR, v2
R = v(1−φR), φR(x) = φ

( x− x0

R

)
.

In addition, we define AR(x0) by

AR(x0) = B2R(x0) \BR(x0).

Lemma 3.3. (A splitting result) Let Rm > 1 and xm ∈ R be sequences. Define A(m) =
ARm(xm) and φm(x) = φ

(
x−xm
Rm

)
. If

limsup
m→∞

(∫
A(m)

dνm

)
= 0. (3.4)

Then as m→∞ we have that

(a) Ic(vm) = Ic(v1
m)+ Ic(v2

m)+o(1).

(b) G(vm) =G(v1
m)+G(v2

m)+o(1).

Proof. First, we will see that

Ic(vm) = Ic(v1
m)+ Ic(v2

m)+o(1), as m→∞. (3.5)

In fact, note that

δ(0)vm :=
∫
R

[
(vm)2− (v1

m)2− (v2
m)2

]
dx = 2

∫
A(m)
φm(1−φm)(vm)2dx.
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Then
|δ(0)vm| ≤C

∫
A(m)

(vm)2dx ≤C
∫

A(m)
dνm → 0.

Similarly we obtain that

δ(1)vm :=
∫
R

[
(v′m)2−

(
(v1

m)′
)2
−

(
(v2

m)′
)2

]
dx

= 2
∫

A(m)

[
φm(1−φm)(v′m)2+ (1−2φm)(vmv′mφ

′
m)−2v2

m(φ′m)2
]
dx.

Since
∣∣∣φ′m∣∣∣ ≤C/Rm, consequently we have that

|δ(1)vm| ≤C
∫

A(m)

[
(vm)2+ (v′m)2]dx ≤C

∫
A(m)

dνm → 0.

In a similar fashion if

δ(2)vm :=
∫
R

[
(v′′m)2−

(
(v1

m)′′
)2
−

(
(v2

m)′′
)2

]
dx,

we have that |δ(2)vm| → 0. Then we obtain that

lim
m→∞

[
Ic(vm)− Ic(v1

m)− Ic(v2
m)

]
= 0.

Next, we will show the item (b). We notice that∫
R

[
(vm)p+2−

(
v1

m

)p+2
−

(
v2

m

)p+2
]
dx

≤C
∫

A(m)
(vm)p+2 dx

≤C
(∫

A(m)

[
(vm)2+

(
v′m

)2
+

(
v′′m

)2
]
dx

) p
2
∫

A(m)

[
(vm)2+

(
v′m

)2
]
dx

≤C
(∫

A(m)
dνm

) p+2
2

→ 0.

Now, it is not hard to prove that∫
R

[
vm(v′m)p+1− v1

m

(
(v1

m)′
)p+1
− v2

m

(
(v2

m)′
)p+1

]
dx → 0.

Then, from the definition of G, we conclude as m→∞ that

G(vm) =G(v1
m)+G(v2

m)+o(1).

�

Using the previous result we have the following lemma.
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Lemma 3.4. Let {vm} be a minimizing sequence for Ic. Then dichotomy is not possible.

Proof. Assume that dichotomy occurs, then we can choose a sequence Rm→∞ such that

supp (ν1m) ⊂ BRm(xm), supp(ν2m) ⊂ R \B2Rm(xm) (3.6)

and
limsup

m→∞

(∣∣∣∣θ−∫
R

dν1m
∣∣∣∣+ ∣∣∣∣(Ic− θ)−

∫
R

dν2m
∣∣∣∣) = 0. (3.7)

Using these facts, we have that

limsup
m→∞

(∫
A(m)

dνm

)
= 0. (3.8)

In fact, ∫
A(m)

dνm =
(∫
R
−

∫
BRm (xm)

−

∫
R\B2Rm (xm)

)
dνm

≤

∫
R

dνm−
∫
R

dν1m−
∫
R

dν2m

≤

∣∣∣∣∣∫
R

dνm−Ic

∣∣∣∣∣+ ∣∣∣∣∣θ−∫
R

dν1m

∣∣∣∣∣+ ∣∣∣∣∣(Ic− θ)−
∫
R

dν2m

∣∣∣∣∣ .
Using (3.8) and Lemma 3.3 we conclude that

lim
m→∞

[
Ic(vm)− Ic(v1

m)− Ic(v2
m)

]
= 0,

lim
m→∞

[
G(vm)−G(v1

m)−G(v2
m)

]
= 0.

