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Abstract

In this paper, by using the decomposition theorem for weak Hardy spaces, we will
obtain the boundedness properties of some integral operators with variable kernels on
these spaces, under some Dini type conditions imposed on the variable kernel Q(x, z).
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1 Introduction

Let S”~! be the unit sphere in R*(n > 2) equipped with the normalized Lebesgue measure
do. A function Q(x,z) defined on R"” X R" is said to belong to L*(R") x L"(S =0 > 1, if
it satisfies the following conditions:

(1) for all A >0 and x,z € R", Q(x,Az2) = Q(x,2);

1/r
) Qo nperrisry = $UPaern (fyo 1206, dor (@) < o0;
(3) forany x e R", [0, Q(x,7)do(2) =0,

where 7 = z/|z| for any z € R*\{0}. Set K(x,z) = le;f,). In this paper, we consider the

singular integral operator with variable kernel which is defined by

TQf(x):P.V.fRnK(x,x—y)f(y)dy. (L.1)

In 1955, Calderén and Zygmund [1, 2] investigated the L? boundedness of singular
integral operators with variable kernels. They found that these operators Tq are closely
related to the problem about second order elliptic partial differential equations with variable
coeflicients. In [1], Calderén and Zygmund proved the following theorem (see also [3]).
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Theorem A. Suppose that Q(x,z) € L*(R")x L"(S"~") with > 2(n — 1)/n, and satisfies (1)—
(3). Then there exists a constant C > 0 independent of f such that

72> < €Al

For 0 < a < n and Q(x,z) € L°(R")x L"(S"~1) with r > 1, we set K,(x,z) = ?;lf’_;;). Then
the fractional integral operator with variable kernel is defined as follows:

T = [ Kulxx=nsfO)ds. (12)

In 1971, Muckenhoupt and Wheeden [19] studied the LP—L? boundedness of Tq, when
0 < @ < n, and obtained the following result (here, and in what follows we shall denote the
conjugate exponent of p > 1 by p’ =p/(p—-1)):

Theorem B. Let0<a<n,1 <p<n/aand1/qg=1/p—a/n. Suppose that Q(x,z) € L (R") X
L'(S™ ) with r > p’, and satisfies (1)—(2). Then there exists a constant C > 0 independent
of f such that

ITeaPl, < €Il

On the other hand, the weak H? spaces have first appeared in the work of Fefferman,
Riviere and Sagher [11], which are the intermediate spaces between two Hardy spaces
through the real method of interpolation. The atomic decomposition characterization of
weak H! space on R" was given by Fefferman and Soria in [12]. Later, Liu [16] established
the weak H” spaces on homogeneous groups for the whole range 0 < p < 1. The corre-
sponding results related to R” can be found in [18]. For the continuity properties of some
kinds of operators on weak Hardy spaces, we refer the readers to [6, 7, 8, 9, 10, 17, 20].

In [6], the authors considered the boundedness of T and T , on the weak Hardy spaces
WH'(R"), under certain smoothness conditions on the variable kernel Q(x,z). Motivated
by [6], the main purpose of this paper is to establish the boundedness properties of T and
Tq, on the spaces WHP(R"), under the assumptions that Q(x,z) satisfy some Dini type
conditions (see Section 2 for its definition). We now formulate our main results as follows.

Theorem 1.1. Let 0 <8< 1 and n/(n+B) < p < 1. Suppose that Q € Din/rg(S”_l) with
r>2(n—1)/n, then there exists a constant C > 0 independent of f such that

[Tl < M llw

Theorem 1.2. Let O <a <1, n/(n+a)<p<land1/q=1/p—a/n Suppose that Q €
Dinl(S"=1, then there exists a constant C > 0 independent of f such that

”TQ"’(f)”WL‘I = C”f”WHP'

Theorem 1.3. LetO<a<f<1,n/(n+B)<p<n/(n+a)and 1/q=1/p—a/n. Suppose
that Q € Ding(S =1y with r > n/(n— @), then there exists a constant C > 0 independent of f
such that

”TQ"’(f)”WL‘I S C”f”WHP'
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2 Notations and preliminaries

For 0 < p < o0, we denote by L”(R") the classical Lebesgue spaces of all functions f satis-
fying

1/p
1AL, = | If@Prdx] <o .1)
L -

When p = co, L™(R") will be defined as follows:

||f||Loc = esslzhlplf(xﬂ < 00, (2.2)

We also denote by WLP(R") the weak L” spaces consisting of all measurable functions f
such that

Al = iugfl- [ixeR": [f(x)] > A}|”” < oo. (2.3)

Let us first recall the definitions of the integral Dini type conditions. In [4, 5], Ding et
al. introduced some definitions about the variable kernel Q(x,z) when they studied the H I
L' boundedness of Marcinkiewicz integrals. Replacing the condition (2) mentioned before,
they strengthened it to the condition

@) s (o 00422 o) <on
>0 Sn—] N

For Q(x,z) € L*(R")x L"(S"~") and r > 1, a function Q(x, 7) is said to satisfy the L"-Dini
condition if the conditions (1), (2"), (3) hold and

1
0
f @O 45 < oo, (2.4)
0o O
where w,(0) is the integral modulus of continuity of order r of QQ defined by
- 1/r

w,(8) := sup (f sup |Q(x +p7',Y) - Q(x +pz/,z')| dO'(z')) ) (2.5)

xeRM Sn-1 yesn—1

p=0 b/ —Z/|<6

In order to obtain the HP—L? boundedness of T, Lee et al. [14] generalized the L"-Dini
condition by replacing (2.4) to the following stronger condition (see also [15])

1
f @0 s <o, O<a<l. (2.6)
0 51+a

If Q satisfies (2.6) for some r > 1 and 0 < o < 1, we say that it satisfies the L"*-Dini
condition. For the special case a = 0, it reduces to the L"-Dini condition. For0 << a <1,
if Q satisfies the L*-Dini condition, then it also satisfies the L'#-Dini condition. We thus
denote by Din],(S "1y the class of all functions which satisfy the L"#-Dini condition for all
0 < B < a. Following the same arguments as in the proof of Lemma 5 in [13], we can also
establish the following lemma on the variable kernel Q(x,z) (See [5] and [14]).

Lemma 2.1. Let 0 <a <nand r> 1. Suppose that Q(x,z) € L°(R") x L' (S"1) satisfies the
L"-Dini condition of this section. If there exists a constant 0 <7y < 1/2 such that |y| < yR,
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then for any xo € R", we have

1/r
(f ’Ka(x+xo,x—y)—Ka(x+xo,x)|rdx)
R<|x|<2R

[YI/R
< C‘Rn/r—(n—a)(m +fy wr(é)dé)’
R Ik 0

where the constant C > 0 is independent of R and y. We simply denote K,(x,z) by K(x,2)
when a = 0.

Now let us turn to the weak Hardy spaces. We write ./(R") to denote the Schwartz
space of all rapidly decreasing infinitely differentiable functions and .&”(R") to denote the
space of all tempered distributions, i.e., the topological dual of .”(R"). Let 0 < p <1 and
N =[n(1/p-1)]. Define

ay = {90 € S(R") :sup sup (1+ |x|)N+"+1|D"¢p(x)| < 1}’

x€R™ |a|<N+1
where a = (ay,...,a,) € NU{OD", |a| = ay +---+a,, and

oo

For any given f € .#’(R"), the grand maximal function of f is defined by

Gf(x)= sup sup |(¢:* )|

pedy [y—x|<t

Then we can define the weak Hardy space WHP(R") by WHP(R") = {f € ' (R") : G(f) €
WLP(R™)}. Moreover, we set HfHWH,, = ||G(f)||WLp.

We need the following atomic decomposition theorem for weak Hardy spaces WH?(R")
given in [16] (see also [18]).