Now, let λm,i = G(vi
m) , for i = 1,2. Passing to a subsequence if necessary we have that

λi := limm→∞λm,i exists. Now, let us prove that λi , 0. Assume that limm→∞λm,1 = 0, then
limm→∞λm,2 = 1 (we proceed in a similar way in the other case). Therefore λm,2 > 0, for m
large enough. Then we consider

wm = λ
− 1

p+2

m,2 v2
m.

So that
wm ∈ H2(R), G(wm) = 1.

We have a contradiction since

Ic = lim
m→∞

(
Ic(v1

m)+ Ic(v2
m)

)
≥ lim

m→∞

(∫
R

dν1m+λ
2

p+2

m,2 Ic

)
= θ+Ic.

In other words, |λm,i| > 0 for m large enough. Then we are allowed to define

wm,i = λ
− 1

p+2
m,i vi

m, i = 1,2.
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Note that wm,i ∈ H2(R) and G(wm,i) = 1. Hence,

Ic = lim
m→∞

(
Ic(v1

m)+ Ic(v2
m)

)
= lim

m→∞

(
|λm,1|

2
p+2 Ic(wm,1) + |λm,2|

2
p+2 Ic(wm,2)

)
≥

(
|λ1|

2
p+2 + |λ2|

2
p+2

)
Ic.

Then
1 ≥ |λ1|

2
p+2 + |λ2|

2
p+2 ≥

(
|λ1|+ |λ2|

) 2
p+2≥ |λ1+λ2|

2
p+2 = 1.

Hence, |λ1|+ |λ2| = 1. Using that λ1+λ2 = 1 and λi , 0, we have that λi > 0 and

λ
2

p+2

1 +λ
2

p+2

2 = (λ1+λ2)
2

p+2 . (3.9)

But (3.9) gives us a contradiction, because for t ∈ R+ the function f (t) = t
2

p+2 is strictly
concave, meaning that

f (t1+ t2) < f (t1)+ f (t2), for t1, t2 > 0.

Therefore, we have ruled out dichotomy. �

Now we are in position to obtain the main result in this section: the existence of a
minimizer for Ic. Since we ruled out vanishing and dichotomy above for a minimizing
sequence of Ic, then by P. L. Lion’s Concentration-Compactness Theorem, there exists a
subsequence of {νm} (which we denote by the same symbol) satisfying compactness. We
will see as a consequence of local compact embedding that a minimizing sequence {vm} is
compact in H1(R), up to translation.

Theorem 3.5. If {vm} is a minimizing sequence for (2.4), then there is a subsequence (which
we denote by the same symbol), a sequence of points xm ∈ R, and a minimizer v0 ∈ H2(R)
of (2.4), such that the translated functions

ṽm = vm(·+ xm)

converge to v0 strongly in H1(R).

Proof. Let {vm} be a minimizing sequence for (2.4). In other words,

lim
m→∞

Ic(vm) = Ic and G(vm) = 1.

By compactness, there exists a sequence xm in R such that for a given τ > 0, there exists
R > 0 with the following property,∫

BR(xm)
dνm ≥ Ic−τ, for all m ∈ N. (3.10)

Using this we may localize the minimizing sequence {vm} around the origin by defining

ρ̃m(x) = ρm(x+ xm), ṽm(x) = vm(x+ xm).
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Thus, we have the following localized inequality∫
BR(0)
ρ̃mdx =

∫
BR(xm)

dνm ≥ Ic−τ, for all m ∈ N, (3.11)

and also that
G(ṽm) =G(vm) = 1, lim

m→∞
Ic(ṽm) = lim

m→∞
Ic(vm) = Ic. (3.12)

Then by (2.7) we note that {ṽm} is a bounded sequence in H2(R). On the other hand, since
ṽm ∈ H2(U) for any bounded open set U ⊂ R and the embedding H2(U) ↪→ Lq(U) is com-
pact for q ∈ [2,∞], then there exist a subsequence of {ṽm} (which we denote by the same
symbol) and v0 ∈ H2 such that

ṽm⇀ v0 in H2(R) and ṽm⇀ v0, ṽ′m⇀ v′0, ṽ′′m⇀ v′′0 in L2(R),

and we also have that

ṽm→ v0, ṽ′m→ v′0, ṽ′′m→ v′′0 in L2
loc(R).

Moreover,
ṽm→ v0, ṽ′m→ v′0, ṽ′′m→ v′′0 a.e in R.