Theorem 2.2. Let O < p < 1. For every f € WHP(R"), then there exists a sequence of
bounded measurable functions {fi}, __, such that
(i) f = Xie_o Ji in the sense of distributions.
(it) Each fi can be further decomposed into fi, = Zibé‘, where {bff } satisfies
(a) Each bf.‘ is supported in a cube Qf.‘ with Y ; |Qf‘| <27 and Z,,\/ng (x) <c. Here

XE denotes the characteristic function of the set E and ¢ ~ ” f ”I‘;Hp;

(b) ”bﬂ'Lm < C2*, where C > 0 is independent of i and k;
(¢ fRn bX(x)x” dx = 0 for every multi-index y with [y| < [n(1/p—D)].
Conversely, if f € " (R") has a decomposition satisfying (i) and (ii), then f € WHP (R").
P

Moreover, we have ”f“WHp ~c.

Throughout this article C always denotes a positive constant, which is independent of
the main parameters and not necessarily the same at each occurrence.
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3 Proof of Theorem 1.1

Proof of Theorem 1.1. For any given 1> 0, we may choose ko € Z such that 2% < A < 2ko*!,
For every f € WHP(R"), then by Theorem 2.2, we can write

(=] ko 0
f=D 6= ) i+ D, fi=Fiths,

k=—00 k=—c0 k=ko+1

where F| = Z],z(’:_oofk = k_ OOZ, i F2 = X1 Je = Xipgr1 Zi bk and bk} satisfies (a)-
(¢) in Theorem 2.2. Then we have

A f{x e R : | Ta(f)(x)| > A
<A f{x eR": |To(FN@)| > /2}|+ A7 - [{x e R" : |[Ta(F2)(x)| > 4/2})
211 +12.

First we claim that the following inequality holds:

<c- ARl . G.1)

HFI WHP

[

In fact, since supp b¥ € QF = Q(xF, r¥) and “bf“ Lo < C2¥ by Theorem 2.2, where Q(x%,r%)
denotes the cube centered at xff with side length rf.‘ and all cubes are assumed to have their
sides parallel to the coordinate axes. Hence, it follows from Minkowski’s integral inequality
that

[l < Z 2N
< Z 2 Il el

k=—oc0 I

For each k € Z, by using the bounded overlapping property of the cubes {Qf.< } and the fact
that 1 — p/2 > 0, we thus obtain

ko
IFille < D) 24X led) ™
k=—co i

ki
cc Y e

k=—o0
ko
<C 2 (k=ko)(1-p/2) ,Al—p/2||f”l’/2 )
k;oo WH
< C./ll—p/2||f“l7/2

WHP*

Note that Q € Din,,g(S n=1y with r > 2(n— 1)/n, then we know that T, is bounded on L2(R")
according to Theorem A. This fact together with Chebyshev’s inequality and the inequality
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(3.1) yields

4
I <2 |raEn|,

<c|n,

<l 62

We now turn our attention to the estimate of /,. Setting

U e

k=ko+1 i

where Qk Q(x Pk=ko)/n(2 \fn )r") and 7 is a fixed positive number such that 1 <1 < 2.
Thus, we can further decompose I, as

L < [{x € Ay, : ITa(F) ()] > A/2}|+ A7 - [{x € (Ag,)* : ITa(F2)(x)] > 4/2})
=L+

For the term Ié, we can deduce that

By S
k=ko+1 i

(o0

<cw Y ook
i

k—k0+1

el 3 Gy

k=ko+1
< Al (3.3)

On the other hand, it follows directly from Chebyshev’s inequality that

Iy <2” f |[Ta(F2)(x)|" dx
e

) )°
0

<2pzzf

k= k()+1 1

> 3 St

k:k()+1 i

bk)(x)|p dx

Now denote 7%, = 20-1zp=ko)/n [k anqd
il i

Ef, = (xeR" b, < o-df<2df,), =12,
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An application of Holder’s inequality gives us that

VDY fE Ta@hl dx
t=1 it

< 2|E§€|l"’( [ _k[ [raeoas)

Observe that [n(1/p —1)] = 0 by our assumptions. Thus, by the cancellation condition of
bk e L*(R"), we get

j‘MMWMM=f
E{{ ; EX

f [K(x, x-y)—K(x,x— xf)]bf-‘(y) dy
il Q{{

Sl

< “bf.‘”Lm Lk{\fEk |K(x,x—y)—K(x,x—xf)’dx}dy.

dx

K(wx-3) - Krx= 2| dafpt ol ay

When y € Qj.‘ and x € (Qf.‘)c, then a trivial computation shows that for all i and &,
|x— xﬂ > kR0 0) \ [k s Nrk > 2'y - xﬂ (3.4)

Using Holder’s inequality, the estimate (3.4) and Lemma 2.1, we can see that for any y € Qf ,
the integral in the brace of the above expression is dominated by

r 1/r 1/7
(f |K(x,x—y)—K(x,x—xi-‘)| dx) (f ldx)
Ef, EX

it
k 1/r
<C-|E i . .
Tj e Sl<27;,

k) /- k
1/¢ —n/r |y—x’.‘| y=x;l/7;, o)
<CEE [T () " r( ‘ +f @) 45

1/r
,
K(x+ x5 x—(y—)) —K(x+x§‘,x)| dx]

7, -k, O
k
ol [y (bl bl @)
S0 Ly '(Ti,t’) 3 VIR Kok OB
e (T ly—xtl/2r,

1
&\ kT 1 1 B w,(0)
<C-(27,)" () (Zt’Tp(k—ko)/n * [Zt’Tp(k—ko)/n] o ol do

1 B
w,(0) 1
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Recall that ||bf|| 1o S C2*. From the above estimate (3.5), it follows that for all i and &,

o _ B
)

- I-p p _ n(1-p)-pp
<c S o] fof o)
(=1

<C-2kr. |Q{?|(Tp<k—ko>/n)"<1-l’>—ﬁp’

where the last inequality holds since p > n/(n + ). Therefore

y<C i szp ) | Qﬂ(Tp(k—ko)/n)"—(Mﬁ)p

k=ko+1 i

(o)

= C”f”Iv]va Z (Tp(k—ko)/n)”‘("+ﬁ)p
k=ko+1

(9]

<l 2 ()

k=1

< |l |l - (3.6)

Combining the above inequality (3.6) with (3.2)—(3.3) and taking the supremum over all
A > 0, and then taking p-th root on both sides, we complete the proof of Theorem 1.1. O

4 Proof of Theorem 1.2

Proof of Theorem 1.2. For any fixed 1 > 0, we may choose kq € Z satisfying 2% < & < 2ko*1,

where we define & = 29/7 H f ||;V_;1/7p . For every f € WHP(R"), then in view of Theorem 2.2,
we can write

00 ko 00
f=D 6= ) fi+ D fi=Fit+hs,

k=—00 k=—c0 k=ko+1

where F| = Zi“}oo fi= Zi‘)}m Z,-b;‘, F>= Z,‘:’:kOH Ji= Z,‘:’:koﬂ Zibf and {bf.‘} satisfies (a)-
(¢) in Theorem 2.2. Then we have

A0-|(x €R" : [Tau(H)] >
<A [{x eR" : [Tao(FN(| > 2/2} + 27 [(x e R" : [Tao(F2)()| > 4/2}]
=J1+J5.

fO<a<l, n/n+ta)<p<land 1l/qg=1/p—a/n, then g > 1. Thus, we are able to
choose py such that 1 < p; <n/a and g > p} > 1. Then we take g; > p; > 1 such that
1/g1 = 1/p1 — a/n. Similar to the proof of Theorem 1.1, we first claim that the following
inequality holds:

< C_é;;l—p/p, “f’ plp1 4.1)