Using these facts we will show that some subsequence of {ṽm} (which we denote by the
same symbol) converges strongly in H2(R) to a nontrivial minimizer v0 of (2.4). This is,

ṽm → v0, ṽ′m → v′0, ṽ′′m → v′′0 in L2(R). (3.13)

In fact, using (3.11), (3.12) and the definition of Ic we have that for τ > 0, there exists R > 0
such that for m large enough, ∫

BR(0)
|ṽm|

2dx ≥
∫
R
|ṽm|

2dx−2τ.

Then we have that ∫
R
|v0|

2dx ≤ liminf
m→∞

∫
R
|ṽm|

2dx

≤ liminf
m→∞

∫
BR(0)
|ṽm|

2dx+2τ

=

∫
BR(0)
|v0|

2dx+2τ

≤

∫
R
|v0|

2dx+2τ.

Therefore
liminf

m→∞

∫
R
|ṽm|

2dx =
∫
R
|v0|

2dx.

Thus, there exists a subsequence of {ṽm} such that ṽm → v0 in L2(R). Using a similar
argument we prove the other part of (3.13). Now, using (3.13) and the fact that the inclusion
H2(R) ↪→ L∞(R) is continuous we have that

G(v0) = lim
m→∞

G(ṽm) = 1. (3.14)
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In fact,∫
R

[
ṽm

(
ṽ′m

)p+1
− v0

(
v′0

)p+1
]
dx =

∫
R

[
(ṽm− v0)

(
ṽ′m

)p+1
+ v0

((
ṽ′m

)p+1
−

(
v′0

)p+1
)]

dx.

But we see that ∫
R

(ṽm− v0)
(
v′m

)p+1 dx ≤ ‖ṽm− v0‖L∞‖ṽ′m‖
p−1
L∞ ‖v

′
m‖

2
L2

≤C ‖ṽm− v0‖H2‖ṽm‖
p+1
H2

≤C [Ic(ṽm)]
p+1

2 ‖ṽm− v0‖H2

≤C ‖ṽm− v0‖H2 → 0,

and also, using that the embedding H1(U) ↪→ Lq(U) is continuous for q ∈ [2,∞],∫
R

v0

((
ṽ′m

)p+1
−

(
v′0

)p+1
)
dx ≤C‖v0‖L∞‖ṽ′m− v′0‖L2

p∑
j=0

‖(ṽ′m)p− j(v′0) j‖L2

≤C‖v0‖H2‖ṽm− v0‖H2

p∑
j=0

‖ṽ′m‖
p− j
L4 ‖v

′
0‖

j
L4

≤C‖v0‖H2‖ṽm− v0‖H2

p∑
j=0

(
‖ṽm‖

2(p− j)
H2 + ‖v0‖

2 j
H2

)
.

Next, there are r1,r2 > 0 such that

‖ṽm‖
2(p− j)
H2 ≤ ‖ṽm‖

2r1
H2 , ‖v0‖

2 j
H2 ≤ ‖v0‖

2r2
H2 , j = 1, ..., p.

So that∫
R

v0

((
ṽ′m

)p+1
−

(
v′0

)p+1
)
dx ≤C‖v0‖H2‖ṽm− v0‖H1

(
‖ṽm‖

2r1
H2 + ‖v0‖

2r2
H2

)
≤C

[
I(v0)

] 1
2 ‖ṽm− v0‖H1

([
Ic(ṽm)

]r1 +
[
Ic(v0)

]r2
)
→ 0

In a similar fashion we have that∫
R

[
(ṽm)p+2− vp+2

0

]
dx→ 0.

Then from the definition of G we conclude that (3.14) holds, which implies that v0 , 0. On
the other hand, from (3.13), we see that

lim
m→∞

Ic(ṽm) = Ic(v0) = Ic, lim
m→∞

Ic(ṽm− v0) = 0.

Moreover, the sequence {ṽm} converges to v0 in H2(R), since

‖ṽm− v0‖H2(R) ≤C1Ic(ṽm− v0).

Then we concluded that {ṽm} converges to v0 in H2(R) and v0 is a minimizer for Ic. �

Combining the Theorem 2.4 and Theorem 3.5 we obtain the main result of this work.
This is, the result of existence of travelling wave solutions for the equation (1.1).

Corollary 3.6. Let α1,α2 > 0, p ∈ Z+,β ∈ R and c > 0. Then the equation (1.1) admits in
the space H2(R) travelling wave solutions, u(x, t) = v(x− ct), with wave speed c > 0.
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