“F1| WHP*

Lr1
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Indeed, since supp bi.‘ - Qif = Q(xi.‘,rff) and “bi‘“ 1o S C2* by Theorem 2.2, then by using
Minkowski’s integral inequality, we get

ko
(IO

k=—0c0 i

ko
< >0 D lEHlos

k=—oc0 i

IF1

For each k € Z, by using the finitely overlapping property of the cubes {Qf} and the fact that
1—-p/p1 > 0, we thus obtain

”Fl”m <C Z 2k Z'Qk' 1/p1

k=—c0

<C Z k(1 p/pl)”f”[’/,pl

k=—00

ki
<C ZO plk—tko)i=plpu). gl=plm|| 1| %lp

k=—00

<c-e s,

Notice that Q € DinZ(S™1) with q > p), then we know that Tq 4 is bounded from L”'(R")
to L7 (R") according to Theorem B. This fact along with Chebyshev’s inequality and the
inequality (4.1) implies

Jy<at ( ) [Ta.a@ D],
<c-ar|F|,

< C./lfl—thé_-(l -p/pq1 ”f| s‘jlll_l/l)m

< (|| | 4y P 42)

Note that 1/p—1/g=1/p1 —1/q1 = a/n, then it is easy to check that

q-q1+q/p-(0=p/pg1 =q—q1+qq1-(1/p—1/p1)
=q-q1+qq1-(1/g—1/q1)
=0

and
(1-=q/p)-(A=p/pg1+pgi/p1=0-q/p)-(1-p/p)g1 —(1 - p/p)g1 +q1
=q/p-(p/p1—Dg1+q

=qq1-(1/q1—=1/q)+q1
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Hence, by the inequality (4.2), we have

I < ClIfI - 4.3)

Let us now turn our attention to the estimate of J,. Setting

a= 1 Ugh

k=ko+1 i

where af = Q(xF, zPk=k0)/n(2 \[n)rk) and 7 is also a fixed positive number such that 1 <7 <2.
Thus, we can further split J; into

Jo < A9-|{x € Agy : ITa(F)(@)] > 4/2} + 21 -|{x € (Ak))" : ITaa(F)(X)| > 1/2}|
=+

For the term Jé, we can see that

new Y Y

k:k()+l i
<C- M i Tp(k_kO)Z’Qﬂ
k=ko+1 i
_ - (k—ko)
<cat e, S (G
k=ko+1
< |1l - (44)

For the term J7', we denote Tf? = 2= 1gptk=ko)/n \/ﬁrlk and

Ef, ={xeR":7j, <|x—-x|<27},}, €=12,..

Then it follows directly from Chebyshev’s inequality that

Ty <21 f |Tq.o(F2)(x)|" dx
(Agy)°

0

=) Zf@‘

k=ko+1 i

<24 i Zi fE kf|T9ﬂ(b§)(x)|"dx.

k=ko+1 i (=1

Ta.o(b})(x)|" dx
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Observe that [n(1/p—1)] =0 and g > 1. Hence, by using Holder’s inequality with exponent
q and the cancellation condition of bf € L (R"), we deduce that

= *© q
<€ ), ZZ | Ko, x =) = Ko, x = x) [pf () dy| dx
k=kotl i (=1 of
<C Z ZZf (f a(x,x—y)—Ka(x,x—xf)rdy]
k=ko+1 i (=1

q/

x( f k || dy) dx
<czzwn@W2fU

k= ko+1 i

Ko(x,x—y)— Ky(x,x— xi-‘)|qu] dy

Ifye Q{F and x € (éz.‘)c, then we still have |x— x{‘| > 2|y - x{‘| for all i and & by (3.4). Since
Q e Dinl(S"!) with ¢ > 1, then by Lemma 2.1,for any y € Qf.‘, we obtain

[,

g 1/q
s(f |Ka(x+xf,x—(y—xi-‘))—Ka(x+xf,x)’ dx)
¥ sld<2rs,

n/g—(n—a) [y = x; i =xil/7i, wq(é)
<C-(,) ( - +f —ds

Tie y—xf1/275,

1/q
q
Ko(x,x=y) = Ko(x, x— xi()| dx)

SC

n/q (n-a)( ly— xk |y x| Xfly—Xfl/Tf;[ wq(é)d&
(T P

n/q (n-a) 1 P wy(6)
<C (2[Tp(k ko)/n 2€Tp(k ko)/n] f; ol+a dé

L w, (6 @
a(0) ) x[—) .
0 51+ Zpr(k—kO)/n

1+a
Kok O
[y—x; I/ZTM

<C n/q (n—a)

So we have

—(n— 1 aq
e 3 el @) ]

kot 7 =1
O kg A N PR L TRV T )
<c 3, 293 o] Y] (2feritor)
k=gt 7 =

<C 3 okq( pk=ko)/n n(l-q) | Q’F|q/p,
25 24 S o

k:k0+l
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where in the last inequality we have used the facts that ¢ > 1 and 1/¢g =1/p —a/n. Since
q/p > 1, by using the well-known inequality 3;(u;)%/? < (3,;1;)??, we conclude that

e 3 (o (St

k=ko+1 i
<C i Zk‘I(TP(k—ko)/n)n(l_q)(z—kpH AP, Hp)q/p

k=ko+1
<cllf* N p(kko)/m)" 170D

I 35 ()
<l s

Collecting the above inequality (4.5) with (4.3)—(4.4) and taking the supremum over all
A > 0, and then taking g-th root on both sides, we finish the proof of Theorem 1.2. O

5 Proof of Theorem 1.3

Proof of Theorem 1.3. Arguing as in the proof of Theorem 1.2, for any fixed 4 > 0, we

can choose ko € Z satisfying 2k < & < 2k0*! where we define & = 29/7 “ f “; Zf,p
f e WHP(R™), then in view of Theorem 2.2, we may write

oo ko co
f= Z Je= Z fe+ Z fei=F1+F,
k=—00 k=—00

k:ko+l

. For every

where F; = Zi‘):_oo fi= Zi‘):_m Zibf, Fr= Z,‘;‘;kOH Ji = Z;O:koﬂ Zibf.‘ and {bf.‘} satisfies (a)-
(¢) in Theorem 2.2. Then we have
AL-|{x e R": |Too(H| >
<A [{x eR": [Tao(F)@)| > A/2}| + 29+ [{x e R : [Tqu(F2)(x)| > 1/2}]
=K+ K;.
Since Q € Din,,g(S =1y with r > n/(n— @), this is equivalent to 1 <’ < n/a. Then we are able
to find a positive number p; such that 1 <7’ < p; <n/a. We also take g; > p1 > 1 such that

1/q1 = 1/p1 —a/n. Hence, by Theorem B, we obtain that Tq , is bounded from L”'(R") to
L7 (R™). Repeating the arguments used in the proof of Theorem 1.2, we can also show that

Ky < C iy

Let us now consider the other term K,. As before, we set

(o)

A= o

k=ko+1 i
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where Qf.‘ = Q(xi.‘,rp(k‘k")/ "2 \/ﬁ)rf) and 7 is an appropriately chosen number such that
1 <7 < 2. Thus, we can further decompose K, as

Ky <29 |{x € Ay, : [Tao(F2)@)] > 4/2)] + 27+ |{x € (Ag))" : [T (F2) ()| > 1/2}]
= K, +K}.

By using the same procedure as in Theorem 1.2, we can also obtain

K3 < Cl Al

It remains to estimate the last term K. We first apply Chebyshev’s inequality to obtain

Ky <28 f ITou(F2)()|"dx
(g

=) Zf(’g‘f)”

k=ko+1 i

=P

k=ko+1 i

Too(b5)(x)|" dx

Again we denote ¥, = 207 1zP(=ko)/n \fp K and

E*

fo={xeR il <lx—xf<27f,), =12,

An application of Holder’s inequality leads to that
gE< Y, [ Iraahoofax
=1 VE,

< 2 25 fE ) [Taa(th)] )

Notice that [n(1/p —1)] = 0 by the hypothesis. Consequently, by the cancellation condition
of bf.‘ € L™ (R™), we can get

dx

fl;k |TQ,w(b§)(x)’dx: fl;k ‘Lk [Ka(x,x—y)—K(,(x,x—xf)]bf-‘(y)dy

<J, A

o Up,

S”b;‘”bx,f {f ’Ka(x,x—y)—Ka(x,x—xf.‘)|dx}dy.
of WJE,

Ifye Qi.‘ and x € (éz.‘)c, then we still have |x— xﬂ > 2|y— xf‘| for all i and & by (3.4). Applying
Holder’s inequality with exponent r > 1 and Lemma 2.1, we can see that for any y € Qf.‘ , the

Ko(x,x=y)— Ko(x,x— xf)| dx}|bf(y)| dy
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integral in the brace of the above expression is bounded by

r 1/r 1/r
(f Ka(x,x—y)—Ka(x,x—xé‘)l dx) (f ldx)
Ef, Ef,

<C-|EF v f
B B <<k,

S N T i e w(6)
<C-|Ei, ( tt’) X —5 ¥
T Iy,

/ k —xk| 7k
1/r ~(T£€)n/r_(n_a)[|y_x¢| + |y_xl'|ﬁ o b=xil/Tie ,(8) d§]

k k 1+
e @ Jy-stiant, 01

1/r
Ko(x+ xf,x -(y- xf.‘)) - Ky (x+ )/i‘,x)‘ dx)

<C-|Ef,

X n/r' n/r—(n—a) 1 1 14 la)r(6)
SC'(ZTM) ( 15) (2€Tp(k—k0)/n +[2€Tp(k—k0)/n] 0 OB do

1 B
A\ w,(6) 1
<C-(2¢4)) (1+f0 el N =

Recall that ||bf‘|| > <C 2% and g < 1. From the above estimate, it follows that

1-q aq

Bq
|Q l (2l’Tp(k ko)/n)

- ) 1 Ba
_ C'2k‘1;(27'ﬁg)n q +aq'|Q§|q(W)

Tt < c-2’“1i|E{.ff|
=1

<c-2y |Qf-‘|l_q+aq/n 10f |q(2" N
=1

l+ag/n _ n(1-q)+aq—q
<(C.2ka. |Q5{ (Tp(k ko)/n)

’

where the last inequality holds since g > n/(n —a + ). Using the fact that 1 +ag/n=q/p>1
and the well-known inequality 3;(u,)?/? < (3;1)??, we deduce that

Ky <cC Z > 2|0k

|1 taa/n (Tp(k—ko)/n)n_(n_a+‘8)q

k=ko+1 i

<C Z 244(pk- ko)/n)”*"—%ﬁ)q,(zl Qﬂ)"/”
k=ko+1 i

<C|f 3 Lp(k—ko)nY*~ (1= tB)
I 3, (")

<l vz

Summing up all the above estimates and taking the supremum over all A > 0, and then taking
g-th root on both sides, we conclude the proof of Theorem 1.3. O



62 Hua Wang

We finally remark that for any function f, a straightforward computation shows that
the grand maximal function of f is pointwise dominated by M(f), where M denotes the
standard Hardy-Littlewood maximal operator. Hence, by the weak type (1,1) estimate of M,
it is easy to see that the space L' (R") is continuously embedded as a subspace of WH'!(R"),
and we have ||fl|lyg < Cllfll;: for any f € L'(R™). Therefore, as direct consequences of
Theorems 1.1 and 1.2, we immediately obtain the following result.

Corollary 5.1. Let O < <1 and p = 1. Suppose that Q € Dinz(S"_l) with r > 2(n—1)/n,
then there exists a constant C > 0 independent of f such that

[7aPlyw < Al

n/(n—a)

Corollary 5.2. LetO<a <1, p=1and1/q=1/p—a/n. Suppose that Q € Din, (8" h,
then there exists a constant C > 0 independent of f such that

||TQ,(1/(f)||WLn/(n—a) < C:”f“Ll :
